E@% Distributed Computing and Systems

ng Chalmers university of technology

Prof Philippas Tsigas
Distributed Computing and Systems Research Group

DISTRIBUTED SYSTEMS I

RESOURCE ALLOCATION I

Process Graph: Coloring Philoshophers

Edge: Conflict on a resource by the nodes

Resource Graph: Coloring Forks

Edge: Resources are needed at the same time by
one (or more) processes

Process Graph: Coloring Philoshophers

GENERALIZED DINING
PHILOSHOPHERS

4 O

Resource Allocation

Generalising the Dinning Philosophers

A resource allocation problem consists of a
finite set of resources and some competing

Processes.

Processes request access to the resources from
time to time in order to execute a code segment
called critical section. Upon being granted all
the requested resources, a process proceeds to
use them and eventually relinquishes them.

Requirements;

1. Mutual exclusion No resource should be
accessed by more than one process at the

same time.

2. No Starvation As long as processes do
not fail, no process should wait forever for

requested resources.

_ /

DS Il L2.12 Philippas Tsigas

General Case

~

-

We generalise in a straightforward way the

Resource Allocation Solution

RightLeft Dinning philosophers algorithm to an

arbitrary resource allocation problem.

We first construct the Resource Graph:

e The nodes of this graph represent the

resources

e There is a node from one node to another
if there is some process that uses both the

resources.

_ /

DS II 12.13 Philippas Tsigas

4 N

Coloring again

We node-color the resource graph

Each graph is A+1-

colorable

— Sequential algorithm: trivial
— Greedy algorithm

_ /

DS Il L2.14 Philippas Tsigas

tsigas
Text Box
Each graph is D+1-colorable
– Sequential algorithm: trivial
– Greedy algorithm

4 O

The Generalisation

Each process seeks its resources in increasing
order according to the total ordering

constructed by the coloring.

A process seeks a resource by putting its index

at the end of that resource’s queue.

The process obtains the resource when its index

reaches the front of that resource’s queue.

When a process exits C, it returns all of its
resources by removing its index from their

queues.

Let us assume that k£ is the maximum number

of processes that require any single resource.

What is the time complexity of the algorithm?

_ /

DS II L2.15 Philippas Tsigas

Conflict -> Precedence Graph

Undirected GRAPH, in which edges represent shared
resources between processes we call this graph CONFLICT
GRAPH.

The algorithm by Chandy and Misra resolves conflicts
by defining for every possible conflict a precedence relation:

e When two processes compete for a resource the one
with higher precedence may access the resource first.

e In order to receive a solution which is fair these
precedences will have to change dynamically.

The directed graph graph that changes dynamically is called
precedence graph.

For each resource an edge of the precedence graph is
directed from processes with lower precedence to processes
with higher precedence.

— Typeset by Foil TEX - 1

The precedences of the graph are chosen such that it
is always possible to distinguish at least one process from
all other processes i.e. this process can enter its critical

section. (NO DEADLOCK)

This is ensured by the existence of at least one process
which has higher precedence for all its shared resources. A
process with this property is called sink.

lts existence is guaranteed when the precedence graph
iIs always acyclic.

By changing directions of edges it is possible to change
the precedences dynamically.

This must happen in a way that the precedence graph
stays acyclic, so progress, fairness and mutual exclusion is
guaranteed.

— Typeset by Foil TEX - 2

Starting with a DAG

e The graph is initialised acyclic for example by a node-
colouring algorithm.

e The graph can remain acyclic if after use of the critical
section a process reverse all adjacent precedences in one
step.

e Need a mechanism to keep the sense of direction:

— Typeset by Foil TEX - 3

The mechanism

Forks which have the property to be either clean or
dirty.

e A fork will be cleanedbefore it is send to a neighbour
process.

e A clean fork will become dirty when the holder of the
resource enters the critical section.

e After use it remains DIRTY until it is sent to a neighbour
process.

— Typeset by Foil TEX - 4

The dynamic DAG

e The respective precedence graph H can be defined in
the following way:

e For all pairs of processes p and g which share a common
resource, <p,g> one of the following statements is true:

1. p holds the fork for the resource and the fork is CLEAN
2. g holds the fork for the resource and the fork is DIRTY

3. the fork for the resource is in transit from g to p

— Typeset by Foil TEX - 5

Requesting Forks

The request of forks is realized by request tokens.

For each fork there exist one request token such that
only the holder of the request token can request a fork.

A hungry process requests a fork by sending the request
TOKEN to the owner of the desired fork.

A process is not interested in accessing its resources
when it holds a request TOKEN but not a fork.

— Typeset by Foil TEX - 6

The algorithm

The algorithm is initialised by an acyclic precedence
graph H and all processes with lower precedence own dirty
forks while processes with higher precedence own request
tokens.

All processes are thinking i.e they are not interested in
their resources.

A process which becomes hungry will send all its request
TOKEN to neighbour processes and wait until it received

all forks.

e A process which received all forks will change its state
to eating.

e A process which leaves the CRITICAL SECTION
changes the state of all its forks to DIRTY. Then
for all held request TOKEN the respective fork is sent
to neighbour processes.

The above steps assume following rules:

— Typeset by Foil TEX - 7

Receiving a request TOKEN for fork f:

1. If processors state is different from eating and f is
DIRTY then f will be sent to the requesting processor.

2. It processors state was also hungry then the request
TOKEN will also be sent back.

Receiving a fork f: The state of f will be set to clean.

— Typeset by Foil TEX - 8

Correctness

Mutual Exclusion:

Proof. The precedence graph H is acyclic. O

No Starvation

Proof. Let the depth in H of any process p be defined
as the maximum number of edges along a path from p to
another process without predecessor. The proof will show
by induction that a process of depth k will eventually eat if
predecessors at depth k-1 can EAT. O

— Typeset by Foil TEX - 9

Complexities

Communication Complexity: O(degree)

Proof. A process sends at most one request TOKEN to
each neighbour and receives from each neighbour at most
one fork. O

Tine Complexity: O(n)

— Typeset by Foil TEX - 10

	din.pdf
	Slide Number 1

