Exam 021025 HT2002 with solution outlines.

Question 1. (a) What is meant by synchronous message passing 2p)
y P

(b) A busy-wait loop might be disasterous if the scheduler is unfair. Explain why. (2p)

(c) What do the Linda operations in and out do? (2p)

(d) For signal-and-continue style monitors (e.g. Java synchronised methods), explain the po-
tential problem with code of the form

if (resource_not_ready) then {
wait (available)
}i

use_resourcey

[Note for students who took the course before this fall: “signal-and -contiunue”
is also called “resume-and-continue”. In the psudocode, replace the instruction
wait (available) by the PascalFC statement delay (avialable).]

(2p)

Question 2. Implement a binary semaphore using a protected object. The V operation should do nothing if
the value of the semaphore is already 1. You may write either Ada code, a PascalFC resource,
or some suitable psudocode.

[Note for students who took the course before Fall 2002: the “V ” operation is called
“signal” in PascalFC].

(6p)

Assume initialised to zero.
MPD psudocode

protected semaphore

entry p()
proc v () # Non blocking

protected body semaphore
int value = 0

entry p() when value == 0 {
value = 0

proc v () {
value = 1
}

end semaphore

Question 3.

Question 4.

The kernel of the UNIX operating system traditionally implements two operations called sleep ()
and wakeup (). Simplifying slightly, what these operations do it the following: a call to sleep ()
always blocks the calling process. A call to wakeup () wakes up all the processes who are cur-
rently blocked because they called sleep ().

Give an implementation of these operations using message passing (MPD op/in or Ada-style
rendezvous using Ada or PascalFC) for synchronisation. (10p)
op sleeping()

process sleepserver ()
{ while (true) {

in

sleep()

-> forward sleeping()
[]

wakeup ()

-> while (?sleeping > 0){receive sleeping()}
ni

A Robot maintenance house offers minor repair and maintenance services for factory robots.
The house fixes robots for two rival companies, “Vaab” and “Solvo”. Robots automatically
leave factory and go to the house when they need maintenance.

The question is to write a monitor (PascalFC, Java object or MPD psudocode) to simulate the
house controller software which controls when robots enter the house.

Robots call the following monitor procedures:

e Enter (...) when they want to enter the house, and

e Leave(...) when they finally leave the house.

You may add your own parameters to these calls as you wish. The Enter call is potentially
blocking, since you are required to ensure that:

e there are never more than 20 robots in the house at any time, and

e whenever there are robots of both kinds in the house, the number of Vaab robots is never
more than double the number of Solvo robots, and vice versa. (This helps prevent fights
between the robots from the rival companies!).

You may assume that robots who enter will eventually leave, that the scheduler is fair, and that
any queues in the implementation of the programming language are FIFO. Your solution should
not make robots wait unnecessarily, but does not have to be starvation free. If your solution can
lead to starvation then you must explain how it can occur. (14p)

MPD psudocode, Java style monitors
(notify and continue)

monitor Robocop

type robotype = Enum(Vaab; Solvo)

op enter (robotype), leave (robotype)
[low(robotype) :high(robotype)] int count = (0, 0)

procedure other (robotype r) returns robotype of
if (r == Vaab) {o = Solvo} else {o = Vaab}
}

procedure dangerous (robotype r) returns bool isdanger {
int us = count|[r]
int others = count[other(r)]

isDanger =
us + others == 20 || (others > 0 and 2 * others <= us)

condition change

proc enter(r) {
while (dangerous(r))
{ wait (change) }
count [r]++
signalAll (change)

proc leave(r) {
assume that leaving doesn’t violate the constraint.
count [r]--
signalAll (change)

Two reasons for unfairness:

1. signalAll puts you behind other calls on the

boundary queue, so starvation for a single robot is always possible
(however unlikely) if new calls to "enter" always steal the signal.

2. If there are 3 or more Vaabs in the factory then a Solvo cannot
enter. If Solvo’s arrive often enough then there will be never less
than 2 in the factory and so the Vaabs starve.

Question 5. (a) Explain briefly what is meant by barrier synchronisation. p)

(b) Show how barrier synchronisation for n processes can be implemented using semaphores.
The n processes should be able to repeatedly use the barrier. Note: you may use an extra
“coordinator” process if it is suitable for your approach.

(10p)

One binary semaphore per process, initially zero.
Assume each process has a unique id [1..n].
One general semaphore for counting arrived processes, initially zero.

sem s [n] [n]O

1l
o

sem done
A process wishing to perform a barrier sync. must call arrive:

procedure arrive(int 1) {
v(done) # signal arrival
P(s[i]) # wait to be released

process coordinator {
while (true) {
for [1 =1 ton] { P(done) } # wait for n procs to arrive
for [i =1 ton] { V(s[i]) } # release all n procs

