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Genesis of Erlang 

• Problem: telephony systems in the late 1980s 
– Digital 
– More and more complex 
– Highly concurrent 
– Hard to get right 

• Approach: a group at Ericsson research 
programmed POTS in different languages 

• Solution: nicest was functional 
programming—but not concurrent 

• Erlang designed in the early 1990s 

”Plain Old Telephony 
System” 



• ATM switch (telephone 
backbone), released in 
1998 
 

• First big Erlang project 
 

• Born out of the ashes of a 
disaster! 

Mid 1990s: the AXD 301 



AXD301 Architecture 

Subrack 

16 data boards 
2 million lines of C++ 

10 Gb/s 

1,5 million LOC 
of Erlang 



 
 
 
 
 
 

• 160 Gbits/sec (240,000 simultaneous calls!) 
• 32 distributed Erlang nodes 
• Parallelism vital from the word go 



Typical Applications Today 

Facebook Chat 

Invoicing services for web 
shops—in 6 countries! 

Distributed no-SQL database 
serving e.g. all Denmark’s patient 
data 



What do they all have in common? 

 
• Serving huge numbers of clients through 

parallelism 
 

• Very high demands on quality of service: these 
systems should work all of the time 



AXD 301 Quality of Service 

• 7 nines reliability! 
– Up 99,99999% of the 

time 
• Despite 

– Bugs 
• (10 bugs per 1000 lines 

is good) 
– Hardware failures 

• Always something 
failing in a big cluster 

• Avoid any SPOF 



Example: Area of a Shape 

 area({square,X}) -> X*X; 
area({rectangle,X,Y}) -> X*Y. 

8> test:area({rectangle,3,4}). 
12 
9> test:area({circle,2}). 
** exception error: no function clause matching 
test:area({circle,2}) (test.erl, line 16) 
10> 
 What do we do 

about it? 



Defensive Programming 

 area({square,X}) -> X*X; 
area({rectangle,X,Y}) -> X*Y; 
area(_) -> 0. 

Anticipate a 
possible 

error 

Return a 
plausible 

result. 

11> test:area({rectangle,3,4}). 
12 
12> test:area({circle,2}).      
0 

No crash any 
more! 



Plausible Scenario 

• We write lots more code manipulating shapes 
• We add circles as a possible shape 

– But we forget to change area! 
 

<LOTS OF TIME PASSES> 
 
• We notice something doesn’t work for circles 

– We silently substituted the wrong answer 
• We write a special case elsewhere to ”work 

around” the bug 



Handling Error Cases 

• Handling errors often accounts for > ⅔ of a 
system’s code 
– Expensive to construct and maintain 
– Likely to contain > ⅔ of a system’s bugs 

• Error handling code is often poorly tested 
– Code coverage is usually << 100% 

• ⅔ of system crashes are caused by bugs in the 
error handling code But what can we do 

about it? 



Don’t Handle Errors! 

 

Stopping a 
malfunctioning 

program 

Letting it 
continue and 
wreak untold 

damage 

…is better 
than … 



Let it crash… locally 

 
• Isolate a failure within one process! 

– No shared memory between processes 
– No mutable data 
– One process cannot cause another to fail 

 
• One client may experience a failure… but the 

rest of the system keeps going 



How do we handle this? 

 



We know what to do… 

Detect failure 

Restart  



Using Supervisor Processes 

 
 
 
 

• Supervisor process is not corrupted 
– One process cannot corrupt another 

• Large grain error handling 
– simpler, smaller code 

Supervisor 
process 

Crashed 
worker 
process 

Detect failure 

Restart  



Supervision Trees 

 
Super-
visor  

Super-
visor  

Super-
visor  

Super-
visor  

Worker  Worker  

Small, fast 
restarts 

Large, slow 
restarts 

Restart one or 
restart all 



Detecting Failures: Links 

 

EXIT signal 

Linked 
processes 



Linked Processes 

 

”System” 
process 

EXIT signal 

This all works 
regardless of where 
the processes are 
running 



Creating a Link 

• link(Pid) 
– Create a link between self() and Pid 
– When one process exits, an exit signal is sent to 

the other 
– Carries an exit reason (normal for successful 

termination) 
 

• unlink(Pid) 
– Remove a link between self() and Pid 



Two ways to spawn a process 

• spawn(F) 
– Start a new process, which calls F(). 

 

• spawn_link(F) 
– Spawn a new process and link to it atomically 



Trapping Exits 

• An exit signal causes the recipient to exit also 
– Unless the reason is normal 

 

• …unless the recipient is a system process 
– Creates a message in the mailbox: 
{’EXIT’,Pid,Reason} 

– Call process_flag(trap_exit,true) to 
become a system process 



An On-Exit Handler 

• Specify a function to be called when a process 
terminates 

on_exit(Pid,Fun) -> 
    spawn(fun() -> process_flag(trap_exit,true), 
       link(Pid), 
       receive  
           {'EXIT',Pid,Why} -> Fun(Why) 
       end 
     end). 



Testing on_exit 
5> Pid = spawn(fun()->receive N -> 1/N end end). 
<0.55.0> 
6> test:on_exit(Pid,fun(Why)-> 
           io:format("***exit: ~p\n",[Why]) end). 
<0.57.0> 
7> Pid ! 1. 
***exit: normal 
1 
8> Pid2 = spawn(fun()->receive N -> 1/N end end).                     
<0.60.0> 
9> test:on_exit(Pid2,fun(Why)-> 
         io:format("***exit: ~p\n",[Why]) end). 
<0.62.0> 
10> Pid2 ! 0.                                                           
=ERROR REPORT==== 25-Apr-2012::19:57:07 === 
Error in process <0.60.0> with exit value: 
{badarith,[{erlang,'/',[1,0],[]}]} 
***exit: {badarith,[{erlang,'/',[1,0],[]}]} 
0 



A Simple Supervisor 

• Keep a server alive at all times 
– Restart it whenever it terminates 

 
 
 
 

• Just one problem… 

keep_alive(Fun) -> 
      Pid = spawn(Fun), 
      on_exit(Pid,fun(_) -> keep_alive(Fun) end). 

How will anyone ever 
communicate with Pid? 

Real supervisors 
won’t restart too 
often—pass the 

failure up the 
hierarchy 



The Process Registry 

• Associate names (atoms) with pids 
• Enable other processes to find pids of servers, 

using 
– register(Name,Pid) 

• Enter a process in the registry 

– unregister(Name) 
• Remove a process from the registry 

– whereis(Name) 
• Look up a process in the registry 



A Supervised Divider 

 divider() -> 
    keep_alive(fun() -> register(divider,self()), 
              receive  
           N ->  io:format("~n~p~n",[1/N]) 
              end 
            end). 

4> divider ! 0. 
=ERROR REPORT==== 25-Apr-2012::20:05:20 === 
Error in process <0.43.0> with exit value: 
{badarith,[{test,'-divider/0-fun-0-',0, 
          [{file,"test.erl"},{line,34}]}]} 
0 
5> divider ! 3. 
0.3333333333333333 
3 



Supervisors supervise servers 

• At the leaves of a supervision tree are 
processes that service requests 

• Let’s decide on a protocol 

client server 

{{ClientPid,Ref},Request} 

{Ref,Response} 

rpc(ServerName, 
Request) 

reply({ClientPid, 
    Ref}, 

Response) 



rpc/reply 

 rpc(ServerName,Request) -> 
    Ref = make_ref(), 
    ServerName ! {{self(),Ref},Request}, 
    receive 
 {Ref,Response} -> 
         Response 
    end. 
 
reply({ClientPid,Ref},Response) -> 
    ClientPid ! {Ref,Response}. 



account(Name,Balance) -> 
    receive 
          {Client,Msg} -> 
     case Msg of 
           {deposit,N} -> 
      reply(Client,ok), 
      account(Name,Balance+N); 
          {withdraw,N} when N=<Balance -> 
      reply(Client,ok), 
      account(Name,Balance-N); 
          {withdraw,N} when N>Balance -> 
      reply(Client,{error,insufficient_funds}), 
      account(Name,Balance) 
     end 
    end. 

Example Server 
account(Name,Balance) -> 
    receive 
          {Client,Msg} -> 
     case Msg of 
           {deposit,N} -> 
      reply(Client,ok), 
      account(Name,Balance+N); 
          {withdraw,N} when N=<Balance -> 
      reply(Client,ok), 
      account(Name,Balance-N); 
          {withdraw,N} when N>Balance -> 
      reply(Client,{error,insufficient_funds}), 
      account(Name,Balance) 
     end 
    end. 

Send a reply 

account(Name,Balance) -> 
    receive 
          {Client,Msg} -> 
     case Msg of 
           {deposit,N} -> 
      reply(Client,ok), 
      account(Name,Balance+N); 
          {withdraw,N} when N=<Balance -> 
      reply(Client,ok), 
      account(Name,Balance-N); 
          {withdraw,N} when N>Balance -> 
      reply(Client,{error,insufficient_funds}), 
      account(Name,Balance) 
     end 
    end. 

Change the state 



A Generic Server 

• Decompose a server into… 
– A generic part that handles client—server 

communication 
– A specific part that defines functionality for this 

particular server 

• Generic part: receives requests, sends replies, 
recurses with new state 

• Specific part: computes the replies and new 
state 



A Factored Server 

 server(State) -> 
    receive {Client,Msg} -> {Reply,NewState} = handle(Msg,State), 
                                 reply(Client,Pid,Reply), 
                                 server(NewState) 
    end. 

handle(Msg,Balance) -> 
    case Msg of 
 {deposit,N}                                      -> {ok, Balance+N}; 
 {withdraw,N} when N=<Balance -> {ok, Balance-N}; 
 {withdraw,N} when N>Balance   -> 
     {{error,insufficient_funds}, Balance} 
    end. 

How do we 
parameterise the 

server on the 
callback? 



Callback Modules 

• Remember: 
 
 
 
 
 

• Passing a module name is sufficient to give 
access to a collection of ”callback” functions 

foo:baz(A,B,C) Call function baz in 
module foo 

Mod:baz(A,B,C) 
Call function baz in 

module Mod (a 
variable!) 



A Generic Server 

 server(Mod,State) -> 
        receive {Client,Msg} -> 
                 {Reply,NewState} = Mod:handle(Msg,State), 
                 reply(Client,Reply), 
                 server(Mod,NewState) 
        end. 

new_server(Name,Mod) -> 
        keep_alive(fun() -> register(Name,self()), 
          server(Mod,Mod:init()) end). 



The Bank Account Module 

 
 
 
 
 
 

• This is purely sequential (and hence easy) code 
• This is all the application programmer needs 

to write 

handle(Msg,Balance) -> 
    case Msg of 
 {deposit,N}                                      -> {ok, Balance+N}; 
 {withdraw,N} when N=<Balance -> {ok, Balance-N}; 
 {withdraw,N} when N>Balance   -> 
                             {{error,insufficient_funds}, Balance} 
    end. 
init() -> 0. 



What Happens If… 

• The client makes a bad call, and… 
• The handle callback crashes? 

 
• The server crashes 
• The client waits for ever for a reply 

 
• Let’s make the client crash instead 

Is this what 
we want? 



Erlang Exception Handling 

 
 
 

• Evaluates to V, if <expr> evaluates to V 
 

• Evaluates to {’EXIT’,Reason} if expr throws an 
exception with reason Reason 

catch <expr> 



Generic Server Mk II 

 server(Mod,State) -> 
    receive 
 {Pid,Msg} -> 
     case catch Mod:handle(Msg,State) of 
  {'EXIT',Reason} -> 
      reply(Name,Pid, {crash,Reason}), 
      server(Mod,…………..); 
  {Reply,NewState} -> 
      reply(Name,Pid, {ok,Reply}), 
      server(Mod,NewState) 
     end 
    end. 

rpc(Name,Msg) -> 
    … 
    receive  
 {Ref,{crash,Reason}} -> 
        exit(Reason); 
 {Ref,{ok,Reply}} -> 
                    Reply 
    end. 

What should we 
put here? 

We don’t have a new state! 

State 



Transaction Semantics 

• The Mk II server supports transaction 
semantics 
–  When a request crashes, the client crashes… 
– …but the server state is restored to the state 

before the request 

 
• Other clients are unaffected by the crashes 



Hot Code Swapping 

• Suppose we want to change the code that the 
server is running 
– It’s sufficient to change the module  that the 

callbacks are taken from 

server(Mod,State) -> 
       receive 
 {Client, {code_change,NewMod}} -> 
        reply(Client,{ok,ok}), 
        server(NewMod,State); 
 {Pid,Msg} -> … 
       end. 

The State is not 
lost 



Two Difficult Things Before Breakfast 

• Implementing transactional semantics in a 
server 

• Implementing dynamic code upgrade without 
losing the state 

Why was it easy? 
• Because all of the state is captured in a single 

value… 
• …and the state is updated by a pure function 



gen_server for real 

• 6 call-backs 
– init 
– handle_call 
– handle_cast—messages with no reply 
– handle_info—timeouts/unexpected messages 
– terminate 
– code_change 

• Tracing and logging, supervision, system 
messages… 

• 70% of the code in real Erlang systems 



OTP 

• A handful of generic behaviours 
– gen_server 
– gen_fsm—traverses a finite graph of states 
– gen_event—event handlers 
– supervisor—tracks supervision tree+restart 

strategies 
 

• And there are other more specialised 
behaviours… 
– gen_leader—leader election 
– … 



Erlang’s Secret 

• Highly robust 
• Highly scalable 
• Ideal for internet servers 

 
• 1998: Open Source Erlang (banned in Ericsson) 
• First Erlang start-up: Bluetail 

– Bought by Alteon Websystems 
• Bought by Nortel Networks $140 million in 

<18 months 



SSL Accelerator 

• ”Alteon WebSystems' SSL 
Accelerator offers 
phenomenal performance, 
management and scalability.” 
– Network Computing 

 

 



2004 Start-up: Kreditor 

 
 

 
 
 

• New features every few weeks—never down 
• ”Company of the year” in 2007 
• Growth : >13,000% (to over 600 people!) 
• Market leader in Scandinavia 

Kreditor 

Order 100:- 

Order details 

97:- 

invoice 

100:- 



Erlang Today 

• Scaling well on multicores 
– 48 cores, no problem! 

• Many companies, large and small 
– Amazon/Facebook/Nokia/Motorola/HP… 
– Ericsson recruiting Erlangers 
– No-sql databases (Basho, CouchDB, Hibari…) 
– Many many start-ups 

• ”Erlang style concurrency” widely copied 
– Akka in Scala (powers Twitter), Cloud Haskell… 



First Intel  
dual core  
released 



Erlang Events 2011 

• Erlang User Conference, Stockholm 
• Erlang Factory (multiple tracks) 

– London 
– San Francisco 

• Erlang Factory Lite 
– Brisbane, Paris, Munich, Edinburgh, Amsterdam 
– 2012: Brussels, Krakow, Zurich, St.Andrews… 

• ErlangCamp 
– Chicago, coming up in Spain… 



Next Wednesday… 

Patrik Nyblom 
• On the Erlang 

development team for 10 
years 

• Making Erlang scale to 
many cores 
– ”What we've done so that you, as 

an Erlang programmer, can sit back 
and enjoy the fact that you don't 
have to bother with such things!” 
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