Lecture 9: Critical Sections revisited
and Reasoning about Programs

K. V. S. Prasad
Dept of Computer Science

Chalmers University
Monday 1 Oct 2012



Questions?

Have you looked at the detailed syllabus?
Have you looked at the questionnaire?

— Answer it if you haven’t
* at least the parts you think will help you
* Or free form notes, related to the questionnaire or not

Start posting questions on the Google group
Today’s "and finally”

— Up to you, but prefer urgent issues re course



Plan for today

Chap 3 recap and complete
Chap 4 intro to logic
REMINDER: Read the Appendices in the book!

REMINDER: exercises in Chaps. 1, 2,3,6,7,8,9



Recap — state diagrams

e (Discrete) computation = states + transitions

— Both sequential and concurrent
* Can two frogs move at the same time?

— We use labelled or unlabelled transitions
* According to what we are modelling

* Chess games are recorded by transitions alone (moves)
— States used occasionally for illustration or as checks

* Concurrent or sequential
— Concurrent just has more states due to interleaving
— But sort program sorts no matter which interleaving,



What is interleaved?
Atomic statements

 The thing that happens without interruption
— Can be implemented as high priority

 We must say what the atomic statements are
— In the book, assignments and boolean conditions
— How to implement these as atomic?



What is the problem?

e Specification
— Both p and g cannot be in their CS at once (mutex)

— If p and g both wish to enter their CS, one must
succeed eventually (no deadlock)

— If p tries to enter its CS, it will succeed eventually
(no starvation)

* GIVEN THAT

— A process in its CS will leave eventually (progress)
— Progress in non-CS optional



Different kinds of requirement

e Safety:
— Nothing bad ever happens on any path
— Example: mutex

* In no state are p and g in CS at the same time

 |f state diagram is being generated incrementally, we see more
clearly that this says ”in every path, mutex”

* Liveness
— A good thing happens eventually on every path

— Example: no starvation
* If p tries to enter its CS, it will succeed eventually

— Often bound up with fairness
* We can see a path that starves, but see it is unfair



Deadlock?

* With higher level of process
— Processes can have a blocked state
— If all processes are blocked, deadlock
— So require: no path leads to such a state

* With independent machines (always running)

— Can have livelock

* Everyone runs but no one can enter critical section

— So require: no path leads to such a situation



Language, logic and machines

Evolution

— Language fits life — why?

— What is language?

What is logic?

— Special language

What are machines?

— Why does logic work with them?

What kind of logic?



Logic Review

* How to check that our programs are correct?
— Testing

e Can show the presence of errors, but never absence

— Unless we test every path, usually impractical

— How do you show math theorems?
* For *every* triangle, ... (wow!)

* For *every™* run

— Nothing bad ever happens (safety)
— Something good eventually happens (liveness)



Propositional logic

Assignment — atomic props mapped to T or F
— Extended to interpretation of formulae (B.1)

Satisfiable —f is true in some interpretation
Valid - f is true in all interpretations
Logically equal

— same value for all interpretations

— P -> g is equivalent to (not p) or g

Material implcation

— p->qistrueif pis false



Proof methods

e State diagram
— Large scale: "model checking”
— A logical formula is true of a set of states

* Deductive proofs
— Including inductive proofs
— Mixture of English and formulae

e Like most mathematics



Atomic Propositions (true in a state)

wantp is true in a state
— iff (boolean) var wantp has value true

p4 is true iff the program counter is at p4

* p4is the command about to be executed
* Then pjis false for all j=/=4

turn=2 is true iff integer var turn has value 2
not (p4 and g4) in alg 4.1, slide 4.1

 Should be true in all states to ensure mutex



Mutex for Alg 4.1

* |nvariant Invl: (p3 or p4 or p5) -> wantp
— Base: p1, so antecedent is false, so Inv1 holds.
— Step: Process q changes neither wantp nor Inv1.
Neither p1 nor p3 nor p4 change Inv1l.
p2 makes both p3 and wantp true.
p5 makes antecedent false, so keeps Inv1.

So by induction, Inv1 is always true.



Mutex for Alg 4.1 (contd.)

* Invariant Inv2: wantp -> (p3 or p4 or p5)
— Base: wantp is initialised to false , so Inv2 holds.
— Step: Process g changes neither wantp nor Inv1.
Neither p1 nor p3 nor p4 change Inv1.
p2 makes both p3 and wantp true.

p5 makes antecedent false, so keeps Inv1.
So by induction, Inv2 is always true.
Inv2 is the converse of Inv1l.

Combining the two, we have
Inv3: wantp <-> (p3 or p4 or p5) and
wantqg <-> (g3 or g4 or g5)



Mutex for Alg 4.1 (concluded)

* |nvariant Inv4: not (p4 and g4)
— Base: p4 and g4 is false at the start.
— Step: Only p3 or g3 can change Inv4.

p3 is “await (not wantq)”. But at g4, wantq
is true by Inv3, so p3 cannot execute at g4.

Similarly for g3.

So we have mutex for Alg 4.1



Proof of Dekker’s Algorithm (outline)

nvariant
nvariant

nvariant
Mutex fol

nv2: (turn = 1) or (turn = 2)
nv3: wantp <->p3..5 or p8..10
nv4: wantq <-> g3..5 or g8..10
ows as for Algorithm 4.1

Will show neither p nor g starves

— Effectively shows absence of livelock



Liveness via Progress

Invariants can prove safety properties
— Something good is always true
— Something bad is always false

But invariants cannot state liveness
— Something good happens eventually

Progress Ato B
— if we are in state A, we will progress to state B.

Weak fairness assumed
— to rule out trivial starvation because process never scheduled.

— A scenario is weakly fair if
* Bis continually enabled at state Ain scenario ->
B will eventually appear in the scenario



Box and Diamond

* Arequest is eventually granted
— For all t. req(t) -> exists t’. (t" >=t) and grant(t’)
— New operators indicate time relationship implicitly
* box (req ->diam grant)
e |If "successor state” is reflexive,
— box A -> A (if it holds indefinitely, it holds now)
— A ->diam A (if it holds now, it holds eventually)

e If "successor state” is transitive,
— box A -> box box A

* if not transitive, A might hold in the next state, but not beyond
— diam diam A -> diam A



Progress in (non-)critical section

* Progress in critical section
— box (p8 -> diam p9)

— It is always true that if we are at p8, we will
eventually progress to p9

* Non-progress in non-critical section
— diam (box p1)
— |t is possible that we will stay at p1 indefinitely



Progress through control statements

 For”pl:if Athen s” to progress to s, need
— pl and box A

—plandA is not enough
e does not guarantee A holds by the time p1 is scheduled
* So in Dekker’s algorithm
— p4 and box (turn = 2) -> diam p5
— But turn = 2 is not true forever!
* |t doesn’t have to be. Only as long as p4.



Lemma 4.11

box wantp and box (turn=1) ->
diam box (not wantq)

— If it is p’s turn, and it wants to enter its CS,
will eventually defer

Note that at g1, wantq is always false
— Both at init and on looping

g will progress through g2..95 and wait at g6
— Inv4: wantq <->g3..5 or g8..10

* Implies box (not wantq) at g
Lemma follows



Progress to CS in Dekker’s algorithm

e Suppose p2 and box (turn=2)
— If p3 and not wantqg then diam p8

— p2 and box (turn=2 and wantq) ->
diam box p6 <-> diam box (not wantp)

— p6 and box (turn=2 and not wantp) -> diam g9
— p2 and box (turn=2) -> diam box (p6 and turn=1)
— Lemma 4.11 now vyields diam p8



