Efficiency

Functional Datastructures

Efficiency

- Reversing a list takes (length xs) calls to reverse
- Each call to reverse costs

O(length (reverse xs)) = O(length xs)

- So reversing a list of length n requires approx $(\mathrm{n}-1)+(\mathrm{n}-2)+\ldots+1=\mathrm{O}\left(\mathrm{n}^{*} \mathrm{n}\right)$
steps reverse :: [a] -> [a] reverse [] = [] reverse ($\mathrm{x}: \mathrm{xs}$) $=$ reverse $\mathrm{xs}++[\mathrm{x}]$

Fast Reverse

- Quicker reverse avoids using append. Idea: use an accumulating parameter

```
reverse :: [a] -> [a]
reverse xs = revInto [] xs
    where revInto ys [] = ys
            revInto ys (x:xs) = revInto (x:ys) xs
A helper function
accumulating
parameter - it
accumulates the
answer
```

accumulating parameter - it accumulates the answer

Data Structures

- Datatype
- A model of something that we want to represent in our program
- Data structure
- A particular way of storing data
- How? Depending on what we want to do with the data
- Today: one example
- Queue

Consider a naive reverse definition

```
reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys How many (++) calls
(x:xs) ++ ys = \(\mathbf{x}:(\mathbf{x s}++\mathbf{y s})\) needed to produce all
Note: reverse and (++) are part of the Prelude
```


What is a Queue?

What is a Queue?

A queue contains a sequence of values. We can add elements at the back, and remove elements from the front.

We'll implement the following operations:

ty	: $\mathrm{Qa}^{\text {a }}$	an empty queue
	$:: \mathrm{a}->\mathrm{Q} a->\mathrm{Qa}$	add element at back
nove	$:: Q a->$ a	remove an element from
nt	$:: Q a->\mathrm{a}$	-- inspect the front ele
Empty	Qa -> Bool	check if the queue is emp

add $x(Q x s)=Q(x s++[x])$

Add 1, add 2, add 3, add 4, add $5 .$.
Time is the square of the number of additions

First Try
data $\mathrm{Q} a=\mathrm{Q}[\mathrm{a}]$ deriving (Eq, Show)
empty $\quad=\mathrm{Q}[]$
add $\mathrm{x}(\mathrm{Qxs}) \quad=\mathrm{Q}(\mathrm{xs}++[\mathrm{x}])$
remove ($\mathrm{Q}(\mathrm{x}: \mathrm{xs}))=\mathrm{Q} x \mathrm{~s}$
front ($\mathrm{Q}(\mathrm{x}: \mathrm{xs})$) $=\mathrm{x}$
isEmpty ($\mathrm{Q} x \mathrm{~s}$) = null xs

A Module

- Implement the result in a module
- Use as specification
- Hides the internals (representation)
- Allows the re-use
- By other programmers
- Of the same names

SlowQueue Module

```
module SlowQueue where
data Q a = Q [a] deriving (Eq, Show)
empty = Q []
add x (Q xs) = Q (xs++[x])
remove (Q (x:xs)) = Q xs
front (Q (x:xs)) = x
isEmpty (Q xs) = null xs
```

New Idea: Store the Front and Back Separately

Smart Datatype

\qquad deriving (Eq, Show)

Invariant: front is empty only when the back is also empty

Flipping

```
fixQ (Q [] back) = Q (reverse back) []
fixQ q = q
```

- fixQ takes one call per element
- Each element is flipped exactly once, so $-\mathrm{O}(1)$ to add, $\mathrm{O}(1)$ to fixQ, $\mathrm{O}(1)$ to remove.

Exported Constructors

module Queue $(Q(Q) \sqrt{\text { Not a good idea here: allows }}$ emp client to

Exports type	
Q and the	fron
- become dependent on	
internal implementation	

- break datatype invariants

```
*Main> :i Q
data Q a = Q [a] [a] -- Defined at Queue.hs:11:5
*Main> Q [] [3]
Q [] [3]
```


Smart Operations

```
empty = Q [] []
isEmpty q = q == empty
add x (Q front back) = fixQ (Q front (x:back))
front (Q (x:front) back) = x
remove (Q (x:front) back) = fixQ (Q front back)
```

Move the back of the queue to the front when front becomes empty

Later we will see:

- How to make QuickCheck work for our own datatypes
- We need to tell it how to generate random values
- How to test the equivalence of the reference and efficient implementations
- we need to add conversion functions
- How to test the intended invariants

