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Shared Memory ConcurrencyShared Memory Concurrency

• Lock-based programming is difficult
• There are many potential problems:

◦ Deadlock
◦ Starvation
◦ Priority inversion
◦ Convoying
◦ Non-compositionality

• Is there some way to eliminate at least 
some of these problems?
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ConvoyingConvoying

• Convoying occurs when a process has 
taken a mutex and is then preemted by the 
scheduler

• It has the effect that other processes may 
not be allowed to enter the mutex

• This inhibits concurrency
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Non-compositionalityNon-compositionality

• Lock-based programming doesn't compose
• Example:

◦ Suppose you have two thread safe buffers and 
you want to atomically take an element from 
one of them and put it in the other

class Buffer<A> {
A get();

    void put(A);
}
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Non-compositionalityNon-compositionality

• A not so nice solution:
◦ Expose the the locks of the buffers
◦ Lock both buffers before moving the element
◦ This brakes the abstraction!

class Buffer<A> {
void aquireLock();
void releaseLock();
A get();

    void put(A);
}
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Non-compositionalityNon-compositionality

• Another not so nice solution
◦ Create a new lock which must be taken each 

time any of the two buffers are accessed

• The number of locks grows as we compose 
algorithms
◦ Takes time
◦ Increases the risk of programming errors
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Optimistic ConcurrencyOptimistic Concurrency

• Lock-based synchronization can be seen as 
Pessimistic Concurrency: ”We always assume 
that we need mutual exclusion”

• Another option would be Optimistic Concurrency
◦ Assume we have mutual exclusion
◦ Perform our critical section
◦ Check if everything was OK
◦ Revert our actions if it wasn't 
◦ Otherwise proceed
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Lock-free synchronizationLock-free synchronization

• It is possible to write algorithms without 
locks, called lock-free synchronization

• Example: 
◦ Peterson's algorithm from lecture 1

• Typically uses complex instructions
◦ Compare & Swap
◦ Test & Set

• Is often faster than lock-based sync. 
because it allows for more concurrency

• Very difficult to do in general
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Transactional MemoryTransactional Memory

• A concept to allow easy lock-free 
programming

• Although the programming model is lock-
free implementations uses locks

• Can either be implemented in
◦ Hardware
◦ Software
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Transactional MemoryTransactional Memory

• Used to be considered by many of the big 
companies to be the ”enabler” of 
concurrent programming
◦ As computers get more cores programmers 

will need to write concurrent programs to 
make them faster

◦ Transactional memory makes this sufficiently 
easy to be usable to a majority of the 
programmers

• Experience has shown that it is hard to 
add Transactional Memory to most 
existing programming language
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TransactionsTransactions

• A standard database concept
◦ A group of operations should execute atomically,
◦ Or not at all

• Transactional Memory takes this idea to 
operations on memory and shared variables
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TransactionsTransactions

• One possible implementation of 
Transactions
◦ When writing to variables, don't actually 

modify them, instead:
◦ Keep a log over all the reads and writes that 

are made
◦ When the transaction is done:

• Validate: check that any read variables still have 
the same value

• Commit: make the changes permanent
• If the validation failed rerun the transaction
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TransactionsTransactions

P1 P2

Log

V = 1

X = 2

Logi = read x
i = i + 1
store i in x
store i in v
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TransactionsTransactions

P1 P2

Log

V = 1

X = 2

Logi = read x
i = i + 1
store i in x
store i in v

Read X 2
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TransactionsTransactions

P1 P2

Log

V = 1

X = 2

Logi = read x
i = i + 1
store i in x
store i in v

Read X 2 Read X 2
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TransactionsTransactions

P1 P2

Log

V = 1

X = 2

Logi = read x
i = i + 1
store i in x
store i in v

Read X 2 Read X 2

Store X 3
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TransactionsTransactions

P1 P2

Log

V = 1

X = 2

Logi = read x
i = i + 1
store i in x
store i in v

Read X 2 Read X 2

Store X 3 Store X 3
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TransactionsTransactions

P1 P2

Log

V = 1

X = 2

Logi = read x
i = i + 1
store i in x
store i in v

Read X 2 Read X 2

Store X 3 Store X 3

Store V 3
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TransactionsTransactions

P1 P2

Log

V = 1

X = 2

Logi = read x
i = i + 1
store i in x
store i in v

Read X 2 Read X 2

Store X 3 Store X 3

Store V 3 Store V 3
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TransactionsTransactions

P1 P2

Log

V = 1

X = 2

Logi = read x
i = i + 1
store i in x
store i in v

Read X 2 Read X 2

Store X 3 Store X 3

Store V 3 Store V 3

OK
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TransactionsTransactions

P1 P2

V = 3

X = 3

Logi = read x
i = i + 1
store i in x
store i in v

Read X 2

Store X 3

Store V 3

Wrong
Redo!
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TransactionsTransactions

P1 P2

V = 4

X = 4

i = read x
i = i + 1
store i in x
store i in v
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TransactionsTransactions

• There are variations on how to implement 
transactions

• Previous slides only show one example 
implementation

• Still a research topic
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TransactionsTransactions

• Benefits of transactions:
◦ Many processes can be in the critical section 

at the same time
• More parallelism
• They only need to rerun if there is an actual 

runtime conflict

◦ Deadlocks cannot occur
◦ Easy to compose

• Commit only after the second transaction is done
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TransactionsTransactions

• Drawbacks of transactions:
◦ Cannot guarantee fairness

• A large transaction can be starved by many small 
ones

◦ All the book keeping can be expensive
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Hardware TMHardware TM

• The initial proposal for Transactional 
Memory envisioned implementing it in 
Hardware

• Not a huge success in practice
◦ Only one or two chips has ever had that 

feature
◦ More chips planned but abandoned
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Software Transactional MemorySoftware Transactional Memory

• Software Transactional Memory (STM) can 
be used in various ways:
◦ As a library
◦ As a language construct
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STM LibrariesSTM Libraries

• There exist several libraries for STM
◦ Java: jvstm, JSTM (XSTM), DSTM2, Deuce
◦ C/C++: TinySTM, LibLTX, LibCTM, RSTM

• Exists for C#, Python, Lisp, Ocaml ...
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Language Support for STMLanguage Support for STM
• Haskell

◦ Glasgow Haskell Compiler has STM support in the 
runtime system

◦ No new language construct, functionality exposed as a 
library

• Clojure
◦ A descendant of lisp which uses STM for all mutable 

variables

• Perl 6
◦ PUGS uses Haskell's support for STM
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Language Support for STMLanguage Support for STM
• Java

◦ Proposed langage extension: 
Conditional Critical Regions

◦ No implementation yet
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Conditional Critical RegionsConditional Critical Regions

• Introduced by the atomic keyword

• Reminiscent of the synchronized 
keyword in Java

• Introduces a transaction, guarded by a 
condition

atomic (condition) {
statements

}
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Conditional Critical RegionsConditional Critical Regions

• (Part of) a shared buffer in Java

public synchronized int get() {
int result;
while (items == 0) wait();
items--;
result = buffer[items];
notifyAll();
return result;

}
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Conditional Critical RegionsConditional Critical Regions

• A shared buffer using CCR

public int get() {
atomic (items != 0) {

items--;
return buffer[items];

}
}
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Conditional Critical RegionsConditional Critical Regions

• Recognize this?

public int get() {
atomic (items != 0) {

items--;
return buffer[items];

}
}

public int get() {
<await (items != 0)

items--;
return buffer[items];>

}
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Conditional Critical RegionsConditional Critical Regions

• Conditional Critical Regions implements 
the await statement

• Clearly a powerful and convenient 
language construct
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Side effectsSide effects

• How many missiles will be launched?
• When will they be launched?

atomic {
...
launchMissile();
...

}
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Side effectsSide effects

• How many times will we be promted to 
input something?

atomic {
...
inp = inputFromKeyboard();
...

}
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Side effectsSide effects

• Side effects such as I/O don't mix very well 
with transactional memory

• Programs raise a runtime exception if I/O is 
performed during a transaction

• Issues like these make it difficult to 
implement and program with transactional 
memory in most languages
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HaskellHaskell

• Functional
• Pure: side effects cannot occur everywhere
• Ideally suited for supporting STM
• GHC, a Haskell compiler, has support for 

STM
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HaskellHaskell

• Pure and side effecting computations are 
separated by the type system

”a string” :: String
readLine   :: IO String
putStrLn   :: String -> IO ()
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HaskellHaskell

• Pure and side effecting computations are 
separated by the type system

”a string” :: String
readLine   :: IO String
putStrLn   :: String -> IO ()

The type constructor The type constructor 
IO indicates that this IO indicates that this 
function can perform function can perform 

side effectsside effects
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HaskellHaskell

• I/O is isolated using the type system
• STM can therefore easily be isolated from 

I/O
• But Haskell does not allow variables to be 

updated everywhere
• Solution: Add a new separate type 

constructor STM which allows separation
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Haskell STMHaskell STM
module Control.Concurrent.STM

data STM a
data TVar a

newTVarIO  :: a -> IO (TVar a)
newTVar    :: a -> STM (TVar s)
readTVar   :: TVar a -> STM a
writeTVar  :: TVar a -> a -> STM ()
atomically :: STM a -> IO a
retry      :: STM a
orelse     :: STM a -> STM a -> STM a
instance Monad STM
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Updating a counterUpdating a counter

update :: TVar Int -> STM ()
update counter = 

do v <- readTVar counter
   writeTVar counter (v+1)

updateIO :: TVar Int -> IO ()
updateIO counter = 

do putStrLn ”Before update”
   atomically (update counter)
   putStrLn ”After update”

• Updating a counter in Haskell STM
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Updating a counterUpdating a counter

update :: TVar Int -> STM ()
update counter = 

do v <- readTVar counter
   writeTVar counter (v+1)

updateIO :: TVar Int -> IO ()
updateIO counter = 

do putStrLn ”Before update”
   atomically (update counter)
   putStrLn ”After update”

• Updating a counter in Haskell STM
STM means: part of a STM means: part of a 

transactiontransaction

Performing the Performing the 
transactiontransaction
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Conditional SynchronizationConditional Synchronization

• The retry function is used for conditional 
synchronization

• Whenever a condition is not met simply call 
the retry function

• The transaction is then aborted and rerun 
at a later time

• When should a transaction rerun?
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Conditional SynchronizationConditional Synchronization

• Remember that transactions keep a log of 
which variables it accesses

• A transaction should not be rerun until any 
variables that it read has been modified
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Semaphores in Haskell STMSemaphores in Haskell STM

type Sem = TVar Int

newSem :: Int -> IO Sem
newSem n = newTVarIO n

p :: Sem -> STM ()
p sem = do n <- readTVar sem

  if n > 0
then writeTVar sem (n-1)
else retry

v :: Sem -> STM ()
v sem = do n <- readTVar sem
           writeTVar sem (n+1)
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Semaphores in Haskell STMSemaphores in Haskell STM

• Using semaphores

process n mutex = do
...
atomically (p mutex)
putStrLn (”Process ” ++ show n)
atomically (v mutex)
...
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Resource Allocation – MultipleResource Allocation – Multiple

• Clients requiring multiple resources should not 
ask for resources one at a time
◦ Why would this be bad?

• A controller controls access to copies of some 
resource

• Clients make requests to take or return any 
number of the resources
◦ A request should only succeed if there are 

sufficiently many resources available,
◦ Otherwise the request must block
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Resource AllocationResource Allocation
type Resource = TVar Int

resource n = newTVarIO n

aquire res nr = do
n <- readTVar res
if n < nr
  then retry
  else writeTVar res (n-nr)

release res nr = do
n <- readTVar res
writeTVar res (n+nr)
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Resource AllocationResource Allocation

• Contolling fairness
◦ We've previously seen examples of how to 

explicitly controlling the fairness of resource 
allocation by waking up processes in the 
order we want

◦ This doesn't apply to the transactional setting
◦ ALL processes that blocks on a particular 

variable are woken up when a variable is 
modified. 

◦ It is up to the scheduler to ensure fairness
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Unbounded BufferUnbounded Buffer
newBuffer = newTVarIO []

put buffer item = do
ls <- readTVar buffer
writeTVar buffer (ls ++ [item])

get buffer = do
ls <- readTVar buffer
case ls of
  [] -> retry
  (item:rest) -> do

writeTVar buffer rest
return item
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CompositionalityCompositionality

transfer buffer1 buffer2 = do
item <- get buffer1
put buffer2 item

• Composing transactions is embarrassingly 
simple
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Composing AlternativesComposing Alternatives

• It is useful to be able to compose 
transactions as alternatives

• Example: reading from one of several 
buffers

• Enters orelse



56

Composing AlternativesComposing Alternatives

getEither buffer1 buffer2 = 
get buffer1 `orelse` get buffer2

• The workings of orelse:
◦ It takes two transactions
◦ Execute the first one and if it succeed, commit
◦ If the first one retries, execute the second one

• Can be used to listen to several channels 
at once, like JR's input statement
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Dining PhilosophersDining Philosophers
simulation n = do

forks <- replicateM n (newSem True)
outputBuffer <- newBuffer
for [0..n-1] $ \i ->
  forkIO (philosopher i outputBuffer

(forks!!i)
(forks!!((i+1)`mod`n)))

     output outputBuffer

output buf = do
str <- atomically (get buf)
putStrLn str
output buf
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Dining PhilosophersDining Philosophers
philosopher n buf fork1 fork2 = do
  atomically $ put buf 

(show n ++ ” thinking”)
  randomDelay
  atomically $ do

p fork1
p fork2

  atomically $ put buf
(show n ++ ” eating”)

  randomDelay
  atomically $ do

v fork1
v fork2

  philosopher n buf fork1 fork2
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Transactional MemoryTransactional Memory

• Provides a way to write concurrent 
programs without locks

• Advantages:
◦ No deadlocks
◦ Compositionality

• Disadvantages:
◦ Fairness
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