Functional Datastructures

Efficiency

» Reversing a list takes (length xs) calls to
reverse

» Each call to reverse costs
O(length (reverse xs)) = O(length xs)

» So reversing a list of length n requires
approx (n-1) +(n-2) + ... + 1 = O(n*n)

Steps  reverse :: [a] -> [a]
reverse [] []1
reverse (x:Xs) = reverse xs ++ [x]

Data Structures

+ Datatype

— A model of something that we want to represent in
our program

» Data structure
— A particular way of storing data

— How? Depending on what we want to do with the
data

* Today: one example
— Queue

Efficiency

Consider a naive reverse definition

reverse :: [a] -> [a]
reverse [] []
reverse (X:xs) reverse xs ++ [x]

(++) :: [a] -> [a] -> [a]

[] ++ ys ys How many (++) calls
(x:xs) ++ ys = x:(xs ++ ys))needed to produce all
elements of xs ++ ys?

Note: reverse and (++)

are part of the Prelude O(length xs)

Fast Reverse

* Quicker reverse avoids using append.
Idea: use an accumulating parameter

reverse :: [a] -> [a]
reverse xs = revInto [] xs
where revInto ys []
revInto ys (x:xs)

A helper function

ys
revInto (x:ys) xs

accumulating
parameter — it

accumulates the
answer

What is a Queue?

Join at the back Leave at front
%) \&
9 Examples
* Files to print ¢

* Processes to run

* Tasks to perform



What is a Queue?

A queue contains a sequence of values. We can add elements
at the back, and remove elements from the front.

We'llimplement the following operations:

empty
add

remove
front
iISEmpty ::

2Qa --an empty queue
ra->Qa->Qa --add element at back
tQa->Qa --remove an element from front
tQa->a -- inspect the front element

Q a -> Bool -- check if the queue is empty

Works, but slow

add x (Q xs) = Q (xs++[x])

0  ++ys=ys
(x:xs) ++ ys = X : (Xs++ys

Add 1, add 2, add 3, add 4, add 5...

Time is the square of the number of
additions

SlowQueue Module

module SlowQueue where

data Q a = Q [a] deriving (Eq, Show)

empty =Q []

add x (Q xs) = Q (xs++[x])
remove (Q (x:xs)) = Q xs

front (Q (x:xs)) = x

isEmpty (Q xs) = null xs

First Try

data Q a = Q [a] deriving (Eqg, Show)

empty =Ql

add x (Q xs) = Q (xs++[x])
remove (Q (x:xs)) = Q xs

front (Q (x:xs)) =X

iIsEmpty (Q xs) = null xs

A Module

» Implement the result in a module

» Use as specification

+ Hides the internals (representation)
Allows the re-use

— By other programmers

— Of the same names

New ldea: Store the Front and
Back Separately

ou [a] [b]clale[fofn]ir i

remove
Fast to —
remove Periodically

New move the

back to the

front.



Smart Datatype Smart Operations

QI[1TI1]

q == empty

fixQ (Q front (x:back))
X

fixQ (Q front back)

data Qa=Q [a] [a] The front and the back} empty

part of the queue. isEm
s pty q
de”vmg (Eq’ ShOW) add x (Q front back)

front (Q (x:front) back)
Invariant: front is empty only when the remove (Q (x:front) back)
back is also empty

Move the back of the queue to the
front when front becomes empty

Flipping Wrapping it up
fixQ (Q [] back) = Q (reverse back) [] module Queue (Q,
fixQ q =q empty, add, remove,
Exports type front, isEmpty
o fi Q but not the
fixQ takes one_cal! per element S nstructor ) where
» Each element is flipped exactly once, so
—0(1) to add, O(1) to fixQ, O(1) to remove. *Main> :i Q
data Q a -- Defined at Queue.hs:11:5

*Main> front (Q [1,2] [3])
<interactive>:1:0: Not in scope: data constructor “Q°'

How can we test the smart

Exported Constructors functions?

m 1 . . .. . .
odule Queue (Q( Not a good idea here: allows By using the original implementation as
emp\ client to areference

Fron ;. Pecome dependent on « The behaviour should be "the same”
internal implementation

) whe details — Check results
IR CEIRIE IS « First version is an abstract model that is
*Main> :i Q obviously correct

data Q a = Q [a] [a] -- Defined at Queue.hs:11:5
*Main> Q [] [3]
Q] [3]

Exports type
Q and the
constructor Q




Later we will see:

» How to make QuickCheck work for our
own datatypes

—Weneed to tell it how to generate random
values

* How to test the equivalence of the
reference and efficient implementations
—we need to add conversion functions

« How to test the intended invariants



