
Lecture 10Lecture 10

Transactional Memory

2

Shared Memory ConcurrencyShared Memory Concurrency

• Lock-based programming is difficult
• There are many potential problems:

◦ Deadlock
◦ Starvation
◦ Priority inversion
◦ Convoying
◦ Non-compositionality

• Is there some way to eliminate at least
some of these problems?

3

ConvoyingConvoying

• Convoying occurs when a process has
taken a mutex and is then preemted by the
scheduler

• It has the effect that other processes may
not be allowed to enter the mutex

• This inhibits concurrency

4

Non-compositionalityNon-compositionality

• Lock-based programming doesn't compose
• Example:

◦ Suppose you have two thread safe buffers and
you want to atomically take an element from
one of them and put it in the other

class Buffer<A> {
A get();

 void put(A);
}

5

Non-compositionalityNon-compositionality

• A not so nice solution:
◦ Expose the the locks of the buffers
◦ Lock both buffers before moving the element
◦ This brakes the abstraction!

class Buffer<A> {
void aquireLock();
void releaseLock();
A get();

 void put(A);
}

6

Non-compositionalityNon-compositionality

• Another not so nice solution
◦ Create a new lock which must be taken each

time any of the two buffers are accessed

• The number of locks grows as we compose
algorithms
◦ Takes time
◦ Increases the risk of programming errors

7

Optimistic ConcurrencyOptimistic Concurrency

• Lock-based synchronization can be seen as
Pessimistic Concurrency: ”We always assume
that we need mutual exclusion”

• Another option would be Optimistic Concurrency
◦ Assume we have mutual exclusion
◦ Perform our critical section
◦ Check if everything was OK
◦ Revert our actions if it wasn't
◦ Otherwise proceed

8

Lock-free synchronizationLock-free synchronization

• It is possible to write algorithms without
locks, called lock-free synchronization

• Example:
◦ Peterson's algorithm from lecture 1

• Typically uses complex instructions
◦ Compare & Swap
◦ Test & Set

• Is often faster than lock-based sync.
because it allows for more concurrency

• Very difficult to do in general

9

Transactional MemoryTransactional Memory

• A concept to allow easy lock-free
programming

• Although the programming model is lock-
free implementations uses locks

• Can either be implemented in
◦ Hardware
◦ Software

10

Transactional MemoryTransactional Memory

• Used to be considered by many of the big
companies to be the ”enabler” of
concurrent programming
◦ As computers get more cores programmers

will need to write concurrent programs to
make them faster

◦ Transactional memory makes this sufficiently
easy to be usable to a majority of the
programmers

• Experience has shown that it is hard to
add Transactional Memory to most
existing programming language

11

TransactionsTransactions

• A standard database concept
◦ A group of operations should execute atomically,
◦ Or not at all

• Transactional Memory takes this idea to
operations on memory and shared variables

12

TransactionsTransactions

• One possible implementation of
Transactions
◦ When writing to variables, don't actually

modify them, instead:
◦ Keep a log over all the reads and writes that

are made
◦ When the transaction is done:

• Validate: check that any read variables still have
the same value

• Commit: make the changes permanent
• If the validation failed rerun the transaction

13

TransactionsTransactions

P1 P2

Log

V = 1

X = 2

Logi = read x
i = i + 1
store i in x
store i in v

14

TransactionsTransactions

P1 P2

Log

V = 1

X = 2

Logi = read x
i = i + 1
store i in x
store i in v

Read X 2

15

TransactionsTransactions

P1 P2

Log

V = 1

X = 2

Logi = read x
i = i + 1
store i in x
store i in v

Read X 2 Read X 2

16

TransactionsTransactions

P1 P2

Log

V = 1

X = 2

Logi = read x
i = i + 1
store i in x
store i in v

Read X 2 Read X 2

Store X 3

17

TransactionsTransactions

P1 P2

Log

V = 1

X = 2

Logi = read x
i = i + 1
store i in x
store i in v

Read X 2 Read X 2

Store X 3 Store X 3

18

TransactionsTransactions

P1 P2

Log

V = 1

X = 2

Logi = read x
i = i + 1
store i in x
store i in v

Read X 2 Read X 2

Store X 3 Store X 3

Store V 3

19

TransactionsTransactions

P1 P2

Log

V = 1

X = 2

Logi = read x
i = i + 1
store i in x
store i in v

Read X 2 Read X 2

Store X 3 Store X 3

Store V 3 Store V 3

20

TransactionsTransactions

P1 P2

Log

V = 1

X = 2

Logi = read x
i = i + 1
store i in x
store i in v

Read X 2 Read X 2

Store X 3 Store X 3

Store V 3 Store V 3

OK

21

TransactionsTransactions

P1 P2

V = 3

X = 3

Logi = read x
i = i + 1
store i in x
store i in v

Read X 2

Store X 3

Store V 3

Wrong
Redo!

22

TransactionsTransactions

P1 P2

V = 4

X = 4

i = read x
i = i + 1
store i in x
store i in v

23

TransactionsTransactions

• There are variations on how to implement
transactions

• Previous slides only show one example
implementation

• Still a research topic

24

TransactionsTransactions

• Benefits of transactions:
◦ Many processes can be in the critical section

at the same time
• More parallelism
• They only need to rerun if there is an actual

runtime conflict

◦ Deadlocks cannot occur
◦ Easy to compose

• Commit only after the second transaction is done

25

TransactionsTransactions

• Drawbacks of transactions:
◦ Cannot guarantee fairness

• A large transaction can be starved by many small
ones

◦ All the book keeping can be expensive

26

Hardware TMHardware TM

• The initial proposal for Transactional
Memory envisioned implementing it in
Hardware

• Not a huge success in practice
◦ Only one or two chips has ever had that

feature
◦ More chips planned but abandoned

27

Software Transactional MemorySoftware Transactional Memory

• Software Transactional Memory (STM) can
be used in various ways:
◦ As a library
◦ As a language construct

28

STM LibrariesSTM Libraries

• There exist several libraries for STM
◦ Java: jvstm, JSTM (XSTM), DSTM2, Deuce
◦ C/C++: TinySTM, LibLTX, LibCTM, RSTM

• Exists for C#, Python, Lisp, Ocaml ...

29

Language Support for STMLanguage Support for STM
• Haskell

◦ Glasgow Haskell Compiler has STM support in the
runtime system

◦ No new language construct, functionality exposed as a
library

• Clojure
◦ A descendant of lisp which uses STM for all mutable

variables

• Perl 6
◦ PUGS uses Haskell's support for STM

30

Language Support for STMLanguage Support for STM
• Java

◦ Proposed langage extension:
Conditional Critical Regions

◦ No implementation yet

31

Conditional Critical RegionsConditional Critical Regions

• Introduced by the atomic keyword

• Reminiscent of the synchronized
keyword in Java

• Introduces a transaction, guarded by a
condition

atomic (condition) {
statements

}

32

Conditional Critical RegionsConditional Critical Regions

• (Part of) a shared buffer in Java

public synchronized int get() {
int result;
while (items == 0) wait();
items--;
result = buffer[items];
notifyAll();
return result;

}

33

Conditional Critical RegionsConditional Critical Regions

• A shared buffer using CCR

public int get() {
atomic (items != 0) {

items--;
return buffer[items];

}
}

34

Conditional Critical RegionsConditional Critical Regions

• Recognize this?

public int get() {
atomic (items != 0) {

items--;
return buffer[items];

}
}

public int get() {
<await (items != 0)

items--;
return buffer[items];>

}

35

Conditional Critical RegionsConditional Critical Regions

• Conditional Critical Regions implements
the await statement

• Clearly a powerful and convenient
language construct

36

Side effectsSide effects

• How many missiles will be launched?
• When will they be launched?

atomic {
...
launchMissile();
...

}

37

Side effectsSide effects

• How many times will we be promted to
input something?

atomic {
...
inp = inputFromKeyboard();
...

}

38

Side effectsSide effects

• Side effects such as I/O don't mix very well
with transactional memory

• Programs raise a runtime exception if I/O is
performed during a transaction

• Issues like these make it difficult to
implement and program with transactional
memory in most languages

39

HaskellHaskell

• Functional
• Pure: side effects cannot occur everywhere
• Ideally suited for supporting STM
• GHC, a Haskell compiler, has support for

STM

40

HaskellHaskell

• Pure and side effecting computations are
separated by the type system

”a string” :: String
readLine :: IO String
putStrLn :: String -> IO ()

41

HaskellHaskell

• Pure and side effecting computations are
separated by the type system

”a string” :: String
readLine :: IO String
putStrLn :: String -> IO ()

The type constructor The type constructor
IO indicates that this IO indicates that this
function can perform function can perform

side effectsside effects

42

HaskellHaskell

• I/O is isolated using the type system
• STM can therefore easily be isolated from

I/O
• But Haskell does not allow variables to be

updated everywhere
• Solution: Add a new separate type

constructor STM which allows separation

43

Haskell STMHaskell STM
module Control.Concurrent.STM

data STM a
data TVar a

newTVarIO :: a -> IO (TVar a)
newTVar :: a -> STM (TVar s)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()
atomically :: STM a -> IO a
retry :: STM a
orelse :: STM a -> STM a -> STM a
instance Monad STM

44

Updating a counterUpdating a counter

update :: TVar Int -> STM ()
update counter =

do v <- readTVar counter
 writeTVar counter (v+1)

updateIO :: TVar Int -> IO ()
updateIO counter =

do putStrLn ”Before update”
 atomically (update counter)
 putStrLn ”After update”

• Updating a counter in Haskell STM

45

Updating a counterUpdating a counter

update :: TVar Int -> STM ()
update counter =

do v <- readTVar counter
 writeTVar counter (v+1)

updateIO :: TVar Int -> IO ()
updateIO counter =

do putStrLn ”Before update”
 atomically (update counter)
 putStrLn ”After update”

• Updating a counter in Haskell STM
STM means: part of a STM means: part of a

transactiontransaction

Performing the Performing the
transactiontransaction

46

Conditional SynchronizationConditional Synchronization

• The retry function is used for conditional
synchronization

• Whenever a condition is not met simply call
the retry function

• The transaction is then aborted and rerun
at a later time

• When should a transaction rerun?

47

Conditional SynchronizationConditional Synchronization

• Remember that transactions keep a log of
which variables it accesses

• A transaction should not be rerun until any
variables that it read has been modified

48

Semaphores in Haskell STMSemaphores in Haskell STM

type Sem = TVar Int

newSem :: Int -> IO Sem
newSem n = newTVarIO n

p :: Sem -> STM ()
p sem = do n <- readTVar sem

 if n > 0
then writeTVar sem (n-1)
else retry

v :: Sem -> STM ()
v sem = do n <- readTVar sem
 writeTVar sem (n+1)

49

Semaphores in Haskell STMSemaphores in Haskell STM

• Using semaphores

process n mutex = do
...
atomically (p mutex)
putStrLn (”Process ” ++ show n)
atomically (v mutex)
...

50

Resource Allocation – MultipleResource Allocation – Multiple

• Clients requiring multiple resources should not
ask for resources one at a time
◦ Why would this be bad?

• A controller controls access to copies of some
resource

• Clients make requests to take or return any
number of the resources
◦ A request should only succeed if there are

sufficiently many resources available,
◦ Otherwise the request must block

51

Resource AllocationResource Allocation
type Resource = TVar Int

resource n = newTVarIO n

aquire res nr = do
n <- readTVar res
if n < nr
 then retry
 else writeTVar res (n-nr)

release res nr = do
n <- readTVar res
writeTVar res (n+nr)

52

Resource AllocationResource Allocation

• Contolling fairness
◦ We've previously seen examples of how to

explicitly controlling the fairness of resource
allocation by waking up processes in the
order we want

◦ This doesn't apply to the transactional setting
◦ ALL processes that blocks on a particular

variable are woken up when a variable is
modified.

◦ It is up to the scheduler to ensure fairness

53

Unbounded BufferUnbounded Buffer
newBuffer = newTVarIO []

put buffer item = do
ls <- readTVar buffer
writeTVar buffer (ls ++ [item])

get buffer = do
ls <- readTVar buffer
case ls of
 [] -> retry
 (item:rest) -> do

writeTVar buffer rest
return item

54

CompositionalityCompositionality

transfer buffer1 buffer2 = do
item <- get buffer1
put buffer2 item

• Composing transactions is embarrassingly
simple

55

Composing AlternativesComposing Alternatives

• It is useful to be able to compose
transactions as alternatives

• Example: reading from one of several
buffers

• Enters orelse

56

Composing AlternativesComposing Alternatives

getEither buffer1 buffer2 =
get buffer1 `orelse` get buffer2

• The workings of orelse:
◦ It takes two transactions
◦ Execute the first one and if it succeed, commit
◦ If the first one retries, execute the second one

• Can be used to listen to several channels
at once, like JR's input statement

57

Dining PhilosophersDining Philosophers
simulation n = do

forks <- replicateM n (newSem True)
outputBuffer <- newBuffer
for [0..n-1] $ \i ->
 forkIO (philosopher i outputBuffer

(forks!!i)
(forks!!((i+1)`mod`n)))

 output outputBuffer

output buf = do
str <- atomically (get buf)
putStrLn str
output buf

58

Dining PhilosophersDining Philosophers
philosopher n buf fork1 fork2 = do
 atomically $ put buf

(show n ++ ” thinking”)
 randomDelay
 atomically $ do

p fork1
p fork2

 atomically $ put buf
(show n ++ ” eating”)

 randomDelay
 atomically $ do

v fork1
v fork2

 philosopher n buf fork1 fork2

59

Transactional MemoryTransactional Memory

• Provides a way to write concurrent
programs without locks

• Advantages:
◦ No deadlocks
◦ Compositionality

• Disadvantages:
◦ Fairness

	Lecture 11
	Erlang
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Functional
	Slide 8
	Concurrent Programming
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	“Private Channels” – RPC
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	RPC – Client Interface
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Resource Allocation – Multiple
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	More Generic Client-Server

