

Introduction to Functional
Programming

Course Summary and Future

Koen Lindström Claessen

The End of the Course

• Next week: Exam
– Example exams + answers on the web

– No computers
– In English: Bring an English dictionary

• answers may be in swedish

– A list of standard Haskell functions

What If ...

• You are not done with the labs in time?
– Next year: This course goes again

• Teacher: Me (probably)

• Reuse labs

• Possibly other/changed labs

What If ...

• You do not pass the exam?
– January: Re-exam

– August: Re-exam
– Next year: This course goes again

What Have We Learned?

• Programming
– For some of you: first time
– Make the computer do some useful tasks

• Programming Language
– Haskell
– Different from what most of you had seen

before

• Programming Principles
– ...

Programming Principles (I)

• Modelling
– Create a new type that models what you are

dealing with
– Design and define typed functions around

your types
– Sometimes your type has an extra invariant
– Invariants should be documented (for

example as a property)

Programming Principles (II)

• Properties
– When you define functions around your

types...
– Think about and define properties of these

functions
– Properties can be tested automatically to find

mistakes
– Mistakes can be in your functions (program)

or in your properties (understanding)

Programming Principles (III)

• Recursion
– When you need to solve a large,

complicated problem...
– Break the problem up into a smaller piece, or

a number of smaller pieces
– These can be solved recursively
– Solve the whole problem by combining all

recursive solutions

Programming Principles (IV)

• Abstraction and Generalization
– When you find yourself repeating a

programming task
– Take a step back and see if you can

generalize
– You can often define a abstraction (higher-

order function) performing the old task and
the new one

– Avoid copy-and-paste programming

Programming Principles (V)

• Pure functions
– Use pure functions as much as possible

– These are easier to understand, specify and
test

– Concentrate IO instructions in a small part of
your program

– Concentrate GUI instructions in a small part
of your program

Programming Principles (VI)

• Separation
– Divide up your program into small units (functions)

– These should be grouped together into larger
units (modules)

– Minimize dependencies between these parts

– So that it is easy to make internal changes,
without affecting your whole program

Programming Principles

• Important!

• Independent of programming language

Why Haskell?

• What is easy in Haskell:
– Defining types

– Properties and testing
– Recursion
– Abstraction, higher-order functions
– Pure functions
– Separation (laziness)

Why Haskell (II)?

• What is harder in Haskell:
– Ignoring types

• Static strong typing

• Expressive type system
– Most advanced type system in a real language

– Impure functions
• All functions are pure

– The only general existing programming language

• Instructions are created and composed explicitly
– Makes it clear where the ”impure stuff” happens

Functional Programming

• ”Drives” development of new programming
languages
– Type systems
– Garbage collection
– Higher-order functions / Lambdas
– List comprehensions
– ...

• Haskell is the most advanced functional
programming language today

Functional Programming

• Hot topic in PL community and industry
– Compilers/compiler-like
– Domain-specific languages (Haskell)

• build your own programming language with little effort

– Telecom industry (Erlang)
• Dealing with complex protocols/data-flow
• Need to get right

– Financial industry (Haskell)
• Dealing with complex calculations
• Need to get right

“Functional Programming”

• Writing programs = defining (pure)
functions and composing functions

• Running programs = evaluating
expressions

• Functions are “first-class”, they can be
created (lambda expressions) and passed
around as arguments (higher-order
functions)

programming
style

Functional programming language =
a language in which this style is easy and encouraged

“Imperative Programming”

• Writing programs = writing instructions
and composing instructions that do things
and change things

• Running programs = executing
instructions

programming
style

A Wise Man ..

A Good Functional
Programmer is a

Good Programmer

Programming Languages

C

Haskell Java

ML

O’CaML

C++

C#

Prolog

Perl

Python

Ruby

PostScript

SQL

Erlang

PDF

bash

JavaScript

Lisp
Scheme

BASIC

csh

VHDL

Verilog

Lustre

Esterel

Mercury

Curry

Programming Language Features

polymorphism

higher-order
functions

statically
typed

parameterized
types

overloading

type
classes

object
oriented

reflection

meta-
programming

compiler

virtual
machine

interpreter

pure
functions

lazy
high

performance

type
inference

dynamically
typed

immutable
datastructures

concurrency

distribution

real-time

Haskell unification

backtracking

Java

C

Learning a Programming Language

• Learn the new features, principles,
associated with the language

• Reuse things you know from other
languages

• Learn different languages
– what is popular now might not be popular in 5

years from now

• Use the right language for the right job
– Systems consist of several languages

Strive To Be

• Someone who can quickly master a new
language
– because you know a few very different

languages

• Instead of: Someone who just knows one
language (possibly very well)
– and risks becoming a ”laggard” in 10 years

time

Multi-core Revolution

• Traditional ways of programming do not
work – a challenge for the programming
language community

• Right now, industry is looking for
alternatives
– Intel
– Microsoft
– IBM
– ...

Alternatives?

• Expression-level parallelism
– Haskell

– Other functional languages

• Software Transactional Memory
– Haskell

• Message passing between processes
– Erlang

restriction:
control of

side effects

restriction:
no shared
memory

restriction:
no

side effects

This Course

• Introduction to programming

• Introduction to Haskell

• There is lots, lots more...

Coming Programming Courses

• Dig & Dat
– Some C

• Machine-oriented
programming
– Assembly
– C

• Object-oriented
programming
– Java

• Datastructures
– Java
– Haskell

• Two programming
courses
– Both in Java

• Datastructures
– Java
– Haskell

D-line GU

Future Programming Courses

• Concurrent Programming
• Compiler Construction
• Advanced Functional Programming
• Hardware Description and Verification
• Software Engineering using Formal Methods
• Language Technology
• Programming Languages
• Erlang (IT University)
• ...

All use
Functional

Programming in
some way

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

