
Lecture 2Lecture 2

The Shared Update Problem

2PPHT10 – Shared Update Problem

Exercise 1Exercise 1

• What is the minimum?

private int counter = 0;
private final int rounds = 100000;

public process update
 ((int id = 0; id<2; id++)) {
 for(int i = 0; i<rounds; i++)
 counter++;
}

3PPHT10 – Shared Update Problem

The Shared Update ProblemThe Shared Update Problem
• Summary: Last time

◦ Introduction to concurrency
◦ Processes/threads in JR/Java
◦ The shared update problem: mutex

• Today
◦ Specifying atomic actions

◦ Solving the shared update problem
• Achieving mutex with shared variables

◦ Introduction to a first programming language
construct for synchronisation: semaphores

4PPHT10 – Shared Update Problem

Mutual ExclusionMutual Exclusion

• Mutual exclusion
◦ The property that only one process can

execute in a given piece of code

• How can we achieve it?
◦ Theory: possible with just shared variables

• very inefficient at programming language level
• but sometimes necessary in very low-level (HW)
• good example to study concurrent behaviours

◦ Practice: programming language features
(semaphores, monitors, …)

5PPHT10 – Shared Update Problem

Critical SectionCritical Section

• The airline reservation problem
◦ Travel agents might run the following code:

◦ and then issue a valid ticket for the seat at
position p

void reserveSeat(Position p) {
 if (seat.free(p))
 seat.reserve(p);
}

6PPHT10 – Shared Update Problem

Possible RunPossible Run

void reserveSeat(25J) {
 if (seat.free(25J))
 seat.reserve(25J);
}

void reserveSeat(25J) {
 if (seat.free(25J))
 seat.reserve(25J);
}

Travel agent A

Travel agent B

7PPHT10 – Shared Update Problem

Possible RunPossible Run

void reserveSeat(25J) {
 if (seat.free(25J))
 seat.reserve(25J);
}

void reserveSeat(25J) {
 if (seat.free(25J))
 seat.reserve(25J);
}

Travel agent A

Travel agent B

8PPHT10 – Shared Update Problem

Possible RunPossible Run

void reserveSeat(25J) {
 if (seat.free(25J))
 seat.reserve(25J);
}

void reserveSeat(25J) {
 if (seat.free(25J))
 seat.reserve(25J);
}

Travel agent A

Travel agent B

9PPHT10 – Shared Update Problem

Possible RunPossible Run

void reserveSeat(25J) {
 if (seat.free(25J))
 seat.reserve(25J);
}

void reserveSeat(25J) {
 if (seat.free(25J))
 seat.reserve(25J);
}

Travel agent A

Travel agent B

10PPHT10 – Shared Update Problem

Possible RunPossible Run

void reserveSeat(25J) {
 if (seat.free(25J))
 seat.reserve(25J);
}

void reserveSeat(25J) {
 if (seat.free(25J))
 seat.reserve(25J);
}

Travel agent A

Travel agent B

11PPHT10 – Shared Update Problem

Possible RunPossible Run

void reserveSeat(25J) {
 if (seat.free(25J))
 seat.reserve(25J);
}

void reserveSeat(25J) {
 if (seat.free(25J))
 seat.reserve(25J);
}

Travel agent A

Travel agent B

12PPHT10 – Shared Update Problem

Possible RunPossible Run

Travel agent A

Travel agent B

13PPHT10 – Shared Update Problem

Specifying SynchronisationSpecifying Synchronisation

• We use a notation to specify atomic
actions
◦ Not part of JR
◦ Purely for describing the desired behaviour of

a program

<S> – statement S is executed atomically

<await (B) S> – execute <S>, starting only
 when B is true

14PPHT10 – Shared Update Problem

Implementing Implementing awaitawait

• await statement is very expressive
◦ Mutual exclusion
◦ Conditional synchronisation

• Difficult to implement in general
• Though, some special cases are easy

◦ await statement without body
•<await (B) ;>
• Sufficient for solving the shared update problem in

low-level programming

◦ Other interesting cases will come later

15PPHT10 – Shared Update Problem

Implementing Implementing awaitawait

• await statement without body
◦ <await (B) ;>
◦ B must satisfy at-most-once property (limited-

critical-reference)
• Critical reference

◦ Assigned in one process and occurs in another, or
◦ Occurs in one process and is assigned in another

• At most one critical reference per program
statement

while (!B)
 ;

16PPHT10 – Shared Update Problem

Airline ReservationsAirline Reservations

• The pieces of code that check the
availability and reserve the seat access a
shared resource
◦ They are critical sections
◦ we can specify the desired behaviour as:

void reserveSeat(Position p) {
 <if (seat.free(p))
 seat.reserve(p);>
}

17PPHT10 – Shared Update Problem

Achieving MutexAchieving Mutex

• Clever programming
• Hardware support (multiprocessor

systems)
◦ special atomic instructions

• Programming language support
◦ Semaphores, locks
◦ Monitors, …

• Avoid shared variables/critical sections
◦ Use message passing

18PPHT10 – Shared Update Problem

The Mutual Exclusion ProblemThe Mutual Exclusion Problem

• General overview

process CS ((int i=0;i<N;i++)) {
 while (true) {
 Non-critical section
 Entry Protocol
 Critical Section
 Exit Protocol
 Non-critical section
 }
}

19PPHT10 – Shared Update Problem

The Mutual Exclusion ProblemThe Mutual Exclusion Problem

• Assumptions
◦ No variables are shared between critical and

non-critical sections and the protocol
◦ The critical section always terminates
◦ Read/Write operations are atomic (x=1)
◦ Scheduler is weakly fair

• A process waiting to execute <await(B) S>
where B is constantly true, will eventually get the
processor.

20PPHT10 – Shared Update Problem

The Mutual Exclusion ProblemThe Mutual Exclusion Problem

• Requirement 1: Mutex
◦ At most one process at a time is in its critical

section

process CS ((int i=0;i<N;i++)) {
 while (true) {
 Non-critical section
 Entry Protocol
 Critical Section
 Exit Protocol
 Non-critical section
 }
}

21PPHT10 – Shared Update Problem

The Mutual Exclusion ProblemThe Mutual Exclusion Problem

• Requirement 2: No deadlock/livelock
◦ If both processes attempt to enter their critical

section, one will succeed

process CS ((int i=0;i<N;i++)) {
 while (true) {
 Non-critical section
 Entry Protocol
 Critical Section
 Exit Protocol
 Non-critical section
 }
}

22PPHT10 – Shared Update Problem

The Mutual Exclusion ProblemThe Mutual Exclusion Problem

• Requirement 3: Eventual entry
◦ A process attempting to enter its critical

section will eventually succeed

process CS ((int i=0;i<N;i++)) {
 while (true) {
 Non-critical section
 Entry Protocol
 Critical Section
 Exit Protocol
 Non-critical section
 }
}

23PPHT10 – Shared Update Problem

Attempt 1Attempt 1

• Use a variable turn to indicate who may
enter next

int turn = 0;
process CS ((int i=0;i<2;i++)) {
 while (true) {
 //Non-critical section
 <await(turn==i) ;>
 //Critical Section
 turn = (i+1)%2;
 }
}

24PPHT10 – Shared Update Problem

Attempt 1Attempt 1

• Implemented using busy-wait (spin loop,
spinning)

int turn = 0;
process CS ((int i=0;i<2;i++)) {
 while (true) {
 //Non-critical section
 while (turn!=i) ;
 //Critical Section
 turn = (i+1)%2;
 }
}

25PPHT10 – Shared Update Problem

Attempt 1 – AnalysisAttempt 1 – Analysis

• Mutex
◦ ok

• Deadlock
◦ ok

• Starvation
◦ What if non-critical section does not

terminate?

26PPHT10 – Shared Update Problem

Attempt 2Attempt 2

• Use a flag to indicate who has entered

private boolean flag[] = {false, false};
process CS ((int i=0;i<2;i++)) {
 other = (i+1)%2;
 while (true) {
 //Non-critical section
 <await (!flag[other]) ;>
 flag[i] = true;
 //Critical Section
 flag[i] = false;
 }
}

27PPHT10 – Shared Update Problem

Attempt 2 – AnalysisAttempt 2 – Analysis

• Mutex
◦ no

• Deadlock
◦ ok

• Starvation
◦ ok

28PPHT10 – Shared Update Problem

Attempt 3Attempt 3

• Use a flag to indicate who wants to enter

private boolean flag[] = {false, false};
process CS ((int i=0;i<2;i++)) {
 other = (i+1)%2;
 while (true) {
 //Non-critical section
 flag[i] = true;
 <await (!flag[other]) ;>
 //Critical Section
 flag[i] = false;
 }
}

29PPHT10 – Shared Update Problem

Attempt 3 – AnalysisAttempt 3 – Analysis

• Mutex
◦ ok

• Deadlock
◦ Livelock can happen (spinning for ever!)

• Starvation
◦ ok

30PPHT10 – Shared Update Problem

1+3 = Peterson’s algorithm1+3 = Peterson’s algorithm

• flag+turn: I want to enter, after you

private int turn = 0;
private boolean flag[] = {false, false};
process CS ((int i=0;i<2;i++)) {
 other = (i+1)%2;
 while (true) {
 flag[i] = true;
 turn = other
 <await (!flag[other] || turn==i) ;>
 //Critical Section
 flag[i] = false;
}}

31PPHT10 – Shared Update Problem

How do we know it works?How do we know it works?

• It is not easy to show properly.
◦ The general version (arbitrary n) is even worse

• Testing
◦ Exponentially many traces
◦ A given scheduler (implementation) may only explore a

small number of traces

• Mathematical proof
◦ See course “Software engineering using Formal

methods”.

• Alternative algorithms explored in the book.

32PPHT10 – Shared Update Problem

Complex InstructionsComplex Instructions

• We only assumed an atomic:
◦ Read, and
◦ Write

• Most modern hardware has larger atomic
operations
◦ Used to implement multiprocessor

synchronisation at a lower level
• operating systems
• embedded systems

33PPHT10 – Shared Update Problem

Attempt 2 – RevisitedAttempt 2 – Revisited

• Single lock variable “owned” by the
process in the critical section

private boolean lock = false;
process CS ((int i=0;i<2;i++)) {
 while (true) {
 //Non-critical section
 <await (!lock) ;>
 lock = true;
 //Critical Section
 lock = false;
 }
}

34PPHT10 – Shared Update Problem

Complex Atomic StatementsComplex Atomic Statements

• If we could only implement a little more
complicated await statement

private boolean lock = false;
process CS ((int i=0;i<2;i++)) {
 while (true) {
 //Non-critical section
 <await (!lock)
 lock = true;>
 //Critical Section
 lock = false;
 }
}

35PPHT10 – Shared Update Problem

Compare-And-SwapCompare-And-Swap

• The compare and swap instruction is
available, in some form, on almost all
processors
◦ Combines test, read and write
◦ It is atomic

boolean CAS(Reference var, T old, T new) {
 <if (var == old) then {
 var = new;
 return true;
 } else
 return false;>
}

36PPHT10 – Shared Update Problem

Critical Section using CASCritical Section using CAS

private boolean lock = false;
process CS ((int i=0;i<2;i++)) {
 while (true) {
 //Non-critical section
 while (!CAS(lock,false,true))
 ;
 //Critical Section
 lock = false;
 }
}

37PPHT10 – Shared Update Problem

CS using CAS – AnalysisCS using CAS – Analysis

• Mutex
◦ ok

• Deadlock
◦ ok

• Starvation
◦ Can happen, but
◦ CAS is mainly useful in multi-processor setup

where it is unlikely

• Use the right synchronisation for the job

38PPHT10 – Shared Update Problem

Right for the job?Right for the job?

• As a pure software solution to the problem
◦ These algorithms are not practical
◦ They all contain a busy-wait loop

◦ Consumes a great deal of processor resources
and is very inefficient

• But often useful in low-level programming
◦ OS
◦ Embedded devices

while (!B) ;

39PPHT10 – Shared Update Problem

Beyond busy waitingBeyond busy waiting

• A more suitable solution would be as
follows:
◦ Entry Protocol: if Critical Section is busy then

sleep, otherwise enter
◦ Exit Protocol: if there are sleeping processes,

wake one, otherwise mark the critical section
as not busy

• Semaphores support this solution
◦ and more

40PPHT10 – Shared Update Problem

Semaphores – an overviewSemaphores – an overview

• First special construct for solving
synchronisation problems

• Invented in the mid 60’s
◦ Edsger Wybe Dijkstra [1930–2002]

41PPHT10 – Shared Update Problem

Semaphore SpecificationSemaphore Specification

• An abstract datatype containing a
nonnegative integer accessed by two
atomic operations P and V

class Semaphore {

 private int sv;

 Semaphore(int init): <sv = init>
 P(s): <await (sv>0) sv = sv –1>
 V(s): <sv = sv + 1>
}

42PPHT10 – Shared Update Problem

Semaphore Operation NamesSemaphore Operation Names

• A short note on the names P and V
• P stands for passeren which means

”to pass”

• V stands for vrygeven which means
”to release”

• Dijkstra was Dutch

43PPHT10 – Shared Update Problem

Critical Section – SemaphoresCritical Section – Semaphores

• JR has built in semaphores

sem mutex = 1;
process CS ((int i=0;i<2;i++)) {
 while (true) {
 //Non-critical section
 P(mutex);
 //Critical Section
 V(mutex);
 }
}

44PPHT10 – Shared Update Problem

Critical Section – SemaphoresCritical Section – Semaphores

• Java has a library support
◦ java.util.concurrent

Semaphore mutex = new Semaphore(1, true);

public void run() {
 while (true) {
 //Non-critical section
 mutex.acquireUninterruptibly();
 //Critical Section
 mutex.release();
 }
}

45PPHT10 – Shared Update Problem

Critical Section – SemaphoresCritical Section – Semaphores

• Java: the more usual way

Semaphore mutex = new Semaphore(1);

public void run() {
 try {
 while (true) {
 //Non-critical section
 mutex.acquire();
 //Critical Section
 mutex.release();
 }} catch(InterruptedException e) {
}}

46PPHT10 – Shared Update Problem

Binary Semaphores and LocksBinary Semaphores and Locks

• A semaphore which only ever takes on the
values 0 and 1 is called a binary
semaphore

• When a binary semaphore s is used for
simple mutex:

◦ it is also referred to as a lock.
• P(s) – “acquiring the lock”
• V(s) – “releasing the lock”

P(mutex);
//Critical Section
V(mutex);

47PPHT10 – Shared Update Problem

Java Built-In LocksJava Built-In Locks

• A lock is created for every object in Java
• To use this lock we employ the keyword
synchronized

class MutexCounter {
 private int counter = 0;

 public synchronized void increment() {
 counter++;
 }
}

48PPHT10 – Shared Update Problem

Java Built-In LocksJava Built-In Locks

• Alternative to a synchronized method is a
synchronized block
◦ Less structured, but occasionally useful

class MutexCounter {
 private int counter = 0;

 public void increment() {
 // lock this object
 synchronized (this) {
 counter++;
 }
}}

49PPHT10 – Shared Update Problem

Liseberg Counter – RevisitedLiseberg Counter – Revisited

public void run() {
 try {
 for(int j = 0; j<100; j++) {
 Thread.sleep(…));

 System.out.println(
 Thread.currentThread().
 getName()+" enters "+j);

 counter.increment();
 }
 }
 catch (InterruptedException e) {
 }
}

50PPHT10 – Shared Update Problem

Liseberg Counter – RevisitedLiseberg Counter – Revisited

public Main() {
 Thread t1 = new Thread(this,"Process 1");
 Thread t2 = new Thread(this,"Process 2");

 t1.start();
 t2.start();

 try {
 t1.join();
 t2.join();
 System.out.println("Counter: "+counter);
 }
 catch (InterruptedException e) { }
}

51PPHT10 – Shared Update Problem

Java Locks: SummaryJava Locks: Summary

• Each object has a lock
• Each lock has a queue of waiting threads
• The order of the queue is not specified

◦ Could be implemented
• FIFO
• LIFO
• etc.

52PPHT10 – Shared Update Problem

SummarySummary

• Today’s lecture
◦ Shared update using variables
◦ Introduction to Semaphores
◦ Locks in Java

• Next time
◦ programming with semaphores: beyond locks

53PPHT10 – Shared Update Problem

Real Life DeadlockReal Life DeadlockReal Life DeadlockReal Life Deadlock

	Lecture 2
	Exercise 1
	The Shared Update Problem
	Mutual Exclusion
	Critical Section
	Possible Run
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Specifying Synchronisation
	Implementing await
	Slide 15
	Airline Reservations
	Achieving Mutex
	The Mutual Exclusion Problem
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Attempt 1
	Slide 24
	Attempt 1 – Analysis
	Attempt 2
	Attempt 2 – Analysis
	Attempt 3
	Attempt 3 – Analysis
	1+3 = Peterson’s algorithm
	How do we know it works?
	Complex Instructions
	Attempt 2 – Revisited
	Complex Atomic Statements
	Slide 35
	Slide 36
	Slide 37
	Right for the job?
	Beyond busy waiting
	Semaphores – an overview
	Semaphore Specification
	Slide 42
	Critical Section – Semaphores
	Slide 44
	Slide 45
	Binary Semaphores and Locks
	Java Built-In Locks
	Slide 48
	Liseberg Counter – Revisited
	Slide 50
	Java Locks: Summary
	Summary
	Slide 53

