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The End of the Course

• Next week: Exam
– Example exams + answers on the web

– No computers
– In English: Bring an English dictionary

• answers may be in swedish

– A list of standard Haskell functions



  

What If ...

• You are not done with the labs in time?
– Next year: This course goes again

• Teacher: Me (probably)

• Reuse labs

• Possibly other/changed labs



  

What If ...

• You do not pass the exam?
– January: Re-exam

– August: Re-exam
– Next year: This course goes again



  

What Have We Learned?

• Programming
– For some of you: first time
– Make the computer do some useful tasks

• Programming Language
– Haskell
– Different from what most of you had seen 

before

• Programming Principles
– ...



  

Programming Principles (I)

• Modelling
– Create a new type that models what you are 

dealing with
– Design and define typed functions around 

your types
– Sometimes your type has an extra invariant
– Invariants should be documented (for 

example as a property)



  

Programming Principles (II)

• Properties
– When you define functions around your 

types...
– Think about and define properties of these 

functions
– Properties can be tested automatically to find 

mistakes
– Mistakes can be in your functions (program) 

or in your properties (understanding)



  

Programming Principles (III)

• Recursion
– When you need to solve a large, 

complicated problem...
– Break the problem up into a smaller piece, or 

a number of smaller pieces
– These can be solved recursively
– Solve the whole problem by combining all 

recursive solutions



  

Programming Principles (IV)

• Abstraction and Generalization
– When you find yourself repeating a 

programming task
– Take a step back and see if you can 

generalize
– You can often define a abstraction (higher-

order function) performing the old task and 
the new one

– Avoid copy-and-paste programming



  

Programming Principles (V)

• Pure functions
– Use pure functions as much as possible

– These are easier to understand, specify and 
test

– Concentrate IO instructions in a small part of 
your program

– Concentrate GUI instructions in a small part 
of your program



  

Programming Principles (VI)

• Separation
– Divide up your program into small units (functions)

– These should be grouped together into larger 
units (modules)

– Minimize dependencies between these parts

– So that it is easy to make internal changes, 
without affecting your whole program



  

Programming Principles

• Important!

• Independent of programming language



  

Why Haskell?

• What is easy in Haskell:
– Defining types

– Properties and testing
– Recursion
– Abstraction, higher-order functions
– Pure functions
– Separation (laziness)



  

Why Haskell (II)?

• What is harder in Haskell:
– Ignoring types

• Static strong typing

• Expressive type system
– Most advanced type system in a real language

– Impure functions
• All functions are pure

– The only general existing programming language

• Instructions are created and composed explicitly
– Makes it clear where the ”impure stuff” happens



  

Functional Programming

• ”Drives” development of new programming 
languages
– Type systems
– Garbage collection
– Higher-order functions / Lambdas
– List comprehensions
– ...

• Haskell is the most advanced functional 
programming language today



  

Functional Programming

• Hot topic in PL community and industry
– Compilers/compiler-like
– Domain-specific languages (Haskell)

• build your own programming language with little effort

– Telecom industry (Erlang)
• Dealing with complex protocols/data-flow
• Need to get right 

– Financial industry (Haskell)
• Dealing with complex calculations
• Need to get right



  

“Functional Programming”

• Writing programs = defining (pure) 
functions and composing functions

• Running programs = evaluating 
expressions

• Functions are “first-class”, they can be 
created (lambda expressions) and passed 
around as arguments (higher-order 
functions)

programming
style

Functional programming language =
a language in which this style is easy and encouraged



  

“Imperative Programming”

• Writing programs = writing instructions 
and composing instructions that do things 
and change things

• Running programs = executing 
instructions

programming
style



  

A Wise Man ..

A Good Functional 
Programmer is a 

Good Programmer



  

Programming Languages

C

Haskell Java

ML

O’CaML

C++

C#

Prolog

Perl

Python

Ruby

PostScript

SQL

Erlang

PDF

bash

JavaScript

Lisp
Scheme

BASIC

csh

VHDL

Verilog

Lustre

Esterel

Mercury

Curry



  

Programming Language Features

polymorphism

higher-order 
functions

statically 
typed

parameterized 
types

overloading

type 
classes

object 
oriented

reflection

meta-
programming

compiler

virtual 
machine

interpreter

pure 
functions

lazy
high 

performance

type 
inference

dynamically 
typed

immutable 
datastructures

concurrency

distribution

real-time

Haskell unification

backtracking

Java

C



  

Learning a Programming Language

• Learn the new features, principles, 
associated with the language

• Reuse things you know from other 
languages

• Learn different languages
– what is popular now might not be popular in 5 

years from now

• Use the right language for the right job
– Systems consist of several languages



  

Strive To Be

• Someone who can quickly master a new 
language
– because you know a few very different 

languages

• Instead of: Someone who just knows one 
language (possibly very well)
– and risks becoming a ”laggard” in 10 years 

time



  

Multi-core Revolution

• Traditional ways of programming do not 
work – a challenge for the programming 
language community

• Right now, industry is looking for 
alternatives
– Intel
– Microsoft
– IBM
– ...



  

Alternatives?

• Expression-level parallelism
– Haskell

– Other functional languages

• Software Transactional Memory
– Haskell

• Message passing between processes
– Erlang

restriction:
control of

side effects

restriction:
no shared
memory

restriction:
no

side effects



  

This Course

• Introduction to programming

• Introduction to Haskell

• There is lots, lots more...



  

Coming Programming Courses

• Dig & Dat
– Some C

• Machine-oriented 
programming
– Assembly
– C

• Object-oriented 
programming
– Java

• Datastructures
– Java
– Haskell 

• Two programming 
courses
– Both in Java

• Datastructures
– Java
– Haskell

 

D-line GU



  

Future Programming Courses

• Concurrent Programming
• Compiler Construction
• Advanced Functional Programming
• Hardware Description and Verification
• Software Engineering using Formal Methods
• Language Technology
• Programming Languages
• Erlang (IT University)
• ...

All use 
Functional 

Programming in 
some way
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