Lecture 3: Semaphores (chap. 6)

K. V. S. Prasad
Dept of Computer Science

Chalmer University
7/ Sep 2012



Questions?

Anything you did not get
Was | too fast/slow?

Have you joined the google group? Found a
ab partner?

Haven’t yet heard from all course reps



Plan for today

* Chap 2 (final questions)
 Chap 3

— Revisit as time permits; a few proofs
* Chap6

— semaphores



Interleaving

* Each process executes a sequence of atomic
commands (usually called “statements”,
though | don’t like that term).

e Each process has its own control pointer, see
2.1 of Ben-Ari

* For 2.2, see what interleavings are impossible



State diagrams and scenarios

* Ben-Ari5-11, 16 -20, 22 — 24, 28 & 35-36

* |Inslides 2.4 and 2.5, note that the state
describes variable values before the current

command is executed.

 Not all thinkable states are reachable from the
start state



Why arbitrary interleaving?

* Multitasking (2.8 is a picture of a context switch)
— Context switches are quite expensive
— Take place on time slice or 1/O interrupt
— Thousands of process instructions between switches
— But where the cut falls depends on the run

* Runs of concurrent programs
— Depend on exact timing of external events
— Non-deterministic! Can’t debug the usual way!
— Does different things each time!



Arbitrary interleaving (contd.)

* Multiprocessors (see 2.9)
— If no contention between CPU’s
* True parallelism (looks like arbitrary interleaving)

— Contention resolved arbitrarily

e Again, arbitrary interleaving is the safest assumption



The counting example

e See algorithm 2.9 on slide 2.24
— What are the min and max possible values of n?

* How to say it in C-BACI, Ada and Java
—2.27 t0 2.32



But what is being interleaved?

Unit of interleaving can be
— Whole function calls?

— High level statements?

— Machine instructions?

Larger units lead to easier proofs but make other
processes wait unnecessarily

We might want to change the units as we
maintain the program

Hence best to leave things unspecified



Why not rely on speed throughout?

* Don’t get into the train crash scenario
— use speed and time throughout to design
— everyday planning is often like this

* Particularly in older, simpler machines without sensors
* For people, we also add explicit synchronisation
* For our programs, the Input can come from
the keyboard or broadband
— And the broadband gets faster every few months

* So allow arbitrary speeds



Atomic statements

* The thing that happens without interruption
— Can be implemented as high priority
e Compare algorithms 2.3 and 2.4

e Slides 2.12to0 2.17
— 2.3 can guarantee n=2 at the end

— 2.4 cannot
* hardware folk say there is a “race condition”

 We must say what the atomic statements are

— In the book, assignments and boolean conditions
— How to implement these as atomic?



What are hardware atomic actions?

Setting a register

Testing a register

Is that enough?

Think about it (or cheat, and read Chap. 3)



The standard Concurrency model

1. What world are we living in, or choose to?
a. Synchronous or asynchronous?
b. Real-time?
c. Distributed?

2. We choose an abstraction that
a. Mimics enough of the real world to be useful

b. Has nice properties (can build useful and good
programs)

c. Can beimplemented correctly, preferably easily



Obey the rules you make!

1 For almost all of this course, we assume
single processor without real-time (so

parallelism is only potential).

2 Real life example where it is dangerous to
make time assumptions when the system is
designed on explicit synchronisation — the
train

3 And at least know the rules! (Therac).



Goals of the course

covers parallel programming too — but it will not
be the focus of this course

Understanding of a range of programming
language constructs for concurrent programming

Ability to apply these in practice to
synchronisation problems in concurrent
programming

Practical knowledge of the programming

techniques of modern concurrent programming
languages



Theoretical component

* Introduction to the problems common to
many computing disciplines:
— Operating systems
— Distributed systems
— Real-time systems

* Appreciation of the problems of concurrent
programming
— Classic synchronisation problems



Semantics

What do you want the system to do?
How do you know it does it?
How do you even say these things?

— Various kinds of logic
Build the right system (Validate the spec)
Build it right (verify that system meets spec)



Semaphores to solve Critical Sections

We saw that the CS problem can be solved by

— Test-and-set, Compare-and-swap, ...
* Two things at once: minimal atomic actions

— But these are low level machine instructions
— Semaphores: same trick at language level

So we expect semaphores to solve CS
— Why is the CS problem so important?
— It is how we restrict interleaving

What else can they do? What problems in use?
How do we implement them?



Primitives and Machines

We see this repeatedly in Computer Science
— Whether for primitives or whole machines

Recognise pattern in nature or in use
Specify primitive or machine

Figure out range of use and problems
Figure out (efficient) implementation



Processes revisited

 We didn’t really say what "waiting” was

— Define it as "blocked for resource”
 If run will only busy-wait

— If not blocked, it is “ready”
 Whether actually running depends on scheduler

— Running -> blocked transition done by process
— Blocked -> ready transition due to external event

e Now see B-Aslide 6.1

* Define "await” as a non-blocking check of
boolean condition



Semaphore definition

Is a pair < value, set of blocked processes>
Initialised to <k, empty>
— k depends on application
* For a binary semaphore, k=1 or 0, and k=1 at first
Two operations. When proc p calls sem S
— Wait (S) =
 if k>0 then k:=k-1 else block p and add it to set
— signal (S)
* If empty set then k:=k+1 else take a q from set and unblock it
Signal undefined on a binary sem when k=1



Critical Section with semaphore

See alg 6.1 and 6.2 (slides 6.2 through 6.4)

Semaphore is like alg 3.6
— The second attempt at CS without special ops

— There, the problem was

* P checks wantq

— Finds it false, enters CS,
— but g enters before p can set wantp

We can prevent that by compare-and-swap
Semaphores are high level versions of this



Correct?

* Look at state diagram (p 112, s 6.4)
— Mutex, because we don’t have a state (p2, g2, ..)
— No deadlock

* Of a set of waiting (or blocked) procs, one gets in

e Simpler definition of deadlock now
— Both blocked, no hope of release

— No starvation, with fair scheduler
e A wait will be executed
* A blocked process will be released



Invariants

* Do you know what they are?
— Help to prove Ioops correct
— Game example
 Semaphore invariants
—k>=0
— k = k.init + #signals - #waits

— Proof by induction
* Initially true
* The only changes are by signals and waits



CS correctness via sem Invariant

e Let #CS be the number of procs in their CS’s.
— Then#CS+k=1

* True at start

* Wait decrements k and increments #CS; only one wait
possible before a signal intervenes

* Signal
— Either decrements #CS and increments k
— Or leaves both unchanged

— Since k>=0, #CS <= 1. So mutex.

— If a proc is waiting, k=0. Then #CS=1, so no deadlock.
— No starvation — see book, page 113



Why two proofs?

* The state diagram proof
— Looks at each state
— Will not extend to large systems
e Except with machine aid (model checker)
* The invariant proof

— In effect deals with sets of states
e E.g., all states with one proc is CS satisfy #CS=1

— Better for human proofs of larger systems
— Foretaste of the logical proofs we will see (Ch. 4)



CS problem for n processes

e Seealg6.3(p 113,s6.5)
— The same algorithm works for n procs

— The proofs for mutex and deadlock freedom work
* We never used special properties of binary sems

— But starvation is now possible
* p and g can release each other and leave r blocked
* Exercise: If k is set to m initially, at most m
processes can be in their CS’s.



Mergesort using semaphores

 Seep 115, alg 6.5 (s 6.8)
— The two halves can be sorted independently

* No need to synch

— Merge, the third process,

* has to wait for both halves

— Note semaphores initialised to O
 Signal precedes wait
* Done by process that did not do a wait

— Not a CS problem, but a synchronisation one



Producer - consumer

Yet another meaning of “synchronous”

— Buffer of 0 size

Buffers can only even out transient delays
— Average speed must be same for both

Infinite buffer first. Means

— Producer never waits

— Only one semaphore needed

— Need partial state diagram

— Like mergesort, but signal in a loop

See algs 6.6 and 6.7



Infinite buffer is correct

* Invariant
— H#sem = #buffer
* Oinitially
* Incremented by append-signal
— Need more detail if this is not atomic

 Decremented by wait-take

* So cons cannot take from empty buffer

* Only cons waits —so no deadlock or
starvation, since prod will always signal



Bounded buffer

* Seealg 6.8 (p 119, s 6.12)
— Two semaphores

e Cons waits if buffer empty
* Prod waits if buffer full

— Each proc needs the other to release ”its” sem
 Different from CS problem

— "Split semaphores”

— Invariant
* notEmpty + notFull = initially empty places



Different kinds of semaphores

* “Strong semaphores”

— use queue insteadof set of blocked procs
* No starvation

* Busy wait semaphores
— No blocked processes, simply keep checking

* See book re problems about starvation
— Simpler.

e Useful in multiprocessors where each proc has own CPU
— The CPU can’t be used for anything else anyway

* Orif there is very little contention



Dining Philosophers

* Obvious solution deadlocks (alg 6.10)
* Break by limiting 4 phils at table (6.11)
 Or by asymmetry (6.12)



