
Functional Programming Lab 2
A Simple Black Jack Variant∗

1 Introduction

In this exercise you will write an implementation of (a simple variant of) the
game Black Jack. By doing so you will learn to define recursive functions
and QuickCheck properties. Since you have not really learned how to do in-
put/output yet, we provide you with a wrapper which takes care of those things
for you.

Later in the course you will learn how to write graphical user interfaces,
and if you want to you can then write such an interface for this program. To
cater for this possibility, try to write your program in such a way that you can
understand it in a month’s time.

2 The game

The game you will implement is a simple variant of Black Jack. There are two
players, the “guest” and the bank. First the guest plays. She (he) can draw as
many cards as she wants, as long as the total value does not exceed 21. When
the guest has decided to stop, or gone bust (score over 21), the bank plays. The
bank draws cards until its score is 16 or higher, and then it stops.

The value of a hand (the score) is the sum of the values of the cards. The
values are as follows:

• Numeric cards have their numeric value, so a nine is worth nine points.

• Jacks, queens and kings are worth ten points each.

• Aces are worth either one point or eleven points. When calculating the
value for a hand, all aces have the same value; either they are all worth
eleven points, or they are all worth one point. Initially the value eleven is
used for the aces, but if that leads to a score above 21, then the value one
is used instead.

The winner is the player with the highest score that does not exceed 21. If
the players end up with the same score, then the bank wins. The bank also wins
if both players go bust.

∗Author: Koen Lindström Claessen. Thanks to Nils Anders Danielsson, Hampus Ram,

Andreas Farre, Sebastian Sylvan and Mary Bergman. Minor modifications to this version by

David Sands

1

3 Your task

Your task is the following:

1. Read this document carefully.

2. Execute size hand2 (see Section 3.1) by hand, step by step:

size hand2

= size (Add (Card (Numeric 2) Hearts)
(Add (Card Jack Spades) Empty))

= ...

= 2

Write down this sequence of equations in the beginning of a Haskell file
called BlackJack.hs, as a comment.

3. Implement the Haskell functions and QuickCheck properties listed below.
Write them in BlackJack.hs.

4. While writing the functions (not afterwards), document them.

We will now go through some of the above points in more detail.

3.1 Recursive types

The appendix lists two Haskell files, Cards and Wrapper . You do not need to
understand anything about the wrapper, but you have to understand most of
Cards. That module contains definitions of data types used to model cards
and collections of cards (hands). Read through the file so that you know which
types you are supposed to use. (You do not yet need to understand the Arbitrary

instances in Cards.)
One of the types is more difficult than the others:

data Hand = Empty | Add Card Hand

deriving (Eq ,Show)

A Hand can be either

• Empty , i.e. an empty hand, or

• Add card hand . Here card :: Card is a card and hand :: Hand is another

hand, so this stands for a hand with another card added.

The type is defined in terms of itself; it is recursive. It is easy to create small
values of this type, e.g. a hand containing two cards:

hand2 = Add (Card (Numeric 2) Hearts)
(Add (Card Jack Spades) Empty)

We start with the empty hand, add the jack of spades, and finally add the two of
hearts. It is tiresome to write down all 52 cards in a full deck by hand, though.
We can do that more easily by using recursion. That is left as an exercise for
you, see below.

2

We can use recursion both to build something of a recursive type (like a deck
of cards) and to take it apart. For instance, say that you want to know the size
of a Hand . That is easily accomplished using recursion and pattern matching.
Note the similarity with recursion over integers:

size :: Num a ⇒ Hand → a

size Empty = 0
size (Add card hand) = 1 + size hand

At this stage in the course you might not have fully grasped recursive types;
that is after all the reason for doing this assignment. To get a better idea of
what happens when a recursive function is evaluated, take some time to work
with size before you continue. You can for instance evaluate size hand2 by
hand, on paper. The result should be 2, right?

The function size is included in the Cards module. You can find more
recursive functions in the lecture notes.

3.2 Properties

To help you we have included a couple of QuickCheck properties below. Your
functions must satisfy these properties. If they do not, then you know that
something is wrong. Testing helps you find bugs that you might otherwise have
missed. Note that you also have to write some properties yourself, as indicated
below.

The purpose of writing properties is three-fold:

1. They serve as a specification before you write your functions.

2. During the implementation phase they help you with debugging.

3. When you are finished they serve as mathematically precise documentation
for your program.

So, to take maximum advantage of the properties, write them before you write
the corresponding functions, or at the same time.

3.3 Documentation

The code has to be documented. See the Wrapper and Cards modules (below)
to get an idea about what kind of documentation is expected of you. Try to
follow these guidelines:

• Focus on what the function does and how one can use it, but not on how
the function is implemented. Of course, if a function is complicated then
the implementation also has to be documented, but you are not supposed
to write complicated functions in this assignment.

• Try to keep the documentation as short as possible, without sacrificing
clarity. Long comments make the code harder to read.

Similar arguments apply to documentation as for properties; write the doc-
umentation when you write your functions, not afterwards.

3

3.4 Functions

Write all code in a fresh file called BlackJack.hs. To make everything work,
add the following lines in the top of the file:

module BlackJack where

import Cards

import Wrapper

This tells the Haskell system that the module is called BlackJack , and that
you want to use the functions and data types defined in Cards and Wrapper .
Download Cards.hs and Wrapper.hs and store them in the same directory as
BlackJack.hs, but do not modify the files.

You have to implement the following functions.

• You need to define a function that returns an empty hand:

empty :: Hand

• Given a hand, there should be a function that calculates the value of the
hand according to the rules given above:

value :: Hand → Integer

A hint for writing the value function: Start with writing a function
valueRank :: Rank -> Integer, that calculates the value of a Rank
(think about what to do for an Ace!), and perhaps also a function
valueCard :: Card -> Integer, that calculates the value of a Card.
Furthermore, it is a good idea to define and use a function
numberOfAces :: Hand -> Integer, that calculates the number of aces
in a given hand. Write these three functions before you start defining the
function value.

• Given a hand, is the player bust?

gameOver :: Hand → Bool

• Given one hand for the guest and one for the bank (in that order), which
player has won?

winner :: Hand → Hand → Player

Here Player is a new data type, defined in the Wrapper module:

data Player = Guest | Bank

deriving (Show ,Eq)

• Given two hands, <+ puts the first one on top of the second one:

(<+) :: Hand → Hand → Hand

4

(Note that a function name with only symbols indicates an infix operator.
It is used just like + or −, with the operator between its arguments:
h1 <+ h2.)

This function must satisfy the following QuickCheck properties. The func-
tion should be associative:

prop onTopOf assoc :: Hand → Hand → Hand → Bool

prop onTopOf assoc p1 p2 p3 = p1 <+ (p2 <+ p3) == (p1 <+ p2) <+ p3

Furthermore the size of the combined hand should be the sum of the sizes
of the two individual hands:

prop size onTopOf :: Hand → Hand → Bool

The implementation of this property is not given here, you have to write
it yourselves.

• You also need to define a function that returns a full deck of cards:

fullDeck :: Hand

You could do this by listing all 52 cards, like we did with two cards above.
However, that is very tedious. Instead, do it like this: Write a function
which given a suit returns a hand consisting of all the cards in that suit.
Then combine the 13-card hands for the four different suits into one hand
using <+.

• Given a deck and a hand, draw one card from the deck and put on the
hand. Return both the deck and the hand (in that order).

draw :: Hand → Hand → (Hand ,Hand)

If the deck is empty, report an error using error :

error "draw: The deck is empty."

By changing the type of draw one could get around this rather ugly solu-
tion. We will get to that later in the course. Maybe you can think of a
way already now?

To return two values a and b in a pair, use the syntax (a, b). You can also
pattern match on pairs:

first :: (a, b) → a

first (x , y) = x

• Given a deck, play for the bank according to the rules above (starting with
an empty hand), and return the bank’s final hand:

playBank :: Hand → Hand

To write this function you will probably need to introduce a help function
that takes two hands as input, the deck and the bank’s hand. To draw a
card from the deck you can use where in the following way:

5

playBank ′ deck bankHand ...

...

where (deck ′, bankHand ′) = draw deck bankHand

If you have not seen where before, read about it in the book.

• Given a StdGen and a hand of cards, shuffle the cards and return the
shuffled hand:

shuffle :: StdGen → Hand → Hand

A StdGen is a random number generator. Import the System.Random

library:

import System.Random

Now, if g is a random number generator, then randomR (lo, hi) g is a pair
(x , g ′), where x is a number between lo and hi (inclusive), and g ′ is a new
random number generator. Note that to get several random numbers you
have to use different random number generators; if you used g this time,
then you have to use g ′ (or some other generator) the next time. If you
were to reuse g then you would get the same result again.

As an example, the following function takes a random number generator
as input and uses it to calculate two random integers between 0 and 10,
inclusive:

twoRandomIntegers :: StdGen → (Integer , Integer)
twoRandomIntegers g = (n1,n2)

where (n1, g1) = randomR (0, 10) g

(n2, g2) = randomR (0, 10) g1

Note that if we had used g in the last line as well, then n1 and n2 would
be equal, so instead we use the new random number generator g1 returned
by randomR.

By the way, you can construct a value of type StdGen by using mkStdGen ::
Int → StdGen.

So, now that we know how to handle random numbers, how can we shuffle
a deck of cards? If you want a (small) challenge, do not read the next
three paragraphs.

One way to shuffle the cards would be to pick an arbitrary card from the
deck and put it on top of the deck, and then repeat that many times.
However, how many times should one repeat? If one repeats 52 times,
then the probability that the last card is never picked is about 36%. This
means that the last card is often the same, which of course is not good.

A better idea is to pick an arbitrary card and put it in a new deck, then
pick another card and put it on top of the new deck, and so on. Then we
know that we have a perfectly shuffled deck in 52 steps (given that the
random number generator is perfect, which it is not).

Note that for both approaches we need a function that removes the n-th
card from a deck.

6

The function shuffle has to satisfy some properties. First, if a card is in a
deck before it has been shuffled, then it should be in the deck afterwards
as well, and vice versa:

prop shuffle sameCards :: StdGen → Card → Hand → Bool

prop shuffle sameCards g c h =
c ‘belongsTo‘ h == c ‘belongsTo‘ shuffle g h

For this we need the helper function belongsTo, which returns True iff the
card is in the hand.

belongsTo :: Card → Hand → Bool

c ‘belongsTo‘ Empty = False

c ‘belongsTo‘ (Add c′ h) = c == c′ || c ‘belongsTo‘ h

(By using ‘ we can turn a function into a binary operator.)

The above property does not guarantee that the size of the deck is pre-
served by shuffle; all cards could be duplicated, for instance. You have to
write a property which states that the size is preserved:

prop size shuffle :: StdGen → Hand → Bool

3.5 Interface

You have barely touched upon input/output in the lectures, so we have to pro-
vide you with a wrapper (the module Wrapper) that takes care of those things.
All you have to do is to write the functions above, package them together (as
explained below), and then call the wrapper with the package as an argument.

To “package up” these functions, write the following code:

implementation = Interface

{iEmpty = empty

, iFullDeck = fullDeck

, iValue = value

, iGameOver = gameOver

, iWinner = winner

, iDraw = draw

, iPlayBank = playBank

, iShuffle = shuffle

}

To run the program, define

main :: IO ()
main = runGame implementation

in your source file, load the file, and run main.

4 Possible extensions

The following is completely optional, but if you want to do more, there are many
possibilities:

7

• Now the bank draws all its cards after the guest has finished. It would be
more fun if the guest could see the bank’s cards while playing.

• The rules are not really proper Black Jack rules.

• There are many other card games, many of which may be more fun than
this one.

• You probably have some ideas yourself.

Most of the ideas above require that you program input/output (I/O) your-
self. You have seen how to do simple I/O in the lectures. Use the Wrapper

module as a starting point.
Note that doing something extra will not directly affect your grade, but can

of course be beneficial in the long run. Take care to do the compulsory part
above before attempting something more advanced, though.

A The Wrapper module

module Wrapper where

import Data.Char

import System.Random

import Cards

-- The interface to the students’ implementation.

data Interface = Interface

{ iEmpty :: Hand

, iFullDeck :: Hand

, iValue :: Hand -> Integer

, iGameOver :: Hand -> Bool

, iWinner :: Hand -> Hand -> Player

, iDraw :: Hand -> Hand -> (Hand, Hand)

, iPlayBank :: Hand -> Hand

, iShuffle :: StdGen -> Hand -> Hand

}

-- A type of players.

data Player = Guest | Bank

deriving (Show, Eq)

-- Runs a game given an implementation of the interface.

runGame :: Interface -> IO ()

runGame i = do

putStrLn "Welcome to the game."

g <- newStdGen

gameLoop i (iShuffle i g (iFullDeck i)) (iEmpty i)

8

-- Play until the guest player is bust or chooses to stop.

gameLoop :: Interface -> Hand -> Hand -> IO ()

gameLoop i deck guest = do

putStrLn ("Your current score: " ++ show (iValue i guest))

if iGameOver i guest then do

finish i deck guest

else do

putStrLn "Draw another card? [y]"

yn <- getLine

if null yn || not (map toLower yn == "n") then do

let (deck’, guest’) = iDraw i deck guest

gameLoop i deck’ guest’

else

finish i deck guest

-- Display the bank’s final score and the winner.

finish :: Interface -> Hand -> Hand -> IO ()

finish i deck guest = do

putStrLn ("The bank’s final score: " ++ show (iValue i bank))

putStrLn ("Winner: " ++ show (iWinner i guest bank))

where

bank = iPlayBank i deck

B The Cards module

{-# OPTIONS -fno-warn-missing-methods #-}

module Cards where

import Test.QuickCheck

import Random

-- A card has a rank and belongs to a suit.

data Card = Card { rank :: Rank, suit :: Suit }

deriving (Eq, Show)

instance Arbitrary Card where

arbitrary = do

suit <- arbitrary

rank <- arbitrary

return (Card rank suit)

-- All the different suits.

data Suit = Hearts | Spades | Diamonds | Clubs

deriving (Eq, Show)

9

instance Arbitrary Suit where

arbitrary = oneof [return Hearts, return Spades

, return Diamonds, return Clubs]

-- A rank is either a numeric card, a face card, or an ace. The

-- numeric cards range from two to ten.

data Rank = Numeric Integer | Jack | Queen | King | Ace

deriving (Eq, Show)

instance Arbitrary Rank where

arbitrary = frequency [(1, return Jack)

, (1, return Queen)

, (1, return King)

, (1, return Ace)

, (9, do n <- choose (2, 10)

return (Numeric n))

]

-- A hand of cards. This data type can also be used to represent a

-- deck of cards.

data Hand = Empty | Add Card Hand

deriving (Eq, Show)

-- This instance on average yields larger hands than the one given in

-- the lecture.

instance Arbitrary Hand where

arbitrary = frequency [(1, return Empty)

, (10, do card <- arbitrary

hand <- arbitrary

return (Add card hand))

]

-- The size of a hand.

size :: Num a => Hand -> a

size Empty = 0

size (Add card hand) = 1 + size hand

-- We also need to be able to generate random number generators. (This

-- does not really belong in this file, but is placed here to reduce

-- the number of files needed.)

instance Arbitrary StdGen where

arbitrary = do n <- arbitrary

return (mkStdGen n)

10

