
Lava I

Mary Sheeran, Thomas Hallgren
Chalmers University of Technology

Where are we?

• Take a look at the schedule
• First half of the course: Industry standard languages and

tools
– VHDL
– PSL
– Jasper Gold

• Also LTL, CTL, Model Checking algs, SAT based
verification

http://www.cse.chalmers.se/edu/course/TDA956/schedule.html�

Second half of the course:
exploring alternatives

• Hardware designs are becoming more and
more complex

• Need higher level languages with better
abstractions, easier re-use

• There is a need to control low-level details
even at high levels of design

• Better languages are needed

Better Hardware Description
Languages?

• Remember course synopsis?
– Getting hardware designs right using ideas from

computer science
• Idea: transfer progress in programming languages to

Hardware Description Languages
• From the Computer Science department at Chalmers:

– Strong Functional Programming group, particular
expertise in Haskell (involved in the design), also
interested in automated verification methods inc. SAT-
based verif., we like to make tools => Lava

Hardware Description in
Functional Languages

• Advantages of Functional Languages:
– Provide a concise notation
– Powerful abstraction mechanisms to deal with

complexity
– Good support for generic hardware descriptions
– Suitable for making embedded Domain

Specific Languages (this is Haskell’s forte)

Hardware Description in
Functional Languages

Examples (see links page for more info)
1) Warren Hunt’s use of ACL2 in processor verification

at Centaur
2) Intel’s Forte system (the mainstay of their formal

verification programme)
3) Intel’s IDV system (Integrating Design and

Verification)
4) Hawk (cool work at OGI on processor desc. and verif.)
5) Cryptol (used at Galois Inc for crypto, inc FPGA gen.)

Hardware Description in
Functional Languages

Examples
6) Lava (variants: Chalmers, Xilinx, York, Kansas)

7) using Haskell directly as a hardware description lang.

8) Bluespec …. and more not mentioned

Hardware Description in
Functional Languages

Examples
6) Lava (variants: Chalmers, Xilinx, York, Kansas)

7) using Haskell directly as a hardware description lang.

8) Bluespec …. and more not mentioned

We will use Chalmers Lava even though it is old and a
little tired. It suits our purposes and our interest in
verification

Xilinx Lava (Singh) gives fine control over layout on
FPGA

York Lava allows one to work at a higher level of
abstraction, used in processor design

Kansas Lava also targets FPGAs and aims to be a
modern reimplementation of our Lava

Hardware Description in
Functional Languages

Examples
6) Lava (variants: Chalmers, Xilinx, York, Kansas)

7) using Haskell directly as a hardware description lang.

8) Bluespec …. and more not mentioned

Guest lecture by Satnam Singh, wed. 11th May

Hardware Description in
Functional Languages

Examples
6) Lava (variants: Chalmers, Xilinx, York, Kansas)

7) using Haskell directly as a hardware description lang.

8) Bluespec …. and more not mentioned

Guest lecture by Lennart Augustsson, wed. 18th May

What is Lava?

• Lava is a hardware description language embedded in
Haskell

• Haskell is a purely functional programming language.
• Like VHDL, Haskell is a strongly typed language.
• A compiler (GHC) and an associated interactive system

(ghci) are available.

• Everything about Haskell: www.haskell.org.
• See also the Links page for pointers to intro.

material

http://www.haskell.org/�

What is Lava?

• Lava is essentially a Haskell library from
which you can import types and functions
for

• describing circuits,
• simulating circuits,
• feeding circuits to other tools, e.g. for

formal verification

What is Lava?

• Lava is essentially a Haskell library from
which you can import types and functions
for

• describing circuits,
• simulating circuits,
• feeding circuits to other tools, e.g. for

formal verification

Or to put it another way:
It’s a tool to allow control freaks to

generate netlists

Lava Documentation

• The Lava Tutorial introduces Lava without
requiring previous knowledge of Haskell.

• There is also the guide How to Use the Lava
System.

• Instructions for accessing the tools
• Please get back to me or Emil if you have

problems getting started with Lava

http://www.cse.chalmers.se/edu/course/TDA956/Papers/lava-tutorial.pdf�
http://www.cse.chalmers.se/edu/course/TDA956/Tools/lava/�
http://www.cse.chalmers.se/edu/course/TDA956/Tools/lava/�
http://www.cse.chalmers.se/edu/course/TDA956/tools.html�

First example

• abcs0000010110011 a b carry sum
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

HA

Half Adder implementation

Half Adder in VHDL

entity halfAdder is
port (a,b : in bit; sum,carry : out bit);

end halfAdder;

architecture ha_beh of halfAdder is
begin

sum <= a xor b;
c_out <= a and b;

end ha_beh;

• to have something to compare to

Half Adder in Lava

halfAdder (a, b) = (sum, carry)
where

sum = xor2 (a, b)
carry = and2 (a, b)

Note: it's a direct transcription of the circuit diagram!

Running the examples
Download the file LavaIntro.hs
In that directory, type ghci at the prompt., and then at the ghci prompt

:l LavaIntro.hs

Running the examples
Download the file LavaIntro.hs
In that directory, type ghci at the prompt., and then at the ghci prompt

:l LavaIntro.hs

You get
[1 of 1] Compiling Main (LavaIntro.hs, interpreted)
Ok, modules loaded: Main.
*Main>

Running the examples
Download the file LavaIntro.hs
In that directory, type ghci at the prompt., and then at the ghci prompt

:l LavaIntro.hs

You get
[1 of 1] Compiling Main (LavaIntro.hs, interpreted)
Ok, modules loaded: Main.
*Main>
and now you are all set and can ask questions like:
*Main> :t halfAdder

Running the examples
Download the file LavaIntro.hs
In that directory, type ghci at the prompt., and then at the ghci prompt

:l LavaIntro.hs

You get
[1 of 1] Compiling Main (LavaIntro.hs, interpreted)
Ok, modules loaded: Main.
*Main>
and now you are all set and can ask questions like:
*Main> :t halfAdder

What is the type of halfAdder?

Running the examples
Download the file LavaIntro.hs
In that directory, type ghci at the prompt., and then at the ghci prompt

:l LavaIntro.hs

You get
[1 of 1] Compiling Main (LavaIntro.hs, interpreted)
Ok, modules loaded: Main.
*Main>
and now you are all set and can ask questions like:
*Main> :t halfAdder
halfAdder
:: (Signal Bool, Signal Bool) -> (Signal Bool, Signal Bool)

Half Adder Interface

halfAdder :: (Signal Bool,Signal Bool) -> (Signal Bool,Signal Bool)
halfAdder (a,b) = (sum,carry)

where ...
• The first line is the type signature for halfAdder.
• A circuit is represented as a function from input to output

A->B: a function with input of type A and output of type B
(A1,A2): a pair. Pairing allows several signals to be grouped

together and treated as one signal.
Signal A: signals carrying values of type A
Bool: boolean values, False or True

Half Adder Interface

Introducing a shorter name for the type of boolean signals
type Bit = Signal Bool

We can now write
halfAdder :: (Bit,Bit) -> (Bit,Bit)
halfAdder (a,b) = (sum,carry)

where ...

Simulating Lava circuits

• Simulating a single cycle (at the ghci prompt)
simulate circuit input

• Example:
simulate halfAdder (low,high)
(high,low)

simulate halfAdder (high,high)
(low,high)

• More later

Logical Gates in the Lava
library

From Appendix A (Quick Reference) in the Lava Tutorial:

id, inv :: Bit -> Bit
and2, nand2, or2, nor2, xor2, equiv, impl :: (Bit,Bit) ->Bit
<&>, <|>, <#>, <=>, ==> :: (Bit,Bit) -> Bit

a <&> b is the same as and2 (a,b) etc.

Signals can also carry Int values (more later)

Half Adder in Lava,
other possible versions

halfAdder (a, b) = (sum, carry)
where

sum = xor2 (a, b)
carry = and2 (a, b)

• In functional languages, you can substitute equals for equals:

halfAdder (a, b) = (xor2 (a,b),and2(a,b))

•Using the alternative infix operators:

halfAddder (a, b) = (a <#> b, a <&> b)

Second Example: a Full Adder

Full Adder implementation

Full Adder in VHDL
entity fullAdder is

port (a,b,carryIn : in bit; sum,carryOut : out bit);
end fullAdder;

architecture fa_beh of fullAdder is
signal s1,c1,c2 : bit;

begin -- fa_beh
ha1: entity work.halfAdder

port map (a, b, s1, c1);
ha2: entity work.halfAdder

port map (carryIn, s1, sum, c2);
xor1: carryOut <= c1 xor c2;

end fa_beh;

A structural description that refers to the previously defined entity halfAdder.

Full adder in Lava

fullAdder (carryIn, (a,b)) = (sum, carryOut)
where

(s1, c1) = halfAdder (a, b)
(sum, c2) = halfAdder (carryIn, s1)
carryOut = xor2 (c2, c1)

Again, it should be a direct transcription of the circuit diagram.
Using previously defined components is just as easy as using basic gates.

Full Adder Interface

The first line is the type signature of function fullAdder.

fullAdder :: (Bit,(Bit,Bit)) -> (Bit,Bit)
fullAdder (carryIn, (a,b)) = (sum, carryOut)

where ...

It is inferred automatically if you leave it out.

Another Full Adder

fa :: (Bit,(Bit,Bit)) -> (Bit,Bit)
fa (cin, (a,b)) = (sum, cout)

where
part_sum = xor2 (a, b)
sum = xor2 (part_sum, cin)
cout = mux (part_sum, (a, cin))

Another Full Adder

fa :: (Bit,(Bit,Bit)) -> (Bit,Bit)
fa (cin, (a,b)) = (sum, cout)

where
part_sum = xor2 (a, b)
sum = xor2 (part_sum, cin)
cout = mux (part_sum, (a, cin))

This is a multiplexer

mux (a, (l,h)) chooses l if a low and h if
a high

It is generic, so l and h can have any
suitable type (e.g. pairs or lists of bits)

Is it a correct Full Adder?

Check by exhaustive simulation
*Main> simulate fa (low,(low,low))
(low,low)
*Main> simulate fa (low,(low,high))
(high,low)
etc.
Can also define and name tests in the file itself and then run

them at the prompt
tst1 = simulate fa (low,(low,low))
*Main> tst1
(low,low)

Is it a correct Full Adder?

Check by exhaustive simulation
> simulate fa (low,(low,low))
(low,low)
> simulate fa (low,(low,high))
(high,low)
etc.
Can also define and name tests in the file itself and then run

them at the prompt
tst1 = simulate fa (low,(low,low))
> tst1
(low,low)

This is single cycle simulation

Is it a correct Full Adder?
simulateSeq circuit list_of _inputs
simulates a sequence of cycles
useful for exhaustive testing of combinational ccts

tst2 = simulateSeq fa [(low,(low,low)), (low,(low,high)), (low,(high,low))]
> tst2
[(low,low),(high,low),(high,low)]

Is it a correct Full Adder?
simulateSeq circuit list_of _inputs
simulates a sequence of cycles
useful for exhaustive testing of combinational ccts

tst2 = simulateSeq fa [(low,(low,low)), (low,(low,high)), (low,(high,low))]
> tst2
[(low,low),(high,low),(high,low)]

tst2 = simulateSeq fa domain
> tst3
[(low,low),(high,low),(high,low),(low,high),(high,low),(low,high),(low,high),

(high,high)]

Is it a correct Full Adder?
simulateSeq circuit list_of _inputs
simulates a sequence of cycles
useful for exhaustive testing of combinational ccts

tst2 = simulateSeq fa [(low,(low,low)), (low,(low,high)), (low,(high,low))]
> tst2
[(low,low),(high,low),(high,low)]

tst2 = simulateSeq fa domain
> tst3
[(low,low),(high,low),(high,low),(low,high),(high,low),(low,high),(low,high),

(high,high)]

Useful function that gives all values of
a particular input shape

Is it a correct Full Adder?
Previous approach not completely satisfactory

More convincing to compare with a golden model (say our fullAdder)

Equivalence Checking
(simulation)

fa

fullAdder

Equal?

Give all possible inputs in sequence and check output is always high

Describing this circuit
fa

fullAdder
Equal?

prop_fa :: (Bit,(Bit,Bit)) -> Bit
prop_fa i = ok
where
o1 = fa i
o2 = fullAdder i
ok = o1 <==> o2

test_fa = simulateSeq prop_fa domain

> test_fa
[high,high,high,high,high,high,high,high]

Are we happy?

i

o1

o2

ok

Formal verification of
equivalence

> smv prop_fa
Smv: ... (t=0.00system) \c
Valid.
Valid

Formal verification of
equivalence

> smv prop_fa
Smv: ... (t=0.00system) \c
Valid.
Valid

What happened??

SMV input file generated
and fed to SMV (a CTL MC)

-- Generated by Lava

MODULE main
VAR i0 : boolean;
VAR i1 : boolean;
VAR i2 : boolean;
DEFINE w6 := i0;
DEFINE w7 := i1;
DEFINE w5 := !(w6 <-> w7);
DEFINE w8 := i2;
DEFINE w4 := !(w5 <-> w8);
DEFINE w10 := !(w6 <-> w7);
DEFINE w9 := !(w8 <-> w10);
DEFINE w3 := !(w4 <-> w9);
DEFINE w2 := !(w3);
DEFINE w15 := w5 & w8;
DEFINE w17 := !(w5);
DEFINE w16 := w17 & w6;
DEFINE w14 := w15 | w16;
DEFINE w19 := w8 & w10;
DEFINE w20 := w6 & w7;
DEFINE w18 := !(w19 <-> w20);
DEFINE w13 := !(w14 <-> w18);
DEFINE w12 := !(w13);
DEFINE w21 := 1;
DEFINE w11 := w12 & w21;
DEFINE w1 := w2 & w11;
SPEC AG w1

-- Generated by Lava

MODULE main
VAR i0 : boolean;
VAR i1 : boolean;
VAR i2 : boolean;
DEFINE w6 := i0;
DEFINE w7 := i1;
DEFINE w5 := !(w6 <-> w7);
DEFINE w8 := i2;
DEFINE w4 := !(w5 <-> w8);
DEFINE w10 := !(w6 <-> w7);
DEFINE w9 := !(w8 <-> w10);
DEFINE w3 := !(w4 <-> w9);
DEFINE w2 := !(w3);
DEFINE w15 := w5 & w8;
DEFINE w17 := !(w5);
DEFINE w16 := w17 & w6;
DEFINE w14 := w15 | w16;
DEFINE w19 := w8 & w10;
DEFINE w20 := w6 & w7;
DEFINE w18 := !(w19 <-> w20);
DEFINE w13 := !(w14 <-> w18);
DEFINE w12 := !(w13);
DEFINE w21 := 1;
DEFINE w11 := w12 & w21;
DEFINE w1 := w2 & w11;
SPEC AG w1

SPEC AG w1

Generated by Lava

SAT solver also .
> satzoo prop_fa
Satzoo: ...
real 0m0.006s
user 0m0.000s
sys 0m0.000s
(t=) \c
Valid.
Valid

in Verify/circuit.cnf
(conj. normal form)

c Generated by Lava
c
c i0 : 6
c i1 : 7
c i2 : 8
p cnf 21 57
-5 6 7 0
-5 -6 -7 0
5 -6 7 0
5 -7 6 0
-4 5 8 0
-4 -5 -8 0
4 -5 8 0
4 -8 5 0
-10 6 7 0
-10 -6 -7 0
10 -6 7 0
10 -7 6 0
-9 8 10 0
-9 -8 -10 0
…
9 -8 10 0
9 -10 8 0
-3 4 9 0
-3 -4 -9 0
3 -4 9 0
3 -9 4 0
-3 -2 0
3 2 0
15 -5 -8 0
-1 2 0
-1 11 0
-1 0

> satzoo prop_fa
Satzoo: ...
real 0m0.006s
user 0m0.000s
sys 0m0.000s
(t=) \c
Valid.
Valid

in Verify/circuit.cnf
(conj. normal form)

c Generated by Lava
c
c i0 : 6
c i1 : 7
c i2 : 8
p cnf 21 57
-5 6 7 0
-5 -6 -7 0
5 -6 7 0
5 -7 6 0
-4 5 8 0
-4 -5 -8 0
4 -5 8 0
4 -8 5 0
-10 6 7 0
-10 -6 -7 0
10 -6 7 0
10 -7 6 0
-9 8 10 0
-9 -8 -10 0
…
9 -8 10 0
9 -10 8 0
-3 4 9 0
-3 -4 -9 0
3 -4 9 0
3 -9 4 0
-3 -2 0
3 2 0
15 -5 -8 0
-1 2 0
-1 11 0
-1 0

A SAT solver (predecessor of miniSAT)

Works for combinational circuits

Back to Describing this circuit
fa

fullAdder
Equal?

prop_fa :: (Bit,(Bit,Bit)) -> Bit
prop_fa i = ok
where
o1 = fa i
o2 = fullAdder i
ok = o1 <==> o2 i

o1

o2

ok

Back to Describing this circuit
fa

fullAdder
Equal?

prop_fa :: (Bit,(Bit,Bit)) -> Bit
prop_fa i = ok
where
o1 = fa i
o2 = fullAdder i
ok = o1 <==> o2 i

o1

o2

ok

We can generalise this by making the two
circuits parameters

Checking equivalence

prop_Equivalent circ1 circ2 inp = ok
where
out1 = circ1 inp
out2 = circ2 inp
ok = out1 <==> out2

prop_fa1 = prop_Equivalent fa fullAdder

Checking equivalence

prop_Equivalent circ1 circ2 inp = ok
where
out1 = circ1 inp
out2 = circ2 inp
ok = out1 <==> out2

prop_fa1 = prop_Equivalent fa fullAdder

circ1 and circ2 are inputs
natural in Haskell

Safety property checking via SMV
smv property

•For verifying safety properties, the property can
a circuit with

•a number of inputs of fixed size
•a single boolean output

•For verifying generic circuits, a size has to be
chosen...

EC fits that shape

F

G

Equal?

Generally, Synchronous Observer

• Only one language (so easier to use)
• Safety properties
• Used in verification of control programs (Lustre, SCADE)

F
Prop

ok

Missing so far

Generic circuit descriptions

Sequential circuits

Ripple Carry Adder (RCA)

FAc0

a0 b0 a1 b1 a2 b2 an-1 bn-1

c1 c2
…

cn

lsb

Assume as and bs (lists of bits representing binary numbers)
have the same length

RCA in VHDL
entity rippleCarryAdder is
generic (n : natural);
port (carryIn : in bit;

a, b : in bit_vector(n-1 downto 0);
sum : out bit_vector(n-1 downto 0);
carryOut : out bit);

end rippleCarryAdder;

architecture rca_beh of rippleCarryAdder is
signal c : bit_vector(0 to n);

begin
c(0) <= carryIn;

adders: for i in 0 to n-1 generate
begin

bit : entity work.fullAdder
port map (c(i),a(i),b(i),sum(i),c(i+1));

end generate;

carryOut <= c(n);

end rca_beh;

A structural description that refers
to the previously defined entity
fullAdder.

First attempt in Lava
using recursion

FAc0

a0 b0

c1 …

lsb

cOut

s1

Interface

FAc0

a0 b0

c1 …

lsb

cOut

s1

rcAdder0 :: (Bit,([Bit],[Bit])) -> ([Bit],Bit)

Interface

FAc0

a0 b0

c1 …

lsb

cOut
s1

rcAdder0 :: (Bit,([Bit],[Bit])) -> ([Bit],Bit)

[A]: lists of values of type A. Examples of lists:
[] (empty list)
[low,high,low,low] :: [Bit]
[(low,high),(low,low)] :: [(Bit,Bit)]

List are used both for sequences in time and for parallel signals (busses).

Length can be arbitrary and is not indicated in the type.

Code (base case)

FAc0

a0 b0

c1 …

lsb

cOut

s1

rcAdder0 :: (Bit,([Bit],[Bit])) -> ([Bit],Bit)
rcAdder0 (c0, ([], [])) = ([], c0)

Code (recursive step)

FAc0

a0 b0

c1 …

lsb

cOut

s1

rcAdder0 :: (Bit,([Bit],[Bit])) -> ([Bit],Bit)
rcAdder0 (c0, ([], [])) = ([], c0)
rcAdder0 (c0, (a0:as, b0:bs)) = (s1:ss, cOut)
where
(s1, c1) = fullAdder (c0, (a0, b0))
(ss, cOut) = rcAdder0 (c1, (as, bs))

ss

Second attempt in Lava

rcAdder1 :: (Bit,([Bit],[Bit])) -> ([Bit],Bit)
rcAdder1 (c0, (as, bs)) = (sum, cOut)
where
(sum, cOut) = row fullAdder (c0, zipp (as,bs))

Second attempt in Lava

rcAdder1 :: (Bit,([Bit],[Bit])) -> ([Bit],Bit)
rcAdder1 (c0, (as, bs)) = (sum, cOut)
where
(sum, cOut) = row fullAdder (c0, zipp (as,bs))

row is a connection pattern

Second attempt in Lava

rcAdder1 :: (Bit,([Bit],[Bit])) -> ([Bit],Bit)
rcAdder1 (c0, (as, bs)) = (sum, cOut)
where
(sum, cOut) = row fullAdder (c0, zipp (as,bs))

row is a connection pattern

row interface

row :: ((c, a) -> (o, c)) -> (c, [a]) -> ([o], c)

row
row :: ((c, a) -> (o, c)) -> (c, [a]) -> ([o], c)

takes a pair-to-pair function

row
row :: ((c, a) -> (o, c)) -> (c, [a]) -> ([o], c)

takes a pair-to-pair function
c c

a

o

types

row

row :: ((c, a) -> (o, c)) -> (c, [a]) -> ([o], c)

and produces

cc

[a]

[o]

the type ”list of a”

Definition of row
(from Lava.Patterns.hs)

row circ (carryIn, []) = ([], carryIn)
row circ (carryIn, a:as) = (b:bs, carryOut)
where
(b, carry) = circ (carryIn, a)
(bs, carryOut) = row circ (carry, as)

Another connection pattern: map

f

f

f

f

map :: (a -> b) -> [a] -> [b]

map f

Example (map and integers)

inc :: Signal Int -> Signal Int
inc a = a + 1

tstmap = simulate (map inc) [1..8]

> tstm
[2,3,4,5,6,7,8,9]

Back to Second attempt in Lava

rcAdder1 :: (Bit,([Bit],[Bit])) -> ([Bit],Bit)
rcAdder1 (c0, (as, bs)) = (sum, cOut)
where
(sum, cOut) = row fullAdder (c0, zipp (as,bs))

zipp turns a pair of lists into a list of pairs,
to match interface of row

zipp (from Lava.Patterns.hs)

zipp ([], []) = []
zipp (a:as, b:bs) = (a,b) : zipp (as, bs)

zipp (from Lava.Patterns.hs)

zipp ([], []) = []
zipp (a:as, b:bs) = (a,b) : zipp (as, bs)

ziptest :: [Signal Int] -> [(Signal Int,Signal Int)]
ziptest as = zipp (halveList as)

zipp
zipp ([], []) = []
zipp (a:as, b:bs) = (a,b) : zipp (as, bs)

use function halveList to get some inputs to zipp

> :t halveList
halveList :: [a] -> ([a], [a])

hltst = simulate halveList [1..9 :: Signal Int]

> hltst
([1,2,3,4],[5,6,7,8,9])

zipp (from Lava.Patterns.hs)
zipp ([], []) = []
zipp (a:as, b:bs) = (a,b) : zipp (as, bs)

ziptest :: [Signal Int] -> [(Signal Int,Signal Int)]
ziptest as = zipp (halveList as)

> simulate ziptest [1..8]
[(1,5),(2,6),(3,7),(4,8)]
> simulate ziptest [1..9]
*** Exception: Lava\Patterns.hs:(24,0)-(25,40): Non-

exhaustive patterns in function zipp

zipp (from Lava.Patterns.hs)

zipp ([], []) = []
zipp (a:as, b:bs) = (a,b) : zipp (as, bs)

How can we make it cope with unequal length lists?

Exercise

How could we improve our ripple
carry adder solution?

rcAdder1 :: (Bit,([Bit],[Bit])) -> ([Bit],Bit)
rcAdder1 (c0, (as, bs)) = (sum, cOut)
where
(sum, cOut) = row fullAdder (c0, zipp (as,bs))

How could we improve the
solution?

A : by making the full adder component a parameter
After all, we have more than one such….

Third attempt in Lava
rcAdder2 :: ((Bit,(Bit,Bit)) -> (Bit,Bit)) ->(Bit,([Bit],[Bit])) -> ([Bit],Bit)
rcAdder2 fadd (c0, (as, bs)) = (sum, cOut)
where

(sum, cOut) = row fadd (c0, zipp (as,bs))

Note

Could be viewed as Lustre (or similar) embedded in
Haskell

Generic circuits and connection patterns easy to
describe (the power of Haskell)

Verify FIXED SIZE circuits (squeezing the
problem down into an easy enough one, see next
lecture)

Next
Verifying generic circuits

Generating VHDL

Sequential circuits

Analysing circuits

More connection patterns and examples

Making circuits cleverer -> circuits that adapt to their contexts

	Lava I
	Where are we?�
	Second half of the course: exploring alternatives
	Better Hardware Description Languages?�
	Hardware Description in Functional Languages�
	Hardware Description in Functional Languages�
	Hardware Description in Functional Languages�
	Hardware Description in Functional Languages�
	Hardware Description in Functional Languages�
	Hardware Description in Functional Languages�
	What is Lava?�
	What is Lava?�
	What is Lava?�
	Lava Documentation�
	First example
	Half Adder implementation
	Half Adder in VHDL�
	Half Adder in Lava�
	Running the examples
	Running the examples
	Running the examples
	Running the examples
	Running the examples
	Half Adder Interface�
	Half Adder Interface�
	Simulating Lava circuits�
	Logical Gates in the Lava library�
	Half Adder in Lava, �other possible versions�
	Second Example: a Full Adder�
	Full Adder implementation�
	Full Adder in VHDL�
	Full adder in Lava�
	Full Adder Interface�
	Another Full Adder
	Another Full Adder
	Is it a correct Full Adder?
	Is it a correct Full Adder?
	Is it a correct Full Adder?
	Is it a correct Full Adder?
	Is it a correct Full Adder?
	Is it a correct Full Adder?
	Equivalence Checking (simulation)
	Describing this circuit
	Formal verification of equivalence
	Formal verification of equivalence
	SMV input file generated �and fed to SMV (a CTL MC)
	Slide Number 47
	SAT solver also .
	Slide Number 49
	Back to Describing this circuit
	Back to Describing this circuit
	Checking equivalence
	Checking equivalence
	Safety property checking via SMV
	EC fits that shape
	Generally, Synchronous Observer
	Missing so far
	 Ripple Carry Adder (RCA)
	RCA in VHDL
	First attempt in Lava�using recursion
	Interface
	Interface
	Code (base case)
	Code (recursive step)
	Second attempt in Lava
	Second attempt in Lava
	Second attempt in Lava
	row interface
	row
	row
	row
	Definition of row �(from Lava.Patterns.hs)
	Another connection pattern: map
	Example (map and integers)
	Back to Second attempt in Lava
	zipp (from Lava.Patterns.hs)
	zipp (from Lava.Patterns.hs)
	zipp
	zipp (from Lava.Patterns.hs)
	zipp (from Lava.Patterns.hs)
	How could we improve our ripple carry adder solution?
	How could we improve the solution?
	Third attempt in Lava
	Note
	Next

