
Concurrent Programming: JR Language

Micha l Pa lka

Chalmers University of Technology
Gothenburg, Sweden

September 24, 2012



JR

I JR — academic programming language for concurrency

I Extension of Java

I Advantage: Adds many expressive message passing primitives

I Disadvantage: Java is already complicated, JR is even more

I Lab 3 is based on JR



Hello, World!

Imports JR functions

import edu.ucdavis.jr.JR;

public class Hello {

public static void main (String[] args) {

System.out.println ("Hello, world!");

}

};

Save to Hello.jr

$ jr Hello

Hello, world!



Hello, World!

Imports JR functionsimport edu.ucdavis.jr.JR;

public class Hello {

public static void main (String[] args) {

System.out.println ("Hello, world!");

}

};

Save to Hello.jr

$ jr Hello

Hello, world!



Hello, World!

Imports JR functionsimport edu.ucdavis.jr.JR;

public class Hello {

public static void main (String[] args) {

System.out.println ("Hello, world!");

}

};

Save to Hello.jr

$ jr Hello

Hello, world!



Compilation issues

I JR compiles all *.jr files in your directory.

I Their contents must match their file names.



Processes

key word name

process body

same as in Java

private static process p1 {

...

}

I Process that runs concurrently to everything else.



Processes

key word name

process body

same as in Java

private static process p1 {

...

}

I Process that runs concurrently to everything else.



Processes

key word name

process body

same as in Java

private static process p1 {

...

}

I Process that runs concurrently to everything else.



Channels

key word

ignore this for now
ignore this also

name

private static op void c1 ();

I Channel, which can be used to send and receive messages.

I Many processes can send and receive on the same channel.

I Messages sent to a channel are queued.

Sending and receiving:

send c1 ();

receive c1 ();



Channels

key word

ignore this for now
ignore this also

name

private static op void c1 ();

I Channel, which can be used to send and receive messages.

I Many processes can send and receive on the same channel.

I Messages sent to a channel are queued.

Sending and receiving:

send c1 ();

receive c1 ();



Channels

key word

ignore this for now
ignore this also

name

private static op void c1 ();

I Channel, which can be used to send and receive messages.

I Many processes can send and receive on the same channel.

I Messages sent to a channel are queued.

Sending and receiving:

send c1 ();

receive c1 ();



Channels

key word

ignore this for now
ignore this also

name

private static op void c1 ();

I Channel, which can be used to send and receive messages.

I Many processes can send and receive on the same channel.

I Messages sent to a channel are queued.

Sending and receiving:

send c1 ();

receive c1 ();



Channels

key word

ignore this for now
ignore this also

name

private static op void c1 ();

I Channel, which can be used to send and receive messages.

I Many processes can send and receive on the same channel.

I Messages sent to a channel are queued.

Sending and receiving:

send c1 ();

receive c1 ();



By the way

In JR use JR.nap() instead of Thread.sleep().



Message send

p1 p2

send c1 ()

receive c1 ()



Message send (cont.)

p1 p2

send c1 ()

receive c1 ()



Message send (cont.)

p1 p2

send c1 () receive c1 ()

A

B

I Send and receive ensure that actions in A are executed before
actions in B.



And one more thing

I JR has deadlock detection.

I When deadlock occurs, your program will exit.



And one more thing

I JR has deadlock detection.

I When deadlock occurs, your program will exit.



Summary

I Hello, compilation (and issues)

I Channels

I Sending end receiving messages

I Deadlock detection



Static, non-static

non-static channel

private op void c1 ();

non-static operation

op void c1() cannot be

referenced from a static

context

public static void main (String[] args) {

send c1 ();

}



Static, non-static

non-static channel

private op void c1 ();

non-static operation

op void c1() cannot be

referenced from a static

context

public static void main (String[] args) {

send c1 ();

}



Static, non-static (cont.)

Non-static channels

and processes are cre-

ated together with an

object.

public class Static {

private op void c1 ();

public static void main (String[] args) {

Static s = new Static ();

send s.c1 ();

}

};



Rendez-vous

private static op void c1 ();

private static op void c2 ();

private static process p1 {

// some code

send c1 ();

receive c2 ();

// more code

}

private static process p2 {

// some code

receive c1 ();

send c2 ();

// more code

}



Rendez-vous (cont.)

p1 p2

send c1 ()

receive c1 ()

send c2 ()

receive c2 ()



Rendez-vous (cont.)

p1 p2

send c1 ()

receive c1 ()

send c2 ()receive c2 ()



Rendez-vous (cont.)

p1 p2

send c1 () receive c1 ()

send c2 ()receive c2 ()

A1

B1

A2

B2

I This pattern ensures that actions from A1 occur before actions
from B2 and actions from A2 occur before actions from B1.



Rendez-vous (cont.)

I It is possible to implement rendez-vous (RDV) using
asynchronous send and two channels.

I JR provides also direct support for rendez-vous.



Call

call will wait until the

other process performs

the receive.

private static op void c1 ();

private static process p1 {

// some code

call c1 ();

// more code

}

private static process p2 {

// some code

receive c1 ();

// more code

}



Call

call will wait until the

other process performs

the receive.

private static op void c1 ();

private static process p1 {

// some code

call c1 ();

// more code

}

private static process p2 {

// some code

receive c1 ();

// more code

}



Call (cont.)

call provides rendez-

vous in JR.

Both call and receive

will wait if the other

one is not ready.

p1 p2

call c1 ()

receive c1 ()



Call (cont.)
call provides rendez-

vous in JR.

Both call and receive

will wait if the other

one is not ready.

p1 p2

call c1 ()

receive c1 ()



Call (cont.)
call provides rendez-

vous in JR.

Both call and receive

will wait if the other

one is not ready.

p1 p2

call c1 ()

receive c1 ()



Summary

I Static/non-static channels (and processes)

I Rendez-vous using two messages

I The call statement (gives us RDV directly)



Puzzle

private static op void c1 ();

private static process p1 {

for (int i = 0; i < 10; ++i) {

receive c1 ();

// Some code

send c1 ();

} }

private static process p2 {

for (int i = 0; i < 10; ++i) {

receive c1 ();

// Some code

send c1 ();

} }

public static void main (String[] args) {

send c1 ();

}



Puzzle (cont.)
p1 p2

receive c1 () receive c1 ()

send c1 ()

receive c1 ()

send c1 ()

receive c1 ()

send c1 ()

receive c1 ()

CS

CS

CS

CS



Semaphore notation

Same as defining a channel and sending a message to it.

Same as receive s1 ()

Same as send s1 ()

private static sem s1 = 1;

private static process p1 {

for (int i = 0; i < 10; ++i) {

P (s1);

// Critical section

V (s1);

} }



Semaphore notation

Same as defining a channel and sending a message to it.

Same as receive s1 ()

Same as send s1 ()

private static sem s1 = 1;

private static process p1 {

for (int i = 0; i < 10; ++i) {

P (s1);

// Critical section

V (s1);

} }



Semaphore notation

Same as defining a channel and sending a message to it.

Same as receive s1 ()

Same as send s1 ()

private static sem s1 = 1;

private static process p1 {

for (int i = 0; i < 10; ++i) {

P (s1);

// Critical section

V (s1);

} }



Channels with data

Each message will contain an int

Sending 5 over the channel

receive takes a variable

and binds it to the re-

ceived value

private static op void c1 (int);

private static process p1 {

send c1 (5);

}

private static process p2 {

int a;

receive c1 (a);

System.out.println ("Received message: " + a);

}



Channels with data

Each message will contain an int

Sending 5 over the channel

receive takes a variable

and binds it to the re-

ceived value

private static op void c1 (int);

private static process p1 {

send c1 (5);

}

private static process p2 {

int a;

receive c1 (a);

System.out.println ("Received message: " + a);

}



Channels with data

Each message will contain an int

Sending 5 over the channel

receive takes a variable

and binds it to the re-

ceived value

private static op void c1 (int);

private static process p1 {

send c1 (5);

}

private static process p2 {

int a;

receive c1 (a);

System.out.println ("Received message: " + a);

}



Channels with data (cont.)

Possible to define a channel

taking many values. Syntax

— like method declaration.

private static op void c1 (type1, type2, ...);



Channels with data (cont.)

Possible to define a channel

taking many values. Syntax

— like method declaration.

private static op void c1 (type1, type2, ...);



Channels — queues

private static op void c1 (int);

public static void main (String[] args) {

int a;

send c1 (3);

send c1 (4);

send c1 (2);

send c1 (7);

for (int i = 0; i < 4; ++i) {

receive c1 (a);

System.out.println ("Received message: " + a);

}

}



Summary

I Semaphores using message passing

I Channels with data

I Using channels as queues



op body

Method with the same

name as a channel gets

called every time a message

is sent to the channel.

Each time a message is sent

a separate process is created

to execute the body.

It is not possible to

receive on this channel.

private static op void c1 ();

private static void c1 () {

System.out.println ("Called c1");

}



op body

Method with the same

name as a channel gets

called every time a message

is sent to the channel.

Each time a message is sent

a separate process is created

to execute the body.

It is not possible to

receive on this channel.

private static op void c1 ();

private static void c1 () {

System.out.println ("Called c1");

}



op body

Method with the same

name as a channel gets

called every time a message

is sent to the channel.

Each time a message is sent

a separate process is created

to execute the body.

It is not possible to

receive on this channel.

private static op void c1 ();

private static void c1 () {

System.out.println ("Called c1");

}



op body

Method with the same

name as a channel gets

called every time a message

is sent to the channel.

Each time a message is sent

a separate process is created

to execute the body.

It is not possible to

receive on this channel.
private static op void c1 ();

private static void c1 () {

System.out.println ("Called c1");

}



op body (cont.)

I It is possible to write the declaration and definition of an op

together.

I call on a channel serviced like this will wait until the method
finishes.

I op bodies are not so useful (many instances can execute at
the same time)



Return type

Return type

Alternative notation to call

private static op int c1 (int);

private static int c1 (int x) {

return x + 1;

}

public static void main (String[] args) {

int y = c1 (4);

System.out.println ("y = " + y);

}



Return type

Return type

Alternative notation to call

private static op int c1 (int);

private static int c1 (int x) {

return x + 1;

}

public static void main (String[] args) {

int y = c1 (4);

System.out.println ("y = " + y);

}



Return type

Return type

Alternative notation to call

private static op int c1 (int);

private static int c1 (int x) {

return x + 1;

}

public static void main (String[] args) {

int y = c1 (4);

System.out.println ("y = " + y);

}



Ways of calling

I send + receive: Asynchronous message

I call + receive: RDV, no return value

I call + op body: synchronous call, return value possible



inni statement

Is it possible to receive and still return a value?

Yes — using inni, which is a (very large) extension of receive.



inni statement

Is it possible to receive and still return a value?
Yes — using inni, which is a (very large) extension of receive.



inni statement syntax

key word

strange syntax

([] must be al-

ways here)

Receive simultaneously on

c1 and c2 and execute the

corresponding body of the

statement in a critical sec-

tion.

We can return values in the

inni statement.

Channel mentioned with its

complete signature.

inni int c1(int n) {

cntr += n;

return cntr;

} [] void c2(int n) {

cntr += n;

}



inni statement syntax

key word

strange syntax

([] must be al-

ways here)

Receive simultaneously on

c1 and c2 and execute the

corresponding body of the

statement in a critical sec-

tion.

We can return values in the

inni statement.

Channel mentioned with its

complete signature.

inni int c1(int n) {

cntr += n;

return cntr;

} [] void c2(int n) {

cntr += n;

}



inni statement syntax

key word

strange syntax

([] must be al-

ways here)

Receive simultaneously on

c1 and c2 and execute the

corresponding body of the

statement in a critical sec-

tion.

We can return values in the

inni statement.

Channel mentioned with its

complete signature.

inni int c1(int n) {

cntr += n;

return cntr;

} [] void c2(int n) {

cntr += n;

}



inni statement syntax

key word

strange syntax

([] must be al-

ways here)

Receive simultaneously on

c1 and c2 and execute the

corresponding body of the

statement in a critical sec-

tion.

We can return values in the

inni statement.

Channel mentioned with its

complete signature.

inni int c1(int n) {

cntr += n;

return cntr;

} [] void c2(int n) {

cntr += n;

}



inni statement syntax

key word

strange syntax

([] must be al-

ways here)

Receive simultaneously on

c1 and c2 and execute the

corresponding body of the

statement in a critical sec-

tion.

We can return values in the

inni statement.

Channel mentioned with its

complete signature.

inni int c1(int n) {

cntr += n;

return cntr;

} [] void c2(int n) {

cntr += n;

}



Allocator in Java

Not enough elements, we

have to wait on a condition

variable.

We need to recheck the con-

dition whenever we wake up.

Perhaps somebody is waiting;

wake everyone up.

int allocate (int n) {

lock.lock ();

try {

while (units < n) added.await ();

return take(n);

} finally {

lock.unlock();

} }

void release (int us) {

lock.lock ();

try {

units += us;

added.signalAll();

} finally {

lock.unlock();

} }



Allocator in Java

Not enough elements, we

have to wait on a condition

variable.

We need to recheck the con-

dition whenever we wake up.

Perhaps somebody is waiting;

wake everyone up.

int allocate (int n) {

lock.lock ();

try {

while (units < n) added.await ();

return take(n);

} finally {

lock.unlock();

} }

void release (int us) {

lock.lock ();

try {

units += us;

added.signalAll();

} finally {

lock.unlock();

} }



Allocator in Java

Not enough elements, we

have to wait on a condition

variable.

We need to recheck the con-

dition whenever we wake up.

Perhaps somebody is waiting;

wake everyone up.

int allocate (int n) {

lock.lock ();

try {

while (units < n) added.await ();

return take(n);

} finally {

lock.unlock();

} }

void release (int us) {

lock.lock ();

try {

units += us;

added.signalAll();

} finally {

lock.unlock();

} }



Allocator in Java

Not enough elements, we

have to wait on a condition

variable.

We need to recheck the con-

dition whenever we wake up.

Perhaps somebody is waiting;

wake everyone up.

int allocate (int n) {

lock.lock ();

try {

while (units < n) added.await ();

return take(n);

} finally {

lock.unlock();

} }

void release (int us) {

lock.lock ();

try {

units += us;

added.signalAll();

} finally {

lock.unlock();

} }



Allocator in JR

Two channels used by clients

Counter of available

resources

Internal channel for keeping

waiting clients

public static op int allocate (int);

public static op void release (int);

private static int units = 0;

private static op int repq (int);



Allocator in JR

Two channels used by clients

Counter of available

resources

Internal channel for keeping

waiting clients

public static op int allocate (int);

public static op void release (int);

private static int units = 0;

private static op int repq (int);



Allocator in JR

Two channels used by clients

Counter of available

resources

Internal channel for keeping

waiting clients

public static op int allocate (int);

public static op void release (int);

private static int units = 0;

private static op int repq (int);



Allocator in JR

Two channels used by clients

Counter of available

resources

Internal channel for keeping

waiting clients

public static op int allocate (int);

public static op void release (int);

private static int units = 0;

private static op int repq (int);



Allocator in JR

If there are not enough ele-

ments, push the request to

the waiting channel.

Equivalent of signalAll.

We jump to the beginning

of allocate here!.

private static process p1 {

while (true) {

inni int allocate(int n) {

if (units < n)

forward repq(n);

else

units -= n;

return n;

} [] void release(int us) {

units += us;

while (repq.length() > 0)

inni int repq(int n) {

forward allocate(n);

}

}

} }



Allocator in JR
If there are not enough ele-

ments, push the request to

the waiting channel.

Equivalent of signalAll.

We jump to the beginning

of allocate here!.

private static process p1 {

while (true) {

inni int allocate(int n) {

if (units < n)

forward repq(n);

else

units -= n;

return n;

} [] void release(int us) {

units += us;

while (repq.length() > 0)

inni int repq(int n) {

forward allocate(n);

}

}

} }



Allocator in JR
If there are not enough ele-

ments, push the request to

the waiting channel.

Equivalent of signalAll.

We jump to the beginning

of allocate here!.

private static process p1 {

while (true) {

inni int allocate(int n) {

if (units < n)

forward repq(n);

else

units -= n;

return n;

} [] void release(int us) {

units += us;

while (repq.length() > 0)

inni int repq(int n) {

forward allocate(n);

}

}

} }



Allocator in JR
If there are not enough ele-

ments, push the request to

the waiting channel.

Equivalent of signalAll.

We jump to the beginning

of allocate here!.

private static process p1 {

while (true) {

inni int allocate(int n) {

if (units < n)

forward repq(n);

else

units -= n;

return n;

} [] void release(int us) {

units += us;

while (repq.length() > 0)

inni int repq(int n) {

forward allocate(n);

}

}

} }



Forward statement

p1 p2 p3

call c1 ()

inni c1 ()

forward c2 ()

inni c2 ()

return



st clauses

The message will be con-

sumed only if the condition is

satisfied.

How much simpler it is!

inni int allocate(int n) st n <= units {

units -= n;

return n;

} [] void release(int n) {

units += n;

}



st clauses

The message will be con-

sumed only if the condition is

satisfied.

How much simpler it is!

inni int allocate(int n) st n <= units {

units -= n;

return n;

} [] void release(int n) {

units += n;

}



st clauses

The message will be con-

sumed only if the condition is

satisfied.

How much simpler it is!

inni int allocate(int n) st n <= units {

units -= n;

return n;

} [] void release(int n) {

units += n;

}



Summary

I Servicing channels with op body.

I inni statement

I Forwarding messages

I st clauses



Message priorities

Messages with lowest n will

be handled first.

Priorities don’t work accross branches!

inni int allocate(int n) st n <= units by n {

units -= n;

return n;

} [] void release(int n) by n {

units += n;

}



Message priorities

Messages with lowest n will

be handled first.

Priorities don’t work accross branches!

inni int allocate(int n) st n <= units by n {

units -= n;

return n;

} [] void release(int n) by n {

units += n;

}



Message priorities

Messages with lowest n will

be handled first.

Priorities don’t work accross branches!

inni int allocate(int n) st n <= units by n {

units -= n;

return n;

} [] void release(int n) by n {

units += n;

}



Message priorities (cont.)

Receive only if there are no

messages in the other chan-

nel (useless in this example).

Checking length() of a

channel is safe here.

Checking any other

shared resource is not.

inni int allocate(int n) st n <= units &&

release.length() == 0 {

units -= n;

return n;

} [] void release(int n) by n {

units += n;

}



Message priorities (cont.)
Receive only if there are no

messages in the other chan-

nel (useless in this example).

Checking length() of a

channel is safe here.

Checking any other

shared resource is not.

inni int allocate(int n) st n <= units &&

release.length() == 0 {

units -= n;

return n;

} [] void release(int n) by n {

units += n;

}



Message priorities (cont.)
Receive only if there are no

messages in the other chan-

nel (useless in this example).

Checking length() of a

channel is safe here.

Checking any other

shared resource is not.

inni int allocate(int n) st n <= units &&

release.length() == 0 {

units -= n;

return n;

} [] void release(int n) by n {

units += n;

}



Message priorities (cont.)
Receive only if there are no

messages in the other chan-

nel (useless in this example).

Checking length() of a

channel is safe here.

Checking any other

shared resource is not.

inni int allocate(int n) st n <= units &&

release.length() == 0 {

units -= n;

return n;

} [] void release(int n) by n {

units += n;

}



Terminating processes

inni statement with an else

branch will check if there is

a message in the queue (and

receive it).

Terminating processes is

a tricky topic.
You will have to make it

work with your program

logic.

while (run) {

inni void terminate() {

run = false;

} [] else {

// some work

}

}



Terminating processes
inni statement with an else

branch will check if there is

a message in the queue (and

receive it).

Terminating processes is

a tricky topic.
You will have to make it

work with your program

logic.

while (run) {

inni void terminate() {

run = false;

} [] else {

// some work

}

}



Terminating processes
inni statement with an else

branch will check if there is

a message in the queue (and

receive it).

Terminating processes is

a tricky topic.

You will have to make it

work with your program

logic.

while (run) {

inni void terminate() {

run = false;

} [] else {

// some work

}

}



Terminating processes
inni statement with an else

branch will check if there is

a message in the queue (and

receive it).

Terminating processes is

a tricky topic.
You will have to make it

work with your program

logic.

while (run) {

inni void terminate() {

run = false;

} [] else {

// some work

}

}



Capabilities (references to channels)

Different syntax than op dec-

larations (name comes last).

private static op void c1 ();

private static void c1 () {

cap void () x;

x = c1;

receive x ();

}

Channel taking a channel

reference.

op void c2 (cap void ());



Capabilities (references to channels)

Different syntax than op dec-

larations (name comes last).

private static op void c1 ();

private static void c1 () {

cap void () x;

x = c1;

receive x ();

}

Channel taking a channel

reference.

op void c2 (cap void ());



Capabilities (references to channels)

Different syntax than op dec-

larations (name comes last).

private static op void c1 ();

private static void c1 () {

cap void () x;

x = c1;

receive x ();

}

Channel taking a channel

reference.

op void c2 (cap void ());



Capabilities (references to channels)

Different syntax than op dec-

larations (name comes last).

private static op void c1 ();

private static void c1 () {

cap void () x;

x = c1;

receive x ();

}

Channel taking a channel

reference.
op void c2 (cap void ());



Array of processes

10 processes doing the same

thing.

private static process p1 ((int i = 0; i < 10; ++i)) {

// ...

}



Array of processes

10 processes doing the same

thing.

private static process p1 ((int i = 0; i < 10; ++i)) {

// ...

}


