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Abstract— Satisfiability solving, the problem of deciding
whether the variables of a propositional formula can be assigned
in such a way that the formula evaluates to true, is one of
the classic problems in computer science. It is of theoretical
interest because it is the canonical NP-complete problem. It is
of practical interest because modern SAT-solvers can be used to
solve many important and practical problems. In this tutorial
paper, we show briefly how such SAT-solvers are implemented,
and point to some typical applications of them. Our aim is to
provide sufficient information (much of it through the reference
list) to kick-start researchers from new fields wishing to apply
SAT-solvers to their problems.

I. INTRODUCTION

Given a propositional formula, the Boolean Satisfiability or
SAT Problem is to determine whether there exists a variable
assignment such that the formula evaluates to true. This
is the classic NP-complete problem [1], and has therefore
attracted much attention from researchers. In this tutorial
paper, we explain SAT and how it can be implemented, and
give pointers to how it is used in practice, including many
references. Our hope is to attract researchers from new fields
to explore applications of SAT. Companion papers explore
applications of SAT in a variety of problem domains [2]
and to supervisory control [3]. The final paper in this
session considers Satisfiability Modulo Theories (SMT) [4],
a thriving research direction that opens the way for new
applications of SAT at abstraction levels requiring greater
expressiveness than that provided by propositional logic.

A. Why SAT is interesting from a practical point of view

The fact that SAT-solving is hard on average in no way
precludes its use in solving the particular SAT instances
that arise in real problems. Recent progress in practical
applications of SAT has built upon two bases: improved
SAT-solving engines and innovative ways to encode real
problems in ways that can exploit those engines. Recent
SAT-solvers have been developed in a scientific community
that has placed great store in practical applicability, and the
development of the solvers has in turn spurred work on new
ways to exploit such solvers. The resulting positive spiral has
led, for instance, to the development of commercial hardware
verification tools in which SAT-solvers are a vital component.
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B. State of the art until 1999

Before about 1999, SAT was largely a theoretical subject.
Manipulation of boolean functions had long been impor-
tant in circuit synthesis and verification. However, work
in this area concentrated on the use of Binary Decision
Diagrams [5]. A glance at the conference proceedings of
the first international conference on Formal Methods in
Computer Aided Design of Electronic Circuits (1996) [6]
makes this very clear.

However, SAT solvers and their applications were also
making strides. One of the classic application areas has been
planning [7]. In electronic design automation, some typical
applications that began to appear in the 1990s were timing
analysis [8], test pattern generation [9], [10] and FPGA rout-
ing [11]. Motivated by the problem of generating test vectors
for combinational and sequential circuits, Kunz and Pradhan
introduced the notion of recursive learning and demonstrated
that it had application not only in test generation, but also in
optimization and verification [12]. Indeed, recursive learning
could, in the early nineties, be seen as a new approach
to the boolean satisifiability problem. Stålmarck’s patented
method of SAT-solving [13] was used during the 1990s in the
formal verification of railway signalling systems [14], [15],
[16]; indeed the method is still used commercially for this
purpose. The formulas that result from such verification are
truly gigantic, but Stålmarck’s method copes well with the
large but easy SAT instances that result. This work on railway
signalling verification, perhaps because of its scalability,
was one of the first really successful projects in practical,
industrial, formal methods.

Also in an industrial setting, Siemens Corporate Research,
already in the 1980s, started a major initiative to explore the
potential of formal methods for the company’s own products
and systems. For circuit design verification, a particularly
successful solution called Circuit Verification Environment
(CVE) was developed. In the mid 90s the basic methodology
and proving machinery of CVE was radically changed from
symbolic model checking to a SAT-based approach. The
property language Interval Temporal Logic (ITL) was devel-
oped, which expresses system behaviour over bounded time
intervals. Proving such bounded properties can be mapped
to a SAT instance. This new paradigm was quickly adopted
in Siemens design flows and became standard practice al-
ready in 1996/1997, a few years before academic work on
bounded model checking was published. The success of this
approach triggered intensive efforts to improve SAT-solving
procedures in Siemens, and later at Infineon and OneSpin
(the spin-off company that now develops and markets the



technology). In parallel, Kunz was developing similar ideas
about checking bounded intervals, working with Mentor (a
major tool-vendor in Electronic Design Automation). At
this time, industry was the driving force in innovation in
applied formal methods, and unfortunately the work was not
published; but the impact of academic research was soon
to increase. Developed in academia, the GRASP [17] and
SATO [18] solvers were early examples of solvers intended
for use on large-scale problems, and they influenced later
developments.

C. The SAT revolution

In 1999, the notion of Bounded Model Checking (BMC)
was published, and immediately recognised to be of great
practical interest [19]. It can be thought of as checking
that a property holds not for all possible behaviours of
a system but only for the first n steps (from the initial
states), for a given fixed n. This apparently simple idea has
proved extremely effective in practical hardware verification,
and is now included in all formally-based tools. It will be
considered in more detail in section III.

At around the same time, the high-performance SAT-
solver Chaff became available, and was widely used by
researchers in applications of SAT [20]. For two of the
authors (Een and Sörensson), seeing a presentation about
Chaff provided inspiration to build small well-structured,
yet high-performance, solvers, culminating in miniSAT [21].
This solver and its associated description can act both as
a tutorial and as a starting point for researchers wishing to
modify it for their purposes. One of the driving forces in the
development of efficient solvers has been the international
SAT competition, which has led to the creation of benchmark
sets, and also makes the competing solvers available to the
research community [22]. Section II presents the basics of
SAT-solving.

Independently of the developments in BMC, researchers
from Chalmers worked with Stålmarck, who proposed a form
of induction for use in complete (rather than bounded) model
checking [23], [24]. The method, and also BMC, demands
satisfiability checking of many related SAT-instances, which
in turn led to an incremental version of miniSAT [25].
Section IV presents the basics of temporal induction.

II. THE BASICS OF A MODERN SAT-SOLVER

A. Formal Definition of The SAT Problem

A propositional logic formula is said to be in CNF, con-
junctive normal form, if it is a conjunction (“and”) of
disjunctions (“ors”) of literals. A literal is either x, or its
negation ¬x, for a boolean variable x. The disjunctions are
called clauses. The satisfiability (SAT) problem is to find
an assignment to the boolean variables, such that the CNF
formula evaluates to true. An equivalent formulation is to
say that each clause should have at least one literal that is
true under the assignment. Such a clause is then said to be
satisfied. If there is no assignment satisfying all clauses, the
CNF formula is said to be unsatisfiable.

Propositional formulas that are not in CNF can be trans-
formed into CNF in a standard way [26], [2], a process that is
called clausification. Clausification is still an active research
area, see for example [27].

B. Boolean Constraint Propagation

During the search for a satisfying assignment, the solver will
maintain a partial assignment, with some variables assigned
to either 0 or 1, and others still unassigned. For a given
partial assignment, a clause may find that all its literals
except one are false. When this happens, the only way to
satisfy that clause is to fix (or assign) the variable of the
last literal to the appropriate value that makes the literal
true. This observation defines a process of deriving new
variable assignments from the current partial assignment. It
can be implemented very efficiently [20], and when run to
saturation (no more assignments can be derived) is referred
to as Boolean Constraint Propagation (BCP).
Example. Consider the following three clauses:

{-a, b} , {-a, c} , {-b, -c, d}

If the partial assignment consists of one fixed variable “a=1”,
then from the first two clauses, BCP will derive “b=1” and
“c=1”; which in turn will imply, through the last clause,
“d=1”.

C. Conflicts, Learning, and Backtracking

A simple and complete SAT algorithm can be achieved by
a standard backtracking search: Pick an unassigned variable,
fix it to either 0 or 1 (this is called a decision) and recursivly
solve the resulting subproblem. If no solution was found,
flip the variable to the other value and recurse again. After
each branching, the partial assignment is investigated to see
if there is an unsatisfied, or conflicting, clause (all literals
are false). If so, there is no need to branch further (return
NOSOLUTION). If on the other hand all variables have been
fixed without a conflict, a satisfying assignment has been
found.

The procedure can be improved by running BCP after
each fixed variable to get all the cheap implications. This
procedure, backtracking + BCP, is commonly referred to as
DPLL [28], [29], and until the inception of modern SAT
solvers was the predominant approach to SAT.

Modern SAT, through a series of improvments to DPLL,
has been refined to an algorithm that is sufficently different
from the original to deserve its own name. We will refer to
it has Conflict Drivern SAT Solving (CDSS). It differs from
DPLL in three important respects:

1) It is not a recursive procedure. Instead an explicit stack
of assignments (referred to as the trail) is used for
backtracking.

2) It derives and adds new clauses through a learning
mechanism. This procedure takes place each time a
conflicting clause is detected during the search. The
added clauses are redundant in the sense that the
resulting problem is logically equivalent, but they assist



the BCP in fixing literals throughout the remainder of
the search.

3) Backtracking is no longer restricted to return to the
previous decision. The outcome of clause learning is
actually two-fold: while producing a learned clause, it
also analyses which of the decisions contributed to the
conflict. If the k latest decisions were irrelevant for the
conflict, the procedure will undo all those k decisions
(and their BCP implications) rather than just the last.

Putting it all together in pseudo-code, the modern SAT
algorithm is:

forever {
bcp
if no conflict {

if no unassigned variable { return SAT }
make decision
} else {

if no decisions were made { return UNSAT }
analyze conflict
undo assignments
add learned clause
}

}

For a more detailed description of this procedure, see ref-
erences [20], [21]; a list of improvements can be found in
[30].

D. Making decisions

The key to making the above algorithm effective is to tie the
variable decision heuristic to the clause learning. This is done
by increasing the so called activity of all the variables present
in any of the clauses contributing to a conflict. It will bias the
search to stay in the region of the most recent conflicts while
ignoring variables that were not involved in those conflicts.
In effect, the heurstic forces the solver to exhaust all possible
conflicts in a subregion, typically resulting in a set of
short, learned clauses that captures, more concisely than the
original clauses, the reason why that region of the search
space is unsatisfiable. To further focus the search, all activites
are decayed, in other words periodically multiplied with a
number < 1, to give higher weight to more recent conflicts.
This variable heuristic VSIDS (Variable State Independent
Decaying Sum) has emperically been proven to successfully
localize large industrial SAT problems and solve them by
homing in on the relevant part [31].

E. State of the art in SAT

Improving on the state of the art of SAT has turned out to
be a really hard task, as indicated by the slow progress made
this century in the development of core SAT algorithms.
Since the beginning of the SAT revolution, research effort has
been mostly directed towards investigating new applications,
possible extensions, and exploring different techniques for
encoding particular problems. For instance, looking at the
papers accepted to SAT’06 there is barely a single paper

that can be considered to attempt to improve on the core
algorithms of a DPLL type SAT solver.

Here is a list of noteworthy work that has improved upon
core SAT technology since the appearance of Chaff in 2001
[20].

Conflict clause minimization (2005) – an improvement in
the conflict clause construction algorithm which generally
makes conflict clauses stronger, and therefore the proof
search more efficient [32].

Variable-elimination-based preprocessing (2005) – most
practical SAT problems can be greatly simplified before
being fed to a SAT solver, reducing their size and complex-
ity, and subsequently reducing solving time; this was first
implemented in the tool SatELite [33].

Improvements to decision heuristics (2002-2007) – a lot
of work has gone into heuristics for how to choose the next
variable to branch on in the proof search, and what value it
should have first [34], [35], with visible effects on solving
efficiency for industrial problems.

Improvements to restart heuristics (2007) – modern SAT
solvers, in order to avoid getting stuck in one corner of the
search space, perform a ”restart” every once in a while in
the middle of a search; some search parameters are reset and
the search restarts at top-level. Special heuristics have been
developed for when and how often to do this during search
[36], [37].

Datastructure improvements for clauses (2000-2007) –
new datastructures have been developed for representing
clauses; e.g. improving the representation of clauses with
two literals [32], and improving memory access patterns in
general [38], [39].

The next two sections describe two particular and very
common applications of SAT-solvers in formal verification
of properties of systems, namely Bounded Model Checking
and Temporal Induction.

III. BOUNDED MODEL CHECKING

The most widespread use of SAT-solvers in industrial
property-based system verification today is in Bounded
Model Checking. Model checking (in general) is an auto-
mated technique for checking if a given implementation of
a system satisfies a given property, specified in some logic.
The answer can either be ”yes”, in which case the property
holds, or ”no”, in which case the model checker produces a
counter example to the property at hand. A counter example
is a concrete path (i.e. a sequence of consecutive states that
starts in the initial state) for which the desired property is
false.

Up to the late 1990s, model checking for hardware systems
was dominated by symbolic model checking methods based
on Binary Decision Diagrams (BDDs) [5], a datastructure
providing a canonical representation for boolean formulas.
BDDs can be used for representing sets of reachable states of
a system. A model checker computes the set of all reachable
states by a repeated use of boolean variable quantification, an
operation that is supported well by the BDD datastructure.



Though rather successful for certain classes of circuits, BDD-
based model checkers suffer from a potential BDD-blowup,
when the size of the BDD datastructures becomes too large
to handle in memory. Many techniques have been developed
for battling BDD blowup in certain situations, but the actual
problem in general remained.

At the end of the 1990s, several research groups were in-
dependently trying to alleviate the problem of BDD-blowup
by replacing BDDs by other technologies. For example, the
model checker FixIt [40], [41], developed by Abdulla, Bjesse
and Een, replaced BDDs in the standard model checking
algorithms by regular non-canonical propositional formulas.
They developed their own cunning variable quantification
algorithm, and used a SAT-solver to reason about the for-
mulas. The result was a model checker that complemented
the existing BDD-based model checkers. Unfortunately, the
variable quantification turned out to be a memory bottle neck,
often leading to excessive memory usage.

Bounded Model Checking (BMC) was first presented
at the conference on Formal Methods in Computer Aided
Design (FMCAD) in 1998. In an unprecedented move, the
Chairs of FMCAD’98 permitted the inclusion of an extra talk
about BMC. This was followed up by several publications
in 1999, including the first paper outlining the idea [19] and
one describing its application at Motorola to the verification
of a PowerPC processor [42].

A BMC model checker is parametrized by a natural
number, a bound n, and only tries to find counter examples
(paths) that consist of no more than n transitions. The answer
a BMC model checker thus produces is ”no”, with a counter
example, or ”could not find a counter example of length
n or smaller”. The big gain of this approach is that the
BMC model checker does not have to perform variable
quantification, the precise thing that was the bottle neck for
the model checker FixIt.

Let us look concretely at how a BMC model checker
works. For simplicity, we assume that the property we are
checking is a so-called simple safety property. This means
that given a single state of the system, we can decide if this
is a good state (the desired property holds) or a bad state (the
property does not hold). The original BMC paper presents
a symbolic, SAT-based algorithm that can deal with more
general properties than these [19].

To model the system under verification and the property
in the BMC framework, we are assuming that the state of the
system is represented by a finite vector of boolean variables
s. The safety property is represented by a formula P (s),
which is true precisely for the good states, the states where
the property holds. To model the system itself, we split it up
into two parts: the initial states and the transitions between
the states. The set of initial states is modelled as a formula
I(s), which is true if and only if s represents an initial
state of the system. Finally, the transitions of the system
are modelled by a formula T (s, s′) which is true if and
only if the system can make a transition between the states
represented by s and s′.

Now, in order to check whether or not there exist counter

examples of length n or smaller, we create a sequence of
vectors of boolean variables s0, s1, . . . , sn, and build the
following formula:

I(s0) ∧ (T (s0, s1) ∧ T (s1, s2) ∧ . . . ∧ T (sn−1, sn))
∧ (¬P (s0) ∨ ¬P (s1) ∨ . . . ∨ ¬P (sn))

The above formula expresses restrictions on the values of
the variables in si; namely that s0 should be an initial state,
that there must be a transition from sj to sj+1 for all j < n,
and that at least one of the states visited must be a bad state.
Any satisfying assignment to the above formula therefore
represents a counter example to the property. A BMC model
checker now simply invokes a SAT-solver to check whether
or not that is the case.

The original BMC paper [19] also discusses ways of
finding out how large n should be in order to be sure that no
counter example of any length can be found. This so-called
diameter turned out to be expensive to compute in practice.

The resulting method turned out to be very successful for
finding bugs. The way this works is that the user can start
with small values of n, for which the method is very cheap,
and successively increase n when no counter examples are
found. In this way, very quick feedback is provided about the
status of properties, without having to perform a full general
model checking procedure. This has led to a paradigm
shift in industrial applications of formal methods; instead
of concentrating on correctness, the focus has turned more
to bug finding.

For a discussion on the benefits of BMC in an industrial
setting, we point the reader to a paper by Copty et al. from
2001, discussing experiments with BMC conducted at Intel
in Haifa [43]. In the same session at CAV, Bjesse et al.
reported on bug-finding in the memory subsystem of an
Alpha microprocessor [44]. For some properties, SAT-based
BMC reduced verification run-time from days to minutes on
real, deep microprocessor bugs. Thus, by mid-2001, the SAT
revolution was already well under way.

After the initial publication of the BMC idea, many
optimizations and implementation techniques have been de-
veloped to improve on the original method. To name a few:
tightly integrate the iterations with larger and larger n with
an incremental SAT-solver in order to be able to reuse work
between iterations [25]; use reparameterization in order to
reduce the size of formulas that are generated for large n
[45]. The 2003 journal paper on advances in BMC is a good
place to start for those who want to explore the technical
ideas behind BMC further [46].

Nowadays, BMC is a key component in any industrial
formal verification set-up. Kunz’ recent invited talk at FM-
CAD’07 illustrates this point [47].

IV. TEMPORAL INDUCTION
We have seen the use of Bounded Model Checking in

safety property checking. What if, instead, we wish to prove
that a property holds in all reachable states of a transition
system; without the restriction to searching for counter
examples of length n or shorter? One option is, of course,



to use the familiar BDD-based (unbounded) symbolic model
checking [48], but here we wish, again, to explore the use of
SAT. We must therefore find a way to encode the problem
directly as SAT instances, without using quantifiers.

Let us first introduce some notation. The symbol T k stands
for a ”chain” of k transition relations:

T k(s0, · · · , sk) := T (s0, s1) ∧ T (s1, s2) ∧ . . .

. . . ∧ T (sk−1, sk)

Now, consider the sequence of formulas Base0, Base1, . . .,
defined as follows:

Basek := I(s0) ∧ T k(s0, · · · , sk) ∧ ¬P (sk)

Basek is satisfiable if there is a path of length k through the
transition relation T from an initial state to a bad state, and
it is unsatisfiable (UNSAT) if there is no such path. Iterating
through all Basei, from i = 0 and upwards, and checking if
they are SAT or UNSAT, roughly corresponds to BMC, and
is a bug-finding algorithm. If some Basek is satisfiable, the
satisfying assignment of values to the bit-vectors in the state
variables s0 to sk will give a shortest path from an initial
state to a bad state.

The big question is “At what stage can we safely stop and
conclude that there can be no such bug?”.

One way to provide an answer is by induction. Let us
call a path that only consists of good states a good path. If
we can show that each path of length k starting in the initial
state is a good path (induction base case), and that each good
path of length k starting anywhere can only be extended by
transitions that lead to a good state (induction step), then, by
induction, all paths of any length starting in the initial state
must be good paths.

The base case of the induction for k has already been
defined above. In order to define the step case, let us first
introduce some notation for asserting that P holds in a
sequence of states:

P k(s0, · · · , sk) := P (s0) ∧ P (s1) ∧ . . . ∧ P (sk)

We can then define a step case formula as follows:

Stepk := T k+1(s0, · · · , sk+1)∧P k(s0, · · · , sk)∧¬P (sk+1)

If Stepk is satisfiable for some k, then there is a good path
of length k that can be extended by going to a bad state.

A simple first induction algorithm can now be defined as
follows:

i=0
while True do {

if Sat(Basei)
return False % counter example

if Unsat(Stepi)
return True

i=i+1
}

If we can find an i for which the base case is satisfiable,
then we have a counter example. If we can find an i for

which both base case and step case are unsatisfiable, we
have shown the property to hold for all reachable states.

The above algortithm is simple, but it is not complete;
there are cases where the property holds but where the
above algorithm does not terminate, i.e. no induction proof
is found. This happens when there are paths of arbitrary
length that satisfy the induction step Stepk. These paths must
necessarily lie outside of the reachable state space. However,
since our state space is finite (by assumption), there cannot be
paths like this of arbitrary length unless they contain a loop.
And since we are really only interested in shortest paths, and
thus loop-free paths, we may add to the induction step that
all considered paths must be loop-free.

We thus define a formula that expresses loop-freeness
(“uniqueness” of states):

Uk(s0, · · · , sk) :=
∧

0≤i<j≤k

(si 6= sj)

And redefine the step case formula as follows:

Stepk := T k+1(s0, · · · , sk+1) ∧ Uk+1(s0, · · · , sk+1) ∧
P k(s0, · · · , sk) ∧ ¬P (sk+1)

The presented induction algorithm using the above step
formula is indeed sound and complete. The soundness and
completeness of the algorithm are easily shown, see [23],
[25].

However, to make temporal induction work in practice,
one must carefully consider exactly what SAT instances to
present to the SAT solver, and in particular how to deal with
the possibly expensive requirement that the paths considered
in the termination check be loop-free. These aspects of
the algorithm, its implementation using an incremental SAT
solver, and an experimental evaluation of several variants of
it, are presented in reference [25].

Another way of improving on this basic algorithm is to
strengthen the property P , i.e. to find a stronger property P ′

that implies P , and prove P ′ instead. The advantage of doing
so is that the k that is needed to prove a stronger property
might be much smaller, and thus the formulas that we
have to deal with become smaller. An early implementation
of this idea (automatically finding an equivalence relation
between points in a hardware circuit) was developed for
a BDD-based induction-like algorithm by van Eijk [49],
and later adapted to SAT-based induction [24]. Recently,
some alternative new techniques have been developed for
automatically strengthening the induction hypothesis [50],
[51].

V. DISCUSSION AND CONCLUSION

We have very briefly catalogued the simulataneous de-
velopment of modern SAT-solvers and their applications.
A companion paper from this session on SAT provides a
tutorial on applications of SAT [2]. Here, we include further
references for the interested reader. Another popular model
checking technique, based on interpolants, was introduced in
2003 by McMillan [52]. For a survey of SAT-based Formal
Verification, see references [53], [54]. Bryant and Kukula’s



2002 survey paper on Formal Methods in Functional Verifi-
cation [55] is a fascinating journey from the early attempts to
use inefficient decision procedures up to the period just after
the SAT revolution. It ends by cautioning that although the
successes in industrial application are encouraging, improve-
ments in speed and capacity of the basic engines are still
needed. That is still true today, so that the new developments
outlined in section II-E are eagerly awaited by the users of
SAT-based tools.

It should also be noted that SAT is often mixed with other
technologies (such as BDDs or dynamic (simulation-based)
verification) in industrial-strength tools. IBM’s SixthSense
system for circuit verification is a good example of this
development [56]. Bentley’s invited talk on microprocessor
verification, given at the Computer Aided Verification confer-
ence in 2005, not only shows the enormity of the verification
problems that we face but also points towards the use of SAT
as a means to bridge dynamic (simulation-based) and formal
verification [57]. For a good recent overview of the use of all
of SAT, Bounded Model Checking and temporal induction,
the reader is referred to FMCAD 2007 [58].

As the complexity of the hardware and software systems
that we wish to verify grows inexorably, it is increasingly
clear that automated reasoning at a level of abstraction above
the bit level is needed. This has led to a surge of interest
in Satisfiability Modulo Theories (SMT) – the combination
of SAT with additional theories such as linear arithmetic
or bit-vectors. A companion paper in this session on SAT
explores this development [4]. The move upwards in level
of abstraction is also reflected in increasing research activity
in automated reasoning for Quantified Boolean Formulas and
even First Order Logic.

We hope that this introduction to SAT-solving in practice
will whet the appetite of researchers in new fields, outside
our familiar area of Computer Aided Design of Electronic
Circuits. In the area of Discrete Event Systems, an early
application of both BDD- and SAT-based verification to PLC
systems is reported in reference [59]. In this session of
WODES, Voronov et al present their work on the use of
SAT in supervisory control [3]. We look forward to fruitful
collaboration between our research communities.
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[21] N. Een and N. Sörensson, “”An Extensible SAT Solver”,” in Proc. of
Theory and Applications of Satisfiability Testing (SAT’03), ser. LNCS,
vol. 2919. Springer, 2003.

[22] “The International SAT Competition web page.” [Online]. Available:
http://www.satcompetition.org/

[23] M. Sheeran, S. Singh, and G. Stålmarck, “Checking Safety Properties
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