
Course Objectives

Design

Construction

Interfacing

Usage

Database Construction

and Usage

SQL DDL and DML
Relational Algebra

Course Objectives – Construction

When the course is through, you should

– Given a database schema with related

constraints, implement the database in a
relational (SQL) DBMS

SQL Data Definition Language

Case convention

• SQL is completely case insensitive.
Upper-case or Lower-case makes no
difference. We will use case in the
following way:

– UPPERCASE marks keywords of the SQL

language.

– lowercase marks the name of an attribute.

– Capitalized marks the name of a table.

Creating and dropping tables

• Relations become tables, attributes become

columns.

CREATE TABLE tablename (

<list of table elements>

);

DROP TABLE tablename;

DESCRIBE tablename;

• Get all info about a created table:

• Remove a created table:

Oracle specific!

Table declaration elements

• The basic elements are pairs consisting of
a column name and a type.

• Most common SQL types:

– INT or INTEGER (synonyms)

– REAL or FLOAT (synonyms)

– CHAR(n) = fixed-size string of size n.

– VARCHAR(n) = variable-size string of up to

size n.

Example

Example:

CREATE TABLE Courses (

code CHAR(6),

name VARCHAR(50)

);

code name

Created the table courses:

Declaring keys

• An attribute or a list of attributes can be
declared PRIMARY KEY or UNIQUE
– PRIMARY KEY: At most one per table, never

NULL. Efficient lookups in all DBMS.

– UNIQUE: Any number per table, can be
NULL. Could give efficient lookups (may vary
in different DBMS).

• Both declarations state that all other
attributes of the table are functionally
determined by the given attribute(s).

Example

CREATE TABLE Courses(

code CHAR(6),

name VARCHAR(50),

PRIMARY KEY (code)

);

Or

CREATE TABLE Courses(

code CHAR(6),

name VARCHAR(50),

CONSTRAINT CoursesPK PRIMARY KEY (code)

);

Foreign keys

• Referential constraints are handled with
references, called foreign keys:

FOREIGN KEY attribute
REFERENCES table(attribute)

Foreign keys

• General:

FOREIGN KEY course REFERENCES Courses(code)

• If course is Primary Key in Courses:

FOREIGN KEY course

REFERENCES Courses

• Give a name to the foreign key:

CONSTRAINT ExistsCourse

FOREIGN KEY course

REFERENCES Courses

Example
CREATE TABLE GivenCourses (

code CHAR(6),
period INT,
numStudents INT,
teacher VARCHAR(50),
PRIMARY KEY (code, period),
FOREIGN KEY (code) REFERENCES Courses(code)

);

CREATE TABLE GivenCourses (
code CHAR(6) REFERENCES Courses(code),
period INT,
numStudents INT,
teacher VARCHAR(50),
PRIMARY KEY (code, period)

);

Value constraints

• Use CHECK to insert simple value constraints.
– CHECK (some test on attributes)

CREATE TABLE GivenCourses (

code CHAR(6),

period INT CHECK (period IN (1,2,3,4)),

numStudents INT,

teacher VARCHAR(50),

FOREIGN KEY (code) REFERENCES Courses(code),

PRIMARY KEY (code, period)

);

Naming constraints

• Default error messages are horrible.

• Naming constraints makes them a lot
easier to read and understand.

CONSTRAINT constraint-name
constraint

CONSTRAINT ValidPeriod

CHECK (period in (1,2,3,4))

Example

CREATE TABLE GivenCourses (

code CHAR(6) REFERENCES Courses(code),

period INT,

numStudents INT,

teacher VARCHAR(50),

PRIMARY KEY (code, period),

CONSTRAINT ValidPeriod CHECK (period in (1,2,3,4))

);

Example

• Legal:

– INSERT INTO GivenCourses

VALUES (’TDA357’,4,93,’Rogardt);

• Not Legal:

– INSERT INTO GivenCourses

VALUES (’TDA357’,7,93,’Rogardt);

– ERROR at line 1:

• ORA-02290: check constraint
(NIBRO.VALIDPERIOD) violated

Example: DESCRIBE
CREATE TABLE GivenCourses (

code CHAR(6) REFERENCES Courses(code),

period INT,

numStudents INT,

teacher VARCHAR(50),

PRIMARY KEY(code,period),

CONSTRAINT ValidPeriod CHECK (period in (1,2,3,4))

);

Name Null? Type

CODE NOT NULL CHAR(6)

PERIOD NOT NULL NUMBER(38)

NUMSTUDENTS NUMBER(38)

TEACHER VARCHAR2(50)

DESCRIBE GivenCourses;

Exam – SQL DDL

”A grocery store wants a database to store information
about products and suppliers. After studying their
domain you have come up with the following database
schema. …”

• Write SQL statements that create the relations as
tables in a DBMS, including all constraints.

Course Objectives

Design

Construction

Interfacing

Usage

SQL Data Manipulation Language:

Modifications

Course Objectives – Usage

When the course is through, you should

– Know how to change the contents of a

database using SQL

Inserting data

INSERT INTO tablename

VALUES (values for attributes);

INSERT INTO Courses

VALUES (’TDA357’, ’Databases’);

code name

TDA357 Databases

Inserting data (alt.)

INSERT INTO tablename

(some of the attributes)

VALUES (values for attributes);

INSERT INTO Courses

(name, code)

VALUES (’Databases’, ’TDA357’);

code name

TDA357 Databases

Deletions

DELETE FROM tablename

WHERE test over rows;

DELETE FROM Courses

WHERE code = ’TDA357’;

DELETE FROM Courses;

Quiz

code name

TDA357 Databases

TIN090 Algorithms

DELETE FROM Courses
WHERE code = ’TDA357’;

code name

TIN090 Algorithms

Quiz: What does this statement do?

DELETE FROM Courses;

Updates

UPDATE tablename

SET attribute = ...

WHERE test over rows

UPDATE GivenCourses

SET teacher = ’Rogardt Heldal’

WHERE code = ’TDA357’

AND period = 4;

Quiz

code per #st teacher

TDA357 2 87 Niklas Broberg

TDA357 4 93 Marcus Björkander

TIN090 1 64 Devdatt Dubhashi

code per #st teacher

TDA357 2 87 Niklas Broberg

TDA357 4 93 Rogardt Heldal

TIN090 1 64 Devdatt Dubhashi

UPDATE GivenCourses
SET teacher = ’Rogardt Heldal’
WHERE code = ’TDA357’

AND period = 4;

Summary

• SQL Data Definition Language

– CREATE TABLE, attributes

– Constraints
•PRIMARY KEY

•FOREIGN KEY … REFERENCES

•CHECK

• SQL Data Manipulation Language

– INSERT, DELETE, UPDATE

Course Objectives

Design

Construction

Interfacing

Usage

Course Objectives – Usage

When the course is through, you should

– Know how to query a database for relevant

data using SQL

Queries:

SQL and Relational Algebra

Querying

• To query the database means asking it for
information.

– ”List all courses that have lectures in room

VR”

• Unlike a modification, a query leaves the
database unchanged.

”Algebra”

• An algebra is a mathematical system
consisting of:

– Operands: variables or values to operate on.

– Operators: symbols denoting functions that

operate on variables and values.

Relational Algebra

• An algebra whose operands are relations
(or variables representing relations).

• Operators representing the most common
operations on relations.

– Selecting rows

– Projecting columns

– Composing (joining) relations

Relational operators (1)

• Selection

– Choose rows from a relation

– State condition that rows must satisfy

Examples:

σseats>100(Rooms)

σ(code=”TDA143” AND day=”Friday”)(Lectures)

σcondition(T)

Relational operators (2)

• Projection

– Choose columns from a relation

– State which columns (attributes)

Examples:

πcode(Courses)
πname,seats(Rooms)

πA(T)

Relational operators (3)

R1 x R2

– Cartesian product

– Combine each row of R1 with each row of R2

R1 ⋈⋈⋈⋈condition R2

– join operator

– Combine row of R1 with each row of R2 if the

condition is true

R1 ⋈⋈⋈⋈condition R2 = σcondition(R1 x R2)

SQL

• SQL = Structured Query Language

– The querying parts are really the core of SQL.

The DDL and DML parts are secondary.

• Very-high-level language.

– Specify what information you want, not how to

get that information (like you would in e.g.

Java).

• Based on Relational Algebra

The Query Compiler

• SQL query is parsed to produce a parse
tree that represents the query.

• Parse tree is transformed to a relational
algebra expression tree (or similar).

• Generate a physical query plan.

– Use algebraic laws to improve query plan by

generating many alternative execution plans

and estimating their cost.

– Choose algorithm to perform each step.

Selection

• Selection = Given a relation (table),
choose what tuples (rows) to include in the
result.

– Select the rows from relation T that satisfy

condition C.

– σ = sigma = greek letter s = selection

σC(T) SELECT * FROM T WHERE C;

Example:

GivenCourses =

SELECT *

FROM GivenCourses

WHERE course = ’TDA357’;

Result =

course per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal

TIN090 1 Devdatt Dubhashi

course per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal
What?

Projection

• Given a relation (table), choose what
attributes (columns) to include in the
result.

– Select the rows from table T that satisfy

condition C, and project columns X of the

result.

– π = pi = greek letter p = projection

πX(σC(T)) SELECT X FROM T WHERE C;

Example:

GivenCourses =

SELECT course, teacher

FROM GivenCourses

WHERE course = ’TDA357’;

Result =

course per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal

TIN090 1 Devdatt Dubhashi

course teacher

TDA357 Niklas Broberg

TDA357 Rogardt Heldal
What?

The confusing SELECT
Example:

GivenCourses =

SELECT course, teacher

FROM GivenCourses;

Result =

course per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal

TIN090 1 Devdatt Dubhashi

course teacher

TDA357 Niklas Broberg

TDA357 Rogardt Heldal

TIN090 Devdatt Dubhashi

Quiz: SELECT is a projection??

What?

Mystery revealed!

SELECT code, teacher

FROM GivenCourses;

• In general, the SELECT clause could be seen as

corresponding to projection, and the WHERE

clause to selection (don’t confuse the naming

though).

πcode,teacher(σ(GivenCourses))
= πcode,teacher(GivenCourses)

Quiz!

• What does the following expression
compute?

SELECT *

FROM Courses, GivenCourses

WHERE teacher = ’Niklas Broberg’;

course per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal

TIN090 1 Devdatt Dubhashi

code name

TDA357 Databases

TIN090 Algorithms

Courses
GivenCourses

FROM Courses, GivenCourses

code name course per teacher

TDA357 Databases TDA357 2 Niklas Broberg

TDA357 Databases TDA357 4 Rogardt Heldal

TDA357 Databases TIN090 1 Devdatt

Dubhashi

TIN090 Algorithms TDA357 2 Niklas Broberg

TIN090 Algorithms TDA357 4 Rogardt Heldal

TIN090 Algorithms TIN090 1 Devdatt

Dubhashi

WHERE teacher = ’Niklas
Broberg’

code name course per teacher

TDA357 Databases TDA357 2 Niklas Broberg

TDA357 Databases TDA357 4 Rogardt Heldal

TDA357 Databases TIN090 1 Devdatt

Dubhashi

TIN090 Algorithms TDA357 2 Niklas Broberg

TIN090 Algorithms TDA357 4 Rogardt Heldal

TIN090 Algorithms TIN090 1 Devdatt

Dubhashi

Answer:

The result is all rows from Courses combined in all

possible ways with all rows from GivenCourses, and

then keep only those where the teacher attribute is

Niklas Broberg.

code name course per teacher

TDA357 Databases TDA357 2 Niklas Broberg

TIN090 Algorithms TDA357 2 Niklas Broberg

SELECT *

FROM Courses, GivenCourses

WHERE teacher = ’Niklas Broberg’;

Cartesian Products

• The Cartesian product of relations R1 and
R2 is all possible combinations of rows
from R1 and R2.

– Written R1 x R2

– Also called cross-product, or just product

SELECT *

FROM Courses, GivenCourses

WHERE teacher = ’Niklas Broberg’;

σteacher = ’Niklas Broberg’(Courses xxxx GivenCourses)Quiz: Translate to a Relational Algebra expression.

Quiz!

List all courses, with names, that Niklas Broberg is

responsible for.

Courses(code,name)

GivenCourses(course,per,teacher)

course -> Courses.code

SELECT *

FROM Courses, GivenCourses

WHERE teacher = ’Niklas Broberg’

AND code = course;

code name course per teacher

TDA357 Databases TDA357 2 Niklas Broberg

code = course

code name course per teacher

TDA357 Databases TDA357 2 Niklas Broberg

TDA357 Databases TDA357 4 Rogardt Heldal

TDA357 Databases TIN090 1 Devdatt

Dubhashi

TIN090 Algorithms TDA357 2 Niklas Broberg

TIN090 Algorithms TDA357 4 Rogardt Heldal

TIN090 Algorithms TIN090 1 Devdatt

Dubhashi

Not equal

Joining relations

• Very often we want to join two relations on the

value of some attributes.

– Typically we join according to some reference, as in:

• Special operator ⋈⋈⋈⋈C for joining relations.

SELECT *

FROM Courses, GivenCourses

WHERE code = course;

R1 ⋈⋈⋈⋈C R2 = σC(R1 x R2)

SELECT *

FROM R
1
JOIN R

2
ON C;

Example

SELECT *

FROM Courses JOIN GivenCourses

ON code = course;

course per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal

TIN090 1 Devdatt Dubhashi

code name

TDA357 Databases

TIN090 Algorithms

Courses
GivenCourses

code name course per teacher

TDA357 Databases TDA357 2 Niklas Broberg

TDA357 Databases TDA357 4 Rogardt Heldal

TIN090 Algorithms TIN090 1 Devdatt Dubhashi

What?

Natural join

• ”Magic” version of join.

– Join two relations on the condition that all

attributes in the two that share the same

name should be equal.

– Remove all duplicate columns

– Written R1 ⋈⋈⋈⋈ R2 (like join with no condition)

Example

SELECT *

FROM Courses NATURAL JOIN GivenCourses;

code per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal

TIN090 1 Devdatt Dubhashi

code name

TDA357 Databases

TIN090 Algorithms

Courses
GivenCourses

code name per teacher

TDA357 Databases 2 Niklas Broberg

TDA357 Databases 4 Rogardt Heldal

TIN090 Algorithms 1 Devdatt Dubhashi

What?

Outer join

• Compute the join as usual, but retain all tuples

that don’t fit in from either or both operands,

padded with NULLs.

– FULL means retain all tuples from both operands.

LEFT or RIGHT retains only those from one of the

operands.

– Can be used with ordinary join as well.

• R1 LEFT OUTER JOIN R2 ON C;

R1 ⋈ R2˚ SELECT *

FROM

R1 NATURAL FULL OUTER JOIN R2;

Quiz!

List all courses and the periods they are given in.

Courses that are not scheduled for any period

should also be listed, but with NULL in the field

for period.

SELECT code, period

FROM Courses LEFT OUTER JOIN GivenCourses

ON code = course;

course period teacher #students

TDA357 2 Niklas Broberg 130

TDA357 4 Rogardt Heldal 135

TIN090 1 Devdatt Dubhashi 95

TDA590 2 Rogardt Heldal 70

code name

TIN090 Algorithms

TDA590 OOS

TDA357 Databases

TDA100 AI

SELECT code, period

FROM Courses

LEFT OUTER JOIN

GivenCourses

ON code = course;

code period

TDA357 2

TDA357 4

TIN090 1

TDA590 2

TDA100 NULL

SELECT code, period

FROM Courses

LEFT OUTER JOIN

GivenCourses

ON code = course;

Sets or Bags?

• Relational algebra formally applies to sets
of tuples.

• SQL, the most important query language
for relational databases is actually a bag
language.
– SQL will eliminate duplicates, but usually only

if you ask it to do so explicitly.

• Some operations, like projection, are much
more efficient on bags than sets.

Relational Algebra on Bags

• A bag is like a set, but an element may
appear more than once.
– Multiset is another name for bag

• Example: {1,2,1,3} is a bag. {1,2,3} is
also a bag that happens to be a set.

• Bags also resemble lists, but order in a
bag is unimportant.
– Example: {1,2,1} = {1,1,2} as bags, but

[1,2,1] != [1,1,2] as lists.

Operations on Bags

• Selection applies to each tuple, so its
effect on bags is like its effect on sets.

• Projection also applies to each tuple, but
as a bag operator, we do not eliminate
duplicates.

• Products and joins are done on each pair
of tuples, so duplicates in bags have no
effect on how we operate.

Quiz

A B

1 2

5 6

1 3

R(A,B) SELECT A
FROM R ??? πA(R) ???

SELECT-FROM-WHERE

• Basic structure of an SQL query:

SELECT attributes

FROM tables

WHERE tests over rows

SELECT X

FROM T

WHERE C
πX(σC(T))

Example:

SELECT code, name, period

FROM Courses, GivenCourses

WHERE teacher = ’Niklas Broberg’

AND code = course;

course per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal

TIN090 1 Devdatt Dubhashi

code name

TDA357 Databases

TIN090 Algorithms

Courses

GivenCourses

πcode,name,period(σteacher=’Niklas Broberg’ & code = course(Courses x GivenCourses))

Example:

SELECT code, name, period

FROM Courses, GivenCourses
WHERE teacher = ’Niklas Broberg’

AND code = course;

code name course per teacher

TDA357 Databases TDA357 2 Niklas Broberg

TDA357 Databases TDA357 4 Rogardt Heldal

TDA357 Databases TIN090 1 Devdatt Dubhashi

TIN090 Algorithms TDA357 2 Niklas Broberg

TIN090 Algorithms TDA357 4 Rogardt Heldal

TIN090 Algorithms TIN090 1 Devdatt Dubhashi

πcode,name,period(σteacher=’Niklas Broberg’ & code = course((((Courses x GivenCoursesCourses x GivenCoursesCourses x GivenCoursesCourses x GivenCourses)))))

Example:

SELECT code, name, period

FROM Courses, GivenCourses

WHERE teacher = ’Niklas Broberg’

AND code = course;

code name course per Teacher

TDA357 Databases TDA357 2 Niklas Broberg

TDA357 Databases TDA357 4 Rogardt Heldal

TDA357 Databases TIN090 1 Devdatt Dubhashi

TIN090 Algorithms TDA357 2 Niklas Broberg

TIN090 Algorithms TDA357 4 Rogardt Heldal

TIN090 Algorithms TIN090 1 Devdatt Dubhashi

πcode,name,period((((σσσσteacher=’Niklas Broberg’ & code = courseteacher=’Niklas Broberg’ & code = courseteacher=’Niklas Broberg’ & code = courseteacher=’Niklas Broberg’ & code = course(Courses x GivenCourses)))))

code name course per teacher

TDA357 Databases TDA357 2 Niklas Broberg

Example:

SELECT code, name, period
FROM Courses, GivenCourses

WHERE teacher = ’Niklas Broberg’

AND code = course;

ππππcode,name,periodcode,name,periodcode,name,periodcode,name,period(σteacher=’Niklas Broberg’ & code = course(Courses x GivenCourses))

code name course per teacher

TDA357 Databases TDA357 2 Niklas Broberg

code name per

TDA357 Databases 2

Quiz!

What does the following relational algebra
expression compute?

σteacher=’Niklas Broberg’ & code = course(πcode,name,period(Courses x GivenCourses))
The expression is invalid, since the result after the

projection will not have attributes teacher and course

to test.

More complex expressions

• So far we have only examples of the same

simple structure:

• We can of course combine the operands and

operators of relational algebra in (almost) any

way imaginable.

πX(σC(T))

σC(R3 ⋈⋈⋈⋈D πX(R1 x R2))
SELECT *

FROM R3 JOIN (SELECT X FROM R1,R2) ON D

WHERE C

Summary so far

• SQL is based on relational algebra.

• Operations for:
– Selection of rows

– Projection of columns

– Combining tables
• Cartesian product

• Join, natural join

• Bags/Sets semantics

• Much more to come!

Next Lecture

More Relational Algebra and SQL

Assignment Part II – Construction and
Usage

• Implement your design from part I by
creating tables in Oracle for your relations.
Be sure to include all extra constraints.

• Create views and triggers that simplify key
operations of the system.

• Fill your tables with data that stress-tests
your implementation.

• Hand in:
– Your SQL code for creating the tables.

– Your SQL code for creating the views and
triggers.

– Your SQL code for inserting data.

– Motivations for the chosen data (plain text).

– Your Oracle username and password.

• Submission deadlines: see task description

Assignment Part II – Construction and
Usage

