
The Parallel Sorting Challenge

The Entries

• 7 teams
• 9 participants
• 9 sorters
• 16 entries (differing depths)
• 2 using strategies

The Algorithms

0

1

2

3

4

5

6

merge sort radix sort bitonic bucketsort

The Flags

+RTS –A128M –K100M

Allocation area:
allocate this much

before GC

Prioritise low GC costs
over cache miss rate

100 megabytes of
stack???

The Speed-Ups

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Perfect
d
l
n
a
h
f
e
g
b
p
i
m
c
o
Data.List
j
k

Worse
speed-up

than
Data.List!

The BEST
speed-up on
4 HECs: 2.7x!

2.88x on 6
HECs!

The Speeds

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8

a
m
l
n
b
e
f
g
p
h
i
o
Data.List
c
j
k
d

More than 30X
SLOWER than

sequential sorting!

The Bitonic Sorter

• Very interesting algorithm

• Highly parallelisable

• Data independent control
 excellent for hardware implementation

• Worse complexity 

Speed Up over Data.List

0

0,5

1

1,5

2

2,5

3

3,5

1 2 4 6 8

a
m
l
n
b
e
f
g
p
h
i
o
Data.List
c
j
k
d

m: fastest
sequential

a: fastest parallel?
(on 4 cores)

l: most scalable?

More careful benchmark

• 1000 samples

• Highest priority process

– Try to minimise interference from other OS tasks

Speed Up over Data.List

0

0,5

1

1,5

2

2,5

3

3,5

1 2 4 6 8

a
m
l

The Winners!

0

0,5

1

1,5

2

2,5

3

3,5

1 2 4 6 8

Dan Rosén and
David Spångberg

Karl Schmidt

Jonas Lindgren and
Niklas Åkerblom

Dan Rosén and David Spångberg
-- Variation on radix sort.
bsort' :: forall a . (NFData a,Bits a,Ord a) => [a] -> [a]
bsort' xs = DL.toList (bucket t xs)
 where
 t :: Int
 t = 2

 bits :: Int
 bits = bitSize (undefined :: a)

 swap (a,b) = (b,a) -- uncurry (flip (,))

 bucket :: Int -> [a] -> DL.DList a
 bucket 0 xs = let s = sort xs in rnf s `pseq` DL.fromList s
 bucket d xs = let (u,l) = (if d == t then swap else id)
 (partition (`testBit` (bits - t - 1 + d)) xs)
 us = bucket (d-1) u
 ls = bucket (d-1) l
 in us `par` ls `pseq` (ls `DL.append` us)

bsort'IntegerCheating :: [Integer] -> [Integer]
bsort'IntegerCheating xs = map toInteger
 $ (bsort' :: [Int] -> [Int])
 $ map fromInteger
 $ xs

Karl Schmidt
bucketsort :: [Integer] -> [Integer]
bucketsort = pbucketsort buckets minmax Data.List.sort
 where minmax = (toInteger (minBound::Int), toInteger (maxBound::Int))
 buckets = 8*1024

pbucketsort n (xmin,xmax) sort xs = pconcat pdepth bounds $ fmap sort
buckets
 where range = xmax - xmin + 1
 n' = min n range -- bound number of buckets
 bucketSize = range `div` n'
 index i = i `div` bucketSize
 bounds = (xmin `div` bucketSize, xmax `div` bucketSize)
 buckets = bucketize index bounds xs
 pdepth = floor $ log $ fromIntegral $ 5*numCapabilities

bucketize index bounds xs =
 accumArray (flip (:)) [] bounds $ map (\x -> (index x,x)) xs

pconcat depth (amin,amax) arr
 | amin == amax = arr ! amin
 | depth <= 0 = (arr ! amin) ++ (pconcat depth (amin+1, amax) arr)
 | otherwise = runEval $ do -- divide, parallelize, concatenate
 let amid = (amax + amin) `div` 2
 ys <- rpar `dot` rdeepseq $ pconcat (depth-1) (amid+1, amax) arr
 xs <- rseq $ pconcat (depth-1) (amin , amid) arr
 return $ xs ++ ys

Jonas Lindgren and Niklas Åkerblom
sort :: (NFData a, Ord a)=> [a] -> [a]
sort xs = mpsort (xs,11)

msort [] = []
msort (x:[]) = [x]
msort xs = merge (msort p1) (msort p2)
 where (p1,p2) = splitAt (div (length xs) 2) xs

mpsort ([], _) = []
mpsort ((x:[]), _)= [x]
mpsort (xs, 0) = msort xs
mpsort (xs, n) = par (rnf p2res) (pseq (rnf p1res) (merge p1res p2res))
 where {p2res = mpsort (p2, (n-1))
 ;p1res = mpsort (p1, (n-1))
 ;(p1,p2) = splitAt (div ((length xs)+1) 2) xs
 }

merge [] [] = []
merge [] xs = xs
merge xs [] = xs
merge (x:xs) (y:ys) = case x<y of
 True -> x:merge xs (y:ys)
 False ->y:merge (x:xs) ys

The Winners!

0

0,5

1

1,5

2

2,5

3

3,5

1 2 4 6 8

Dan Rosén and
David Spångberg

Karl Schmidt

Jonas Lindgren and
Niklas Åkerblom

The Mysterious Q

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

1 2 4 6 8

Dan Rosén and
David Spångberg

Karl Schmidt

Jonas Lindgren and
Niklas Åkerblom

q

Anders Persson

Anders Persson
qsortkpd :: Integer -> [Integer] -> [Integer]
qsortkpd limit xs = go limit xs
 where
 go _ [] = []
 go _ [x] = [x]
 go _ [x,y] = if x > y then [y,x] else [x,y]
 go 0 xs = qsort3 xs
 go d (p:xs) = rnf g `par` e `par` l `pseq` (l ++ e ++ g)
 where
 l = go (d-1) lesser
 e = equal
 g = go (d-1) greater
 (lesser, equal, greater) = DL.foldl' part ([], [p], []) xs
 part (!l, !e, !g) x =
 case compare x p of
 LT -> (x:l, e, g)
 GT -> (l, e, x:g)
 EQ -> (l, x:e, g)

Anders Persson ctd

qsort3 xs = qcat xs []
 where
 qcat (x:xs) zs = part x xs zs [] [] []
 qcat [] zs = zs
 qapp (x:xs) zs = x:qapp xs zs
 qapp [] zs = zs
 part x [] zs !a !b !c = qcat a $ qapp (x : b) $ qcat c zs
 part x (y:ys) zs !a !b !c =
 case compare y x of
 LT -> part x ys zs (y:a) b c
 EQ -> part x ys zs a (y:b) c
 GT -> part x ys zs a b (y:c)

Well done, all!

0

1

2

3

4

5

1 HEC 2 HEC 3 HEC 4 HEC

qsort
psort
limit

	The Parallel Sorting Challenge
	The Entries
	The Algorithms
	The Flags
	The Speed-Ups
	The Speeds
	The Bitonic Sorter
	Speed Up over Data.List
	More careful benchmark
	Speed Up over Data.List
	The Winners!
	Dan Rosén and David Spångberg
	Karl Schmidt
	Jonas Lindgren and Niklas Åkerblom
	The Winners!
	The Mysterious Q
	Anders Persson
	Anders Persson ctd
	Well done, all!

