
Robust Erlang
(PFP Lecture 10)

John Hughes

Genesis of Erlang

• Problem: telephony systems in the late 1980s
– Digital
– More and more complex
– Highly concurrent
– Hard to get right

• Approach: a group at Ericsson research
programmed POTS in different languages

• Solution: nicest was functional
programming—but not concurrent

• Erlang designed in the early 1990s

”Plain Old Telephony
System”

• ATM switch (telephone
backbone), released in
1998

• First big Erlang project

• Born out of the ashes of a
disaster!

Mid 1990s: the AXD 301

AXD301 Architecture

Subrack

16 data boards
2 million lines of C++

10 Gb/s

1,5 million LOC
of Erlang

• 160 Gbits/sec (240,000 simultaneous calls!)
• 32 distributed Erlang nodes
• Parallelism vital from the word go

Typical Applications Today

Facebook Chat

Invoicing services for web
shops—in 6 countries!

Distributed no-SQL database
serving e.g. all Denmark’s patient
data

What do they all have in common?

• Serving huge numbers of clients through

parallelism

• Very high demands on quality of service: these
systems should work all of the time

AXD 301 Quality of Service

• 7 nines reliability!
– Up 99,99999% of the

time
• Despite

– Bugs
• (10 bugs per 1000 lines

is good)
– Hardware failures

• Always something
failing in a big cluster

• Avoid any SPOF

Example: Area of a Shape

 area({square,X}) -> X*X;
area({rectangle,X,Y}) -> X*Y.

8> test:area({rectangle,3,4}).
12
9> test:area({circle,2}).
** exception error: no function clause matching
test:area({circle,2}) (test.erl, line 16)
10>
 What do we do

about it?

Defensive Programming

 area({square,X}) -> X*X;
area({rectangle,X,Y}) -> X*Y;
area(_) -> 0.

Anticipate a
possible

error

Return a
plausible

result.

11> test:area({rectangle,3,4}).
12
12> test:area({circle,2}).
0

No crash any
more!

Plausible Scenario

• We write lots more code manipulating shapes
• We add circles as a possible shape

– But we forget to change area!

<LOTS OF TIME PASSES>

• We notice something doesn’t work for circles

– We silently substituted the wrong answer
• We write a special case elsewhere to ”work

around” the bug

Handling Error Cases

• Handling errors often accounts for > ⅔ of a
system’s code
– Expensive to construct and maintain
– Likely to contain > ⅔ of a system’s bugs

• Error handling code is often poorly tested
– Code coverage is usually << 100%

• ⅔ of system crashes are caused by bugs in the
error handling code But what can we do

about it?

Don’t Handle Errors!

Stopping a
malfunctioning

program

Letting it
continue and
wreak untold

damage

…is better
than …

Let it crash… locally

• Isolate a failure within one process!

– No shared memory between processes
– No mutable data
– One process cannot cause another to fail

• One client may experience a failure… but the

rest of the system keeps going

How do we handle this?

We know what to do…

Detect failure

Restart

Using Supervisor Processes

• Supervisor process is not corrupted
– One process cannot corrupt another

• Large grain error handling
– simpler, smaller code

Supervisor
process

Crashed
worker
process

Detect failure

Restart

Supervision Trees

Super-
visor

Super-
visor

Super-
visor

Super-
visor

Worker Worker

Small, fast
restarts

Large, slow
restarts

Restart one or
restart all

Detecting Failures: Links

EXIT signal

Linked
processes

Linked Processes

”System”
process

EXIT signal

This all works
regardless of where
the processes are
running

Creating a Link

• link(Pid)
– Create a link between self() and Pid
– When one process exits, an exit signal is sent to

the other
– Carries an exit reason (normal for successful

termination)

• unlink(Pid)
– Remove a link between self() and Pid

Two ways to spawn a process

• spawn(F)
– Start a new process, which calls F().

• spawn_link(F)
– Spawn a new process and link to it atomically

Trapping Exits

• An exit signal causes the recipient to exit also
– Unless the reason is normal

• …unless the recipient is a system process
– Creates a message in the mailbox:
{’EXIT’,Pid,Reason}

– Call process_flag(trap_exit,true) to
become a system process

An On-Exit Handler

• Specify a function to be called when a process
terminates

on_exit(Pid,Fun) ->
 spawn(fun() -> process_flag(trap_exit,true),
 link(Pid),
 receive
 {'EXIT',Pid,Why} -> Fun(Why)
 end
 end).

Testing on_exit
5> Pid = spawn(fun()->receive N -> 1/N end end).
<0.55.0>
6> test:on_exit(Pid,fun(Why)->
 io:format("***exit: ~p\n",[Why]) end).
<0.57.0>
7> Pid ! 1.
***exit: normal
1
8> Pid2 = spawn(fun()->receive N -> 1/N end end).
<0.60.0>
9> test:on_exit(Pid2,fun(Why)->
 io:format("***exit: ~p\n",[Why]) end).
<0.62.0>
10> Pid2 ! 0.
=ERROR REPORT==== 25-Apr-2012::19:57:07 ===
Error in process <0.60.0> with exit value:
{badarith,[{erlang,'/',[1,0],[]}]}
***exit: {badarith,[{erlang,'/',[1,0],[]}]}
0

A Simple Supervisor

• Keep a server alive at all times
– Restart it whenever it terminates

• Just one problem…

keep_alive(Fun) ->
 Pid = spawn(Fun),
 on_exit(Pid,fun(_) -> keep_alive(Fun) end).

How will anyone ever
communicate with Pid?

Real supervisors
won’t restart too
often—pass the

failure up the
hierarchy

The Process Registry

• Associate names (atoms) with pids
• Enable other processes to find pids of servers,

using
– register(Name,Pid)

• Enter a process in the registry

– unregister(Name)
• Remove a process from the registry

– whereis(Name)
• Look up a process in the registry

A Supervised Divider

 divider() ->
 keep_alive(fun() -> register(divider,self()),
 receive
 N -> io:format("~n~p~n",[1/N])
 end
 end).

4> divider ! 0.
=ERROR REPORT==== 25-Apr-2012::20:05:20 ===
Error in process <0.43.0> with exit value:
{badarith,[{test,'-divider/0-fun-0-',0,
 [{file,"test.erl"},{line,34}]}]}
0
5> divider ! 3.
0.3333333333333333
3

Supervisors supervise servers

• At the leaves of a supervision tree are
processes that service requests

• Let’s decide on a protocol

client server

{{ClientPid,Ref},Request}

{Ref,Response}

rpc(ServerName,
Request)

reply({ClientPid,
 Ref},

Response)

rpc/reply

 rpc(ServerName,Request) ->
 Ref = make_ref(),
 ServerName ! {{self(),Ref},Request},
 receive
 {Ref,Response} ->
 Response
 end.

reply({ClientPid,Ref},Response) ->
 ClientPid ! {Ref,Response}.

account(Name,Balance) ->
 receive
 {Client,Msg} ->
 case Msg of
 {deposit,N} ->
 reply(Client,ok),
 account(Name,Balance+N);
 {withdraw,N} when N=<Balance ->
 reply(Client,ok),
 account(Name,Balance-N);
 {withdraw,N} when N>Balance ->
 reply(Client,{error,insufficient_funds}),
 account(Name,Balance)
 end
 end.

Example Server
account(Name,Balance) ->
 receive
 {Client,Msg} ->
 case Msg of
 {deposit,N} ->
 reply(Client,ok),
 account(Name,Balance+N);
 {withdraw,N} when N=<Balance ->
 reply(Client,ok),
 account(Name,Balance-N);
 {withdraw,N} when N>Balance ->
 reply(Client,{error,insufficient_funds}),
 account(Name,Balance)
 end
 end.

Send a reply

account(Name,Balance) ->
 receive
 {Client,Msg} ->
 case Msg of
 {deposit,N} ->
 reply(Client,ok),
 account(Name,Balance+N);
 {withdraw,N} when N=<Balance ->
 reply(Client,ok),
 account(Name,Balance-N);
 {withdraw,N} when N>Balance ->
 reply(Client,{error,insufficient_funds}),
 account(Name,Balance)
 end
 end.

Change the state

A Generic Server

• Decompose a server into…
– A generic part that handles client—server

communication
– A specific part that defines functionality for this

particular server

• Generic part: receives requests, sends replies,
recurses with new state

• Specific part: computes the replies and new
state

A Factored Server

 server(State) ->
 receive {Client,Msg} -> {Reply,NewState} = handle(Msg,State),
 reply(Client,Pid,Reply),
 server(NewState)
 end.

handle(Msg,Balance) ->
 case Msg of
 {deposit,N} -> {ok, Balance+N};
 {withdraw,N} when N=<Balance -> {ok, Balance-N};
 {withdraw,N} when N>Balance ->
 {{error,insufficient_funds}, Balance}
 end.

How do we
parameterise the

server on the
callback?

Callback Modules

• Remember:

• Passing a module name is sufficient to give
access to a collection of ”callback” functions

foo:baz(A,B,C) Call function baz in
module foo

Mod:baz(A,B,C)
Call function baz in

module Mod (a
variable!)

A Generic Server

 server(Mod,State) ->
 receive {Client,Msg} ->
 {Reply,NewState} = Mod:handle(Msg,State),
 reply(Client,Reply),
 server(Mod,NewState)
 end.

new_server(Name,Mod) ->
 keep_alive(fun() -> register(Name,self()),
 server(Mod,Mod:init()) end).

The Bank Account Module

• This is purely sequential (and hence easy) code
• This is all the application programmer needs

to write

handle(Msg,Balance) ->
 case Msg of
 {deposit,N} -> {ok, Balance+N};
 {withdraw,N} when N=<Balance -> {ok, Balance-N};
 {withdraw,N} when N>Balance ->
 {{error,insufficient_funds}, Balance}
 end.
init() -> 0.

What Happens If…

• The client makes a bad call, and…
• The handle callback crashes?

• The server crashes
• The client waits for ever for a reply

• Let’s make the client crash instead

Is this what
we want?

Erlang Exception Handling

• Evaluates to V, if <expr> evaluates to V

• Evaluates to {’EXIT’,Reason} if expr throws an
exception with reason Reason

catch <expr>

Generic Server Mk II

 server(Mod,State) ->
 receive
 {Pid,Msg} ->
 case catch Mod:handle(Msg,State) of
 {'EXIT',Reason} ->
 reply(Name,Pid, {crash,Reason}),
 server(Mod,…………..);
 {Reply,NewState} ->
 reply(Name,Pid, {ok,Reply}),
 server(Mod,NewState)
 end
 end.

rpc(Name,Msg) ->
 …
 receive
 {Ref,{crash,Reason}} ->
 exit(Reason);
 {Ref,{ok,Reply}} ->
 Reply
 end.

What should we
put here?

We don’t have a new state!

State

Transaction Semantics

• The Mk II server supports transaction
semantics
– When a request crashes, the client crashes…
– …but the server state is restored to the state

before the request

• Other clients are unaffected by the crashes

Hot Code Swapping

• Suppose we want to change the code that the
server is running
– It’s sufficient to change the module that the

callbacks are taken from

server(Mod,State) ->
 receive
 {Client, {code_change,NewMod}} ->
 reply(Client,{ok,ok}),
 server(NewMod,State);
 {Pid,Msg} -> …
 end.

The State is not
lost

Two Difficult Things Before Breakfast

• Implementing transactional semantics in a
server

• Implementing dynamic code upgrade without
losing the state

Why was it easy?
• Because all of the state is captured in a single

value…
• …and the state is updated by a pure function

gen_server for real

• 6 call-backs
– init
– handle_call
– handle_cast—messages with no reply
– handle_info—timeouts/unexpected messages
– terminate
– code_change

• Tracing and logging, supervision, system
messages…

• 70% of the code in real Erlang systems

OTP

• A handful of generic behaviours
– gen_server
– gen_fsm—traverses a finite graph of states
– gen_event—event handlers
– supervisor—tracks supervision tree+restart

strategies

• And there are other more specialised
behaviours…
– gen_leader—leader election
– …

Erlang’s Secret

• Highly robust
• Highly scalable
• Ideal for internet servers

• 1998: Open Source Erlang (banned in Ericsson)
• First Erlang start-up: Bluetail

– Bought by Alteon Websystems
• Bought by Nortel Networks $140 million in

<18 months

SSL Accelerator

• ”Alteon WebSystems' SSL
Accelerator offers
phenomenal performance,
management and scalability.”
– Network Computing

2004 Start-up: Kreditor

• New features every few weeks—never down
• ”Company of the year” in 2007
• Growth : >13,000% (to over 600 people!)
• Market leader in Scandinavia

Kreditor

Order 100:-

Order details

97:-

invoice

100:-

Erlang Today

• Scaling well on multicores
– 48 cores, no problem!

• Many companies, large and small
– Amazon/Facebook/Nokia/Motorola/HP…
– Ericsson recruiting Erlangers
– No-sql databases (Basho, CouchDB, Hibari…)
– Many many start-ups

• ”Erlang style concurrency” widely copied
– Akka in Scala (powers Twitter), Cloud Haskell…

First Intel
dual core
released

Erlang Events 2011

• Erlang User Conference, Stockholm
• Erlang Factory (multiple tracks)

– London
– San Francisco

• Erlang Factory Lite
– Brisbane, Paris, Munich, Edinburgh, Amsterdam
– 2012: Brussels, Krakow, Zurich, St.Andrews…

• ErlangCamp
– Chicago, coming up in Spain…

Next Wednesday…

Patrik Nyblom
• On the Erlang

development team for 10
years

• Making Erlang scale to
many cores
– ”What we've done so that you, as

an Erlang programmer, can sit back
and enjoy the fact that you don't
have to bother with such things!”

	Robust Erlang�(PFP Lecture 10)
	Genesis of Erlang
	Mid 1990s: the AXD 301
	AXD301 Architecture
	Slide Number 5
	Typical Applications Today
	What do they all have in common?
	AXD 301 Quality of Service
	Example: Area of a Shape
	Defensive Programming
	Plausible Scenario
	Handling Error Cases
	Don’t Handle Errors!
	Let it crash… locally
	How do we handle this?
	We know what to do…
	Using Supervisor Processes
	Supervision Trees
	Detecting Failures: Links
	Linked Processes
	Creating a Link
	Two ways to spawn a process
	Trapping Exits
	An On-Exit Handler
	Testing on_exit
	A Simple Supervisor
	The Process Registry
	A Supervised Divider
	Supervisors supervise servers
	rpc/reply
	Example Server
	A Generic Server
	A Factored Server
	Callback Modules
	A Generic Server
	The Bank Account Module
	What Happens If…
	Erlang Exception Handling
	Generic Server Mk II
	Transaction Semantics
	Hot Code Swapping
	Two Difficult Things Before Breakfast
	gen_server for real
	OTP
	Erlang’s Secret
	SSL Accelerator
	2004 Start-up: Kreditor
	Erlang Today
	Slide Number 49
	Erlang Events 2011
	Next Wednesday…

