
10/26/2009

1

Modelling & Datatypes
Modelling Data

• A big part of designing software is

modelling the data in an appropriate way

• Numbers are not good for this!

• We model the data by defining new types

Modelling a Card Game

• Every card has a suit

• Model by a new type:

data Suit = Spades | Hearts | Diamonds | Clubs

The new

type

The values

of this type

Investigating the new type

Main> :i Suit
-- type constructor
data Suit

-- constructors:
Spades :: Suit
Hearts :: Suit
Diamonds :: Suit
Clubs :: Suit

Main> :i Spades
Spades :: Suit -- data constructor

The new type

The new values

-- constructors

Types and

constructors

start with a

capital letter

Printing Values

• Fix

Main> Spades
ERROR - Cannot find "show" function for:
*** Expression : Spades
*** Of type : Suit

Main> :i show
show :: Show a => a -> String -- class member

Needed to print

values

data Suit = Spades | Hearts | Diamonds | Clubs
deriving Show

Main> Spades

Spades

The Colours of Cards

• Each suit has a colour – red or black

• Model colours by a type

• Define functions by pattern matching

data Colour = Black | Red
deriving Show

colour :: Suit -> Colour
colour Spades = Black
colour Hearts = Red
colour Diamonds = Red
colour Clubs = Black One equation per value

Main> colour Hearts

Red

10/26/2009

2

The Ranks of Cards

• Cards have ranks: 2..10, J, Q, K, A

• Model by a new type
Numeric ranks

data Rank = Numeric Integer | Jack | Queen | King | Ace

deriving Show

Main> :i Numeric
Numeric :: Integer -> Rank -- data constructor
Main> Numeric 3
Numeric 3

Numeric ranks contain

an Integer

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _ Ace = False

Matches

anything at all

Nothing beats an Ace

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool

rankBeats _ Ace = False

rankBeats Ace _ = True

Used only if the first

equation does not match.

An Ace beats anything else

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _ Ace = False
rankBeats Ace _ = True
rankBeats _ King = False
rankBeats King _ = True
rankBeats _ Queen = False
rankBeats Queen _ = True
rankBeats _ Jack = False
rankBeats Jack _ = True

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _ Ace = False
rankBeats Ace _ = True
rankBeats _ King = False
rankBeats King _ = True
rankBeats _ Queen = False
rankBeats Queen _ = True
rankBeats _ Jack = False
rankBeats Jack _ = True
rankBeats (Numeric m) (Numeric n) = m > n

Matches Numeric 7,

for example

Names the number

in the rank

10/26/2009

3

Examples

Further reading exercise: possible to make
a much simpler definition by getting
Haskell to derive the ordering relations <,
<= etc. between cards.

– Find out more about "deriving Ord"...

Main> rankBeats Jack (Numeric 7)

True

Main> rankBeats (Numeric 10) Queen

False

A Property

• Either a beats b or b beats a

prop_rankBeats a b = rankBeats a b || rankBeats b a

Main> quickCheck prop_rankBeats

ERROR - Cannot infer instance

*** Instance : Arbitrary Rank

*** Expression : quickCheck prop_rankBeats

QuickCheck doesn’t know how

to choose an arbitrary Rank!

QuickCheck Generators

• Test data is chosen by a test data

generator

• Writing generators we leave for the future

Testing the Property

prop_rankBeats a b = rankBeats a b || rankBeats b a

Main> quickCheck prop_rankBeats

Falsifiable, after 9 tests:

King

King

prop_rankBeats a b = a/=b ==> rankBeats a b || rankBeats b a

data Rank = Numeric Integer | Jack | Queen | King | Ace

deriving (Show, Eq)

Provided they’re not equal

Define == for ranks

Modelling a Card

• A Card has both a Rank and a Suit

• Define functions to inspect both

data Card = Card Rank Suit
deriving Show

rank :: Card -> Rank
rank (Card r s) = r

suit :: Card -> Suit
suit (Card r s) = s

A Useful Abbreviation

• The previous type and function definitions

can be written in an equivalent

abbreviated form:

data Card = Card {rank :: Rank, suit :: Suit}

deriving Show

10/26/2009

4

When does one card beat another?

• When both cards have the same suit, and

the rank is higher

cardBeats :: Card -> Card -> Bool
cardBeats c d

| suit c == suit d = rankBeats (rank c) (rank d)
| otherwise = False

data Suit = Spades | Hearts | Diamonds | Clubs
deriving (Show, Eq)

can be written

more simply...

When does one card beat another?

• When both cards have the same suit, and

the rank is higher

cardBeats :: Card -> Card -> Bool
cardBeats c d = suit c == suit d

&& rankBeats (rank c) (rank d)

Modelling a Hand of Cards

• A hand may contain any number of cards

from zero up!

• The solution is… recursion!

data Hand = Cards Card … Card

deriving Show
We can’t use

…!!!

Modelling a Hand of Cards

• A hand may contain any number of cards

from zero up!

– A hand may be empty

– It may consist of a first card and the rest

• The rest is another hand of cards!

data Hand = Empty | Add Card Hand

deriving Show

A recursive type!

Solve the problem of

modelling a hand with

one fewer cards!

When can a hand beat a card?

• An empty hand beats nothing

• A non-empty hand can beat a card if the
first card can, or the rest of the hand can!

• A recursive function!

handBeats :: Hand -> Card -> Bool

handBeats Empty card = False

handBeats (Add c h) card =

cardBeats c card || handBeats h card

Trickier Example:

Choose a card to play
• Given

– Card to beat

– The hand

• Beat the card if possible!

10/26/2009

5

Strategy

• If the hand is only one card, play it

• If there is a choice,

– Select the best card from the rest of the hand

– Choose between it and the first card

• Principles

– Follow suit if possible

– Play lowest winning card if possible

– Play lowest losing card otherwise

The Code

-- chooseCard beat hand chooses a smallest card from hand to
-- play and beat is the card to be beaten

chooseCard :: Card -> Hand -> Hand
chooseCard beat (Add c Empty) = c
chooseCard beat (Add c rest)

| suit c==suit beat && suit c’/= suit beat = c
| suit c/=suit beat && suit c’==suit beat = c’
| rankBeats (rank c) (rank c’) = c’
| otherwise = c
where c’ = chooseCard beat rest

Properties of chooseCard

• Complicated code with great potential for

errors!

• Possible properties:

– chooseCard returns a card from the hand (”no

cards up the sleeve”)

– chooseCard follows suit if possible (”no

cheating”)

– chooseCard always wins if possible

Testing chooseCard

prop_chooseCardWinsIfPossible c h =

h/=Empty ==>

handBeats h c

==

cardBeats (chooseCard c h) c

Main> quickCheck prop_chooseCardWinsIfPossible

Falsifiable, after 3 tests:

Card{rank=Numeric 8,suit=Diamonds}

Add Card{rank=Numeric 4,suit=Diamonds} (Add

Card{rank=Numeric 10,suit=Spades} Empty)

What went wrong?

What Did We Learn?

• Modelling the problem using datatypes

with components

• Using recursive datatypes to model things

of varying size

• Using recursive functions to manipulate

recursive datatypes

• Writing properties of more complex

algorithms

Reminder: Modelling a Hand

• A Hand is either:

– An empty hand

– Formed by adding a card to a smaller hand

• Discarding the first card:

data Hand = Empty | Add Card Hand

deriving Show

discard :: Hand -> Hand

discard (Add c h) = h

10/26/2009

6

Lists
-- how they work

Lists: recap

• Can represent 0, 1, 2, … things

– [], [3], [”apa”,”katt”,”val”,”hund”]

• They all have the same type

– [1,3,True,”apa”] is not allowed

• The order matters

– [1,2,3] /= [3,1,2]

• Syntax

– 5 : (6 : (3 : [])) == 5 : 6 : 3 : [] == [5,6,3]

– ”apa” == [’a’,’p’,’a’]

Can we define Lists as a

datatype?

• Our attempt at a ”home made” list is

either:

– An empty list

– Formed by adding an element to a smaller list

• What to put on the place of the ??

data List = Empty | Add ?? List

Lists

• Add 12 (Add 3 Empty) :: List Int

• Add ”apa” (Add ”bepa” Empty) :: List String

• Haskell’s built-in lists can be thought of as

a syntactic shorthand for this datatype

data List a = Empty | Add a (List a)

A type parameter

Lists

• Empty :: List Integer

• Empty :: List Bool

• Empty :: List String

• ...

data List a = Empty | Add a (List a)

More on Types

• Functions can have ”general” types:

– polymorphism

– reverse :: [a] -> [a]

– (++) :: [a] -> [a] -> [a]

• Sometimes, these types can be restricted

– Ord a => … for comparisons (<, <=, >, >=, …)

– Eq a => … for equality (==, /=)

– Num a => … for numeric operations (+, -, *, …)

10/26/2009

7

Do’s and Don’ts

isBig :: Integer -> Bool

isBig n | n > 9999 = True

| otherwise = False

isBig :: Integer -> Bool

isBig n = n > 9999

guards and

boolean

results

Do’s and Don’ts

resultIsSmall :: Integer -> Bool

resultIsSmall n = isSmall (f n) == True

resultIsSmall :: Integer -> Bool

resultIsSmall n = isSmall (f n)

comparison

with a boolean

constant

Do’s and Don’ts

resultIsBig :: Integer -> Bool

resultIsBig n = isSmall (f n) == False

resultIsBig :: Integer -> Bool

resultIsBig n = not (isSmall (f n))

comparison

with a boolean

constant

Writing Code

• Beautiful code

– readable

– not overly complicated

– no repetitions

– no ”junk” left

• For

– you

– other people

