Lecture 4: Monitors

K. V. S. Prasad
Dept of Computer Science

Chalmers University
10 Sep 2012



Questions?

Anything you did not get
Are we too fast/slow?

Have you joined the google group? You must,
to mail us and get replies
— Please don’t mail us at our personal addresses

Found a lab partner?
Haven’t yet heard from all course reps



Plan for today

* Chap 2 (final questions)
* Chap 6 : Semaphores
— Recap
— Buffer, infinite and bounded
— Dining philosophers
* Chap 7: Monitors (get started)

Chap 3 & 4 (skipped for now)



The standard Concurrency model

1. What world are we living in, or choose to?
a. Synchronous or asynchronous?
b. Real-time?
c. Distributed?

2. We choose an abstraction that
a. Mimics enough of the real world to be useful

b. Has nice properties (can build useful and good
programs)

c. Can beimplemented correctly, preferably easily



Obey the rules you make!

1 For almost all of this course, we assume
single processor without real-time (so

parallelism is only potential).

2 Real life example where it is dangerous to
make time assumptions when the system is
designed on explicit synchronisation — the
train

3 And at least know the rules! (Therac).



Goals of the course

covers parallel programming too — but it will not
be the focus of this course

Understanding of a range of programming
language constructs for concurrent programming

Ability to apply these in practice to
synchronisation problems in concurrent
programming

Practical knowledge of the programming

techniques of modern concurrent programming
languages



Semantics

What do you want the system to do?
How do you know it does it?
How do you even say these things?

— Various kinds of logic
Build the right system (Validate the spec)
Build it right (verify that system meets spec)



Semaphore recap

Avoid busy waiting
Look good for n-proc CS problem
But for the producer-consumer problem

— The correctness of each proc
* Depends on the correctness of the other

— Not modular

Monitors modularise synchronisation for
shared memory



Correct?

* Look at state diagram (p 112, s 6.4)
— Mutex, because we don’t have a state (p2, g2, ..)
— No deadlock

* Of a set of waiting (or blocked) procs, one gets in

e Simpler definition of deadlock now
— Both blocked, no hope of release

— No starvation, with fair scheduler
e A wait will be executed
* A blocked process will be released



Producer - consumer

Yet another meaning of “synchronous”

— Buffer of 0 size

Buffers can only even out transient delays
— Average speed must be same for both

Infinite buffer first. Means

— Producer never waits

— Only one semaphore needed

— Need partial state diagram

— Like mergesort, but signal in a loop

See algs 6.6 and 6.7



Infinite buffer is correct

* Invariant
— H#sem = #buffer
* Oinitially
* Incremented by append-signal
— Need more detail if this is not atomic

 Decremented by wait-take

* So cons cannot take from empty buffer

* Only cons waits —so no deadlock or
starvation, since prod will always signal



Bounded buffer

* Seealg 6.8 (p 119, s 6.12)
— Two semaphores

e Cons waits if buffer empty
* Prod waits if buffer full

— Each proc needs the other to release ”its” sem
 Different from CS problem

— "Split semaphores”

— Invariant
* notEmpty + notFull = initially empty places



Dining Philosophers

* Obvious solution deadlocks (alg 6.10)
* Break by limiting 4 phils at table (6.11)
 Or by asymmetry (6.12)



