=
>

ERICSSON

CONCURRENT
PROGRAMMING
XXL

Industrial Use of Erlang — Introduction

Karol Ostrovsky (karol.ostrovsky@gmail.com)

\\

MOTIVATION = MACHINE

» Ericsson Blade System
— 3 sub-racks
— 14 blades
2 routers
12 compute nodes
— 6 core Intel x86
12 SMT threads total

— 432 simultaneously running
processes

— Backplane: 1 or 10Gbps

o . T

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 2

MOTIVATION - MACHINE

» Open Compute System
— New OpenRack design
— Triplet rack
— 3 sub-racks
— 18 dual-CPU blades
— 8 core Intel x86
16 SMT threads total

— 2592 simultaneously running
processes

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 3

\\

MOTIVATION = THE TASK

» Design on of the following systems:

» Payment transaction handling

» Instant messaging back-end

» Multi-player game back-end

» Cloud infrastructure message-passing middleware
» Cloud routing/switching

» Telephone exchange

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 4

\\

MOTIVATION — CONSIDER 2

» What are the main
challenges?

» What distinguishes those
systems from others (see
the picture on the right)?

» What tools might be
appropriate?

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 5

KAROL OSTROVSKY

» M.Sc. — Comenius University, Bratislava
» Ph.D. — Chalmers
» Post-doc — Chalmers

» System Designer — Dfind, on assignment at Ericsson
— Operations & Maintenance Subsystem

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 6

\\

MY CHALMERS YEARS

» Research in static analysis of concurrent programming
languages
— Type systems
— Protocol analysis

» Main course responsible PPxXT
— Developed the course between 2005 and 2010

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 7

\\

\\

PHD TH

SIS

O E
message — 8 2
-:J:J'grammlnq g congruence rﬁeﬂst 8 S h
N F|qure used“ T oositioneduction Multi-session USIHQ £
£ input 4= Syt °Cp s 2 lANQUAGE relation
xsetp3ste S Lemma
rstv) closed Erlang 0 & %5"‘-.6 Target theorem DFOCGSSQS
Encoding S§78°0 EE !
— g =t 5
calculu p Ca|CU|US = - E 2 Ab Iet
Pp-caiculus SGSS'On condition =) 0‘3 3
'O(Z)rleS(_:wer g = o HOBS QO & B = Therefore use
it §S SSE)28 Swchannel
et@5 g ;(; by — thes & d
g E = %. 2 L C8 > -6 tuple é?nample
8 § recursion ¢ qj U)na qJ
E hanne S o rule L WO Proposition
model SCD Systems = parallel U CaICUIU Q RUles ConSIStenC

<
>
")

int typing
matching function transition Sty cond|t|ons

z/x induction

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 8

KO@

ERICSS0N

» Business Unit Networks
— Development Unit IP and Broadband

Product Development Unit Packet Core
- SGSN-MME

> O&M sub-system
> 2G sub-system
> 3G sub-system

>

- EPG
- CPG

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 9

\\

MOBILE TELECOM
NETWORK

2G/3G

CMDA/EV-DO
GSM/GPRS
EDGE

LTE

\\

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 10

PACKET CORE NETWORK

y 3GPP

— Defines standards (mostly protocols)
— Interoperability is essential

» SGSN-MME
— Servicing GPRS Support Node (2G/3G)
— Mobility Management Entity (4G)
— Control signalling
Admission control, Authentication
Mobility, roaming
— Payload transport (not in 4G)

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 11

\\

CHALLENGES

» Open soft real-time system

» Resilience
—HW failures
— SW failures
External
Internal

» Appropriate tools?

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 12

\\

ENTER ERLANG

» Functional

» Concurrent

» Distributed

» “Soft” real-time

» OTP (fault-tolerance, hot code update...)
» Open

— Check the source code of generic behaviours

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 13

\\

RECURSION

-module(list stuff). 3
-export([append/2, reverse/l]).

append ([X|Xs], Ys) ->

[X | append(Xs, Ys)];
append([], Ys) ->
Ys.

reverse([H|T]) ->
append(reverse(T), [H]);
reverse([]) ->

[].

,,

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 14

TAIL RECURSION —

-module(list stuff).
-export([reverse/1, append/2]).

reverse(Xs) -> reverse a(Xs, []).

reverse a([X|Xs], Acc) ->
reverse a(Xs, [X|Accl);
reverse a([], Acc) ->

| Acc.

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 15

TAIL ReECURSION

append(Xs, Ys) -> 5
| reverse a(reverse(Xs),Ys).

__

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 16

\\

CONCURRENCY

» Based on Message Passing:
Q: What form of synchronisation?
A: Asynchronous

Q: What form of process naming?
A: Direct, asymmetric

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 17

\\

ASYNCHRONOUS MP

\\

» Asynchronous send, receive from mailbox

send receive
g J (=g receive Msg->:
\’receiveMsg> Pld!MSgL_)j
\ 4

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 20

111111111111111111

\\

CONCURRENT eXeCUTION

» Spawn a function evaluation in a separate thread

%Pid = spawn (
5 fun() -> |
loop(42) ‘
end) T —
ff ? fun() -> i
» Function must use Loop(42)
constant space end
— Tall recursive
\ v

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 19

RECEIVE ORDER

» A receive statement tries to find a match as early in the

mailbox as it can

msg 1

msg 2 msg 1
msg 3 msg 2
msqg 4 msg_4

receive i
. msg 3 -> ..

\\

RECEIVE ORDER

» A receive statement tries to find a match as early in the
mailbox as it can

msg 1
msg 2
msg 4

msg 1
msg 4

receive |
| msg 4 -> ..
msg 2 -> ..

..

\\

\\

CLIENT-SERVER

» Common asynchronous communication pattern

— For example: a web server handles requests for web pages from
clients (web browsers)

client {request, Reg} client

{result, Rep} server

client client

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 22

\\

MODELLING C-5

» Computational server
— Off-loading heavy mathematical operations
— For example: factorial

-module(math server).
-export([start/0]).
-export([compute factorial/2,
get count/21]).
-export([loop/1]).

start() -> spawn(fun() -> loop(0) end).

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 23

l\/\AII\I SERVER LOOP

loop(Count) ->
? receive
{factorial, From, N} ->
Result = factorial(N),

From ! {result, Result},

?MODULE: loop(Count+1) ;
{get count, From} ->

From ! {result, Count},

?MODULE: Loop (Count) ;
stop ->

true

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 24

CLIENT INTERFAC

» Encapsulating client access in a function
» Private channel for receiving replies?

compute factorial(Pid, N) ->
| Pid!{factorial, self(), N},
receive
{result, Result} ->
Result

,,,

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 25

\\

\\

REFERENCES

» Private channel for receiving replies?
— Find the corresponding reply in the mailbox

%receive
| {result, Result} -> Result
§end

» BIF make ref ()

— Provides globally unique object different from every other object in
the Erlang system including remote nodes

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 26

RPC — CLIENT INTE

» References to uniquely identify messages
— References allow only matching

L
0
1
>
®
I 1]

compute factorial(Pid, N) ->
’ Ref = make ref(),

Pid!{factorial, self(), Ref,

receive
{result, Ref, Result} ->
Result

N},

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 27

RPC - MAIN SERVER LOOP 2

loop(Count) ->
| receive
{factorial, From, Ref, N} ->
Result = factorial(N),
From ! {result, Ref, Result},
?MODULE: Loop(Count+1);
{get count, From, Ref} ->
From ! {result, Ref, Count},
Loop (Count) ;
stop ->
true

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 28

A GENERIC SERVER

» Desired features

» Proper reply behaviour — RPC

» Parameterised by the “engine” function F

» Allows the engine to be “upgraded” dynamically

» Robust: does not crash if the engine “goes wrong”

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 29

\\

GeENERIC CLIENT-5E

RV

=R

\\

» Higher-order functions can be used to capture the design
pattern of a client-server in a single module

— The main engine of a server has “type”:

F(State, Data) -> {Result, NewState}

g

N\

The state of the
server before
computing the

The new state of
the server after
the query

query

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 30

GENERIC SERVER LOOP —

loop(State, F) ->
? receive ;
{request, From, Ref, Data} ->
{R, NS} = F(State, Data),
From ! {result, Ref, R},
Loop (NS, F);
{update, From, Ref, NewF} ->
From ! {ok, Ref},
Loop(State, NewF);
stop ->
true

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 31

CLIENT INTERFAC

» Generic client can make a generic request

request (Pid, Data) ->
‘ Ref = make ref(),

Pid!{request, self(), Ref, Data},

receive

{result, Ref, Result} ->

Result

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 32

REGISTERED PROCESSES

» Centrally register a process under a name
—-BIF: register(atom(), pid()) -> true

start(Name, State, F) ->
i Pid = spawn(fun() ->

Lloop(State, F)

end),
register(Name, Pid),
Pid.

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 33

\\

REGISTERED PROCESSES

» Sending to a registered process

» For registered processes the name is the same as its pid
— Almost (subtle differences in error handling)

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 34

SERVER INSTANCE

-module(g math server).
. -export([start/0]).
. -export([compute factorial/1l, get count/0]).

start() ->
| g server:start(

math server, 0, fun fx/2).

fx(Count {factorial, N}) ->
| Result = factorial(N),
| {Result, Count+1l};
fx(Count get count) ->
| {Count, Count}.

,,,

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 35

N
\\

SERVER INSTANC

compute factorial(N) ->
i g server:request(math server,
{factorial, N}).

get count() ->
? g_server:request(math_server,
get count).

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 36

\\

PARALLELISED SERVER

» Compute the heavy computations in separate worker
processes
— New engine function
—New error handling issues

client {request, Reg} worker

{result, Rep} server

client worker

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 37

STATE DIAGRAM

. result
receive

request ->

result ->

request _ __________ > [Worker]
\4
'new_state

receive \

new_state -> [wOrker]

?new state lresult

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 38

\\

NeW |

ENGINE |

\\

~UNCTION

» Higher-order functions can be used to capture the design
pattern of a client-server in a single module
— The engine function will run a as process
— The main engine of a server has “type”:

F(State, Data, SPid, Ref) ->

Proc(

)

SPid!{new state,Ref,NewState},
SPid!{result,Ref,Result})

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 39

PARALLEL SERVER LOOP Z

,,,

loop(Count, F, Pending) ->
 receive
{request, From, Ref, Data}

Self = self(),
Pid = spawn(

fun() ->

F(State, Data, Self, Ref)

end),
recelve

{new state, Ref, NewState} ->
?MODULE: Lloop(NewState, F,
[{From,Ref,P1id}|Pending]);

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 40

PARALLEL SERVER LOOP Z

{result, Ref, Result} ->
case keysearch(Ref, 2, Pending) of
{value, {From, Ref, }} ->
; From!{result, Ref, Result},
?MODULE:loop(State, F,
IS keydelete(Ref,2,Pending));
false ->
?MODULE: loop(State, F,Pending)
end;
%% Update and stop as before

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 41

DYNAMIC CODe UPDAT

\\

» We want to update the running math server from V1 to the

parallelised V2

— Compile and load new version,

— Send any message,

— And the new loop code will be called

— Problems?
New engine function type
New internal state (pending list)
loop/2 versus loop/3

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 42

N
\\

DYNAMIC CODe UPDAT

» Updating the loop between versions

ff

loop(0OldState, OldF) ->
| io:format("This 1is V2 starting...~n",[]),
loop(OldState,
fun(State, Data, SPid, Ref) ->
{Result,NewState} = OldF(State,Data),
SPid!{new state, Ref, NewState},
SPid!{result, Ref, Result}
end,

[1).

NeW MATH ENGINE Z

fx(Count, {factorial, N}, SPid, Ref) ->

? SPid!{new state, Ref, Count+1},

; SPid!{result, Ref, factorial(N)};

fx(Count, get count, SPid, Ref) ->

3 SPid!{new state, Ref, Count},
SPid!{result, Ref, Count}.

update fx() ->
? g server:update(math server,
fun fx/4).

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 44

cRLANG/OTP

» Framework for defining applications

» Defines several general behaviours, examples:
— Servers
— Finite state machines
— Event handlers
— Supervisors
— Applications

» Behaviour captured once and for all
— Remains to define application-specific functions,
—Which are often without concurrency problems

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 45

\\

cRLANG/OTP

» The main source
— http://www.erlang.org/

» Excellent learning resource
— http://learnyousomeerlang.com/

» Plenty of useful blogs and mailing lists

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 46

\\

ERLANG = STRENGTHS

» Well suited for
— Control handling of telecom traffic
— Application layer (OSI model) applications
Web servers, etc.
— Domain Specific Language — framework
Test scripting

» Reasonably high-level (as compared to for example C)
— Good for software maintenance

» OTP — includes useful building blocks
— Supervisor

— Generic server
— Finite state machine

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 47

\\

cERLANG - WEAKNE

N
N
m
U

» A bit too low-level language

— Given current HW limitations one must sometimes optimise to the
point where the code is not portable (with the same performance)

— Raise the abstraction and provide a customisable compiler, VM

» Where is the type system?
— A static type system of Haskell-nature would be a hindrance
— But good static analysis tools are desperately needed

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 48

THE MISSING SUBJECT

» Software maintenance
— Software lives long
Especially telecom systems (decades)
Banking systems live even longer (think CoBoL)
— People change
— Organisations change
— Hardware changes
— Requirements change
— Documentation often does not change

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 49

\\

MAINTENANCE

» The developer’s challenge
— Write simple (readable) and efficient code:
Write a straightforward and working solution first
Optimise later (or even better skip this step)

» Think smart but do not over-optimise
— Optimisations complicate maintenance

» The code is often the only reliable document
— Types can be very good documentation

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 50

\\

SYNTHESIS VS, ANALYSIS

» Emphasis on synthesis so far
— Software development
» Around 30% of manpower is spent on testing
— Analytical work
— Do you like to break a system?
» But testing can also be “synthetical”
— Testing frameworks
Quickcheck

SGSN-MME has its own
—Would you like to formally prove the system correct?

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 51

\\

MORE THAN TRU;

e The greatest performance improvement of all
is when a system goes from not-working to
working

e The only thing worse than a problem that
happens all the time is a problem that doesn't
happen all the time

CHALMERS | GOTEBORG UNIVERSITY PPVT10 - Introduction

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 52

\\

MY FAVOURITE

TThe Message from this Course

e Should you forget everything from this
course, please, remember at least this saying:

Use H’\e ria\w)‘ *oo\ ?or H’\e Jo)o.

CHALMERS | GOTEBORG UNIVERSITY ;

Introduction to Large Scale Concurrent Programming | Karol Ostrovsky | © Ericsson AB 2012 | 2012-09-18 | Page 53

\\

ERICSSON

