
DISTRIBUTED SYSTEMS II

RESOURCE ALLOCATION II

Prof Philippas Tsigas

Distributed Computing and Systems Research Group

Process Graph: Coloring Philoshophers

p1 p2

p4 p3

F1

Edge: Conflict on a resource by the nodes

F2
F4

F3

Resource Graph: Coloring Forks

F1 F2

F4 F3

P2

Edge: Resources are needed at the same time by

one (or more) processes

P3
P1

P4

Process Graph: Coloring Philoshophers

F2

F4

F3

F3

p1

p2

p3

p4

F1

GENERALIZED DINING
PHILOSHOPHERS

5

�

�

�

�

Resource Allocation

Generalising the Dinning Philosophers

A resource allocation problem consists of a

�nite set of resources and some competing

processes�

Processes request access to the resources from

time to time in order to execute a code segment

called critical section� Upon being granted all

the requested resources� a process proceeds to

use them and eventually relinquishes them�

Requirements�

�� Mutual exclusion No resource should be

accessed by more than one process at the

same time�

�� No Starvation As long as processes do

not fail� no process should wait forever for

requested resources�

DS II L���� Philippas Tsigas

General Case

�

�

�

�

Resource Allocation Solution

We generalise in a straightforward way the

RightLeft Dinning philosophers algorithm to an

arbitrary resource allocation problem�

We �rst construct the Resource Graph�

� The nodes of this graph represent the

resources

� There is a node from one node to another

if there is some process that uses both the

resources�

DS II L���� Philippas Tsigas

�

�

�

�

Coloring again

We node	color the resource graph

DS II L���	 Philippas Tsigas

tsigas
Text Box
Each graph is D+1-colorable
– Sequential algorithm: trivial
– Greedy algorithm

�

�

�

�

The Generalisation

Each process seeks its resources in increasing

order according to the total ordering

constructed by the coloring�

A process seeks a resource by putting its index

at the end of that resource
s queue�

The process obtains the resource when its index

reaches the front of that resource
s queue�

When a process exits C� it returns all of its

resources by removing its index from their

queues�

Let us assume that k is the maximum number

of processes that require any single resource�

What is the time complexity of the algorithm�

DS II L���
 Philippas Tsigas

Pi

Pj

Pl

Pm

k-1

D

Con�ict �� Precedence Graph

Undirected graph� in which edges represent shared
resources between processes we call this graph conflict
graph�

The algorithm by Chandy and Misra resolves con�icts
by de�ning for every possible con�ict a precedence relation�

� When two processes compete for a resource the one
with higher precedence may access the resource �rst�

� In order to receive a solution which is fair these
precedences will have to change dynamically�

The directed graph graph that changes dynamically is called
precedence graph�

For each resource an edge of the precedence graph is
directed from processes with lower precedence to processes
with higher precedence�

� Typeset by FoilTEX � �

The precedences of the graph are chosen such that it
is always possible to distinguish at least one process from
all other processes i�e� this process can enter its critical
section� �NO DEADLOCK�

This is ensured by the existence of at least one process
which has higher precedence for all its shared resources� A
process with this property is called sink�

Its existence is guaranteed when the precedence graph
is always acyclic�

By changing directions of edges it is possible to change
the precedences dynamically�

This must happen in a way that the precedence graph
stays acyclic� so progress� fairness and mutual exclusion is
guaranteed�

� Typeset by FoilTEX � �

Starting with a DAG

� The graph is initialised acyclic for example by a node	
colouring algorithm�

� The graph can remain acyclic if after use of the critical
section a process reverse all adjacent precedences in one
step�

� Need a mechanism to keep the sense of direction�

� Typeset by FoilTEX � �

The mechanism

Forks which have the property to be either clean or
dirty�

� A fork will be cleanedbefore it is send to a neighbour
process�

� A clean fork will become dirty when the holder of the
resource enters the critical section�

� After use it remains dirty until it is sent to a neighbour
process�

� Typeset by FoilTEX � �

The dynamic DAG

� The respective precedence graph H can be de�ned in
the following way�

� For all pairs of processes p and q which share a common
resource� �p�q� one of the following statements is true�

� p holds the fork for the resource and the fork is clean

�� q holds the fork for the resource and the fork is dirty

�� the fork for the resource is in transit from q to p

� Typeset by FoilTEX � �

Requesting Forks

The request of forks is realized by request tokens�

For each fork there exist one request token such that
only the holder of the request token can request a fork�

A hungry process requests a fork by sending the request
token to the owner of the desired fork�

A process is not interested in accessing its resources
when it holds a request token but not a fork�

� Typeset by FoilTEX � �

The algorithm

The algorithm is initialised by an acyclic precedence
graph H and all processes with lower precedence own dirty
forks while processes with higher precedence own request
tokens�

All processes are thinking i�e they are not interested in
their resources�

A process which becomes hungry will send all its request
token to neighbour processes and wait until it received
all forks�

� A process which received all forks will change its state
to eating�

� A process which leaves the critical section

changes the state of all its forks to dirty� Then
for all held request token the respective fork is sent
to neighbour processes�

The above steps assume following rules�

� Typeset by FoilTEX � �

Receiving a request token for fork f �

� If processors state is di
erent from eating and f is
dirty then f will be sent to the requesting processor�

�� If processors state was also hungry then the request
token will also be sent back�

Receiving a fork f � The state of f will be set to clean�

� Typeset by FoilTEX � 	

Correctness

Mutual Exclusion�

Proof� The precedence graph H is acyclic� �

No Starvation

Proof� Let the depth in H of any process p be de�ned
as the maximum number of edges along a path from p to
another process without predecessor� The proof will show
by induction that a process of depth k will eventually eat if
predecessors at depth k�� can eat� �

� Typeset by FoilTEX �

Complexities

Communication Complexity� O�degree�

Proof� A process sends at most one request token to
each neighbour and receives from each neighbour at most
one fork� �

Tine Complexity� O�n�

� Typeset by FoilTEX � ��

	din.pdf
	Slide Number 1

