
DISTRIBUTED SYSTEMS II

RESOURCE ALLOCATION

Prof Philippas Tsigas

Distributed Computing and Systems Research Group

DINING PHILOSHOPHERS

2

�

�

�

�

The problem

If one or more philosophers try to to eat� then

one of them eventually after a �nite time

succeeds� No Deadlock

The above property does not provide any

guarantee on an individual basis since a

processor may try to eat and yet fail� since it

always bypassed by other philosophers� What

we would like to have is a stronger property�

which implies no deadlock�

No Starvation If a philosopher wishes to eat�

then it will eventually after a �nite time

succeed as long as no philosopher keeps eating

forever�

We assume that each philosopher eats for at

most � time units� � �� ��

DS II L��� Philippas Tsigas

�

�

�

�

Symmetry

We say that a solution to a distributed problem

is symmetric if�

� all processes are identical �nothing that

distinguishes one computer from the other��

� all processes run the same code

� all shared �or local� variables have the

same input value�

DS II L��� Philippas Tsigas

�

�

�

�

Impossibility Result

There is no symmetric solution to the dinning

philosophers problem

Proof Assume for the purpose of contradiction

that there is a solution A�

Consider a �round	robin
 execution � of A in

which �rst philosopher p� makes its �rst step

then p� � � � then pn� We can prove by induction

that after this �rst round all philosophers are

going to be in the same state and all links are

going to have the same messages�

Now we can prove again by induction on the

number of rounds that at the end of each round

all philosophers are alway going to be in the

same state�

The last one means that if philosopher pi at

some point starts eating its neighbours will

start eating together with him �by the end of

the respective round� Contradiction Accessible

common resources are referred ny the processes with their local

DS II L��� Philippas Tsigas

�

�

�

�

names

DS II L��	 Philippas Tsigas

�

�

�

�

RightLeft DP Protocol

For simplicity n is even

We give di�erent protocols to the philosophers�

one for the philosophers that we call with odd

indices and one for those with even indices�

The basic strategy is very simple�

Odd�numbered philosophers seek their right

fork �rst

Even�numbered philosophers seek their left fork

�rst

A philosopher seeks a chopstick by putting its

id at the end of that chopsticks queue� The

philosopher obtains the chopstick when its

index reaches the front of that chopsticks

queue� When a philosopher �nishes eating� it

returns both chopsticks by removing its index

from their queues�

DS II L��
 Philippas Tsigas

�

�

�

�

Time Complexity

IDEA� A chopstick between two philosophers is

either the �rst chopstick for both or the second

chopstick for both�

Time Complexity� Roughly ��� � �� ��

DS II L��� Philippas Tsigas

�

�

�

�

Same code to the processes

You can ask from your system �philosophers�

to get unique names from the range ����n� ���

But this is not going to be local because the

philosophers have to learn n�

You can ask from your processes to get a color

from the set of colours P � f black� white g� so

that no two neighbours get the same color�

Can this be done�

DS II L��� Philippas Tsigas

Leader Election

Let G = (V,E) define the network topology. Each

process i has a variable L(i) that defines the leader.

The goal is to reach a configuration, where

 i,j V i,j are non-faulty :: L(i) V and

 L(i) = L(j) and L(i) is non-faulty

Often reduces to maxima (or minima) finding problem.

(if we ignore the failure detection part)

Maxima finding on a unidirectional ring

Chang-Roberts algorithm.

Initially all initiator processes are red.

Each initiator process i sends out token <i>

{For each initiator i}

do token <j> received j < i skip (do nothing)

 token <j> j > i send token <j>; color := black

 token <j> j = i L(i) := i

 {i becomes the leader}

od

{Non-initiators remain black, and act as routers}

do token <j> received send <j> od

Message complexity = O(n
2
). Why?

What are the best and the worst cases?

0

1

2
3

4

n-1

5

The ids may not be nicely ordered

like this

LEADER LEARNS THE NETWORK

…..

token <j> j > i send token <j> and also append your id i; color

:= black

…

5

 Leader colors the graph localy

 Brodcasts the coloring

6

�

�

�

�

Dinning Philosophers Cnt�

We can have a solution to the dinning

philosophers problem if we start with a Black

� White coloring of the ring�

The Black � White coloring can be seen as a

preprocessing phase though that need to be

done from the system when philosophers leave

the table or new ones are joining�

On average if between two coloring phases

processes spend time proportional to n at the

table ���

DS II L��� Philippas Tsigas

�

�

�

�

Philosophers vs� Chopsticks

Let us have look at the algorithm that we

described in the previous lecture�

The algorithm looked like this�

� Hungry�

� Get a Black � White color if you do not

have one�

� If you are Black seek right chopstick �rst

� if you are White seek left chopstick �rst

� After �nish eating put the chopstick back

DS II L��� Philippas Tsigas

�

�

�

�

Philosophers vs� Chopsticks Cnt�

A new algorithm�

� Hungry�

� Give a Black � White �consistent
 color to

your chopsticks if you have not done that�

� Seek Black chopstick �rst

Remember� The idea of the �rst algorithm

was that a chopstick between two philosophers

is either the �rst �here black� chopstick for both

or the second �here white� chopstick for both�

DS II L��� Philippas Tsigas

�

�

�

�

How do I color chopsticks�

DS II L���� Philippas Tsigas

�

�

�

�

Resource Allocation

Generalising the Dinning Philosophers

A resource allocation problem consists of a

�nite set of resources and some competing

processes�

Processes request access to the resources from

time to time in order to execute a code segment

called critical section� Upon being granted all

the requested resources� a process proceeds to

use them and eventually relinquishes them�

Requirements�

�� Mutual exclusion No resource should be

accessed by more than one process at the

same time�

�� No Starvation As long as processes do

not fail� no process should wait forever for

requested resources�

DS II L���� Philippas Tsigas

�

�

�

�

Resource Allocation Solution

We generalise in a straightforward way the

RightLeft Dinning philosophers algorithm to an

arbitrary resource allocation problem�

We �rst construct the Resource Graph�

� The nodes of this graph represent the

resources

� There is a node from one node to another

if there is some process that uses both the

resources�

DS II L���� Philippas Tsigas

�

�

�

�

Coloring again

We node	color the resource graph

DS II L���	 Philippas Tsigas

�

�

�

�

The Generalisation

Each process seeks its resources in increasing

order according to the total ordering

constructed by the coloring�

A process seeks a resource by putting its index

at the end of that resources queue�

The process obtains the resource when its index

reaches the front of that resources queue�

When a process exits C� it returns all of its

resources by removing its index from their

queues�

Let us assume that k is the maximum number

of processes that require any single resource�

What is the time complexity of the algorithm�

DS II L���
 Philippas Tsigas

	din.pdf
	Slide Number 1

