E@% Distributed Computing and Systems

ng Chalmers university of technology

Prof Philippas Tsigas
Distributed Computing and Systems Research Group

DISTRIBUTED SYSTEMS I

RESOURCE ALLOCATION

DINING PHILOSHOPHERS

Figure 6.11 Dining Arrangement for Philosophers

DS Il

-

-

~

The problem

If one or more philosophers try to to eat, then

one of them eventually after a finite time
succeeds. No Deadlock

The above property does not provide any
guarantee on an individual basis since a
processor may try to eat and yet fail, since it
always bypassed by other philosophers. What
we would like to have is a stronger property,
which implies no deadlock:

No Starvation If a philosopher wishes to eat,
then it will eventually after a finite time
succeed as long as no philosopher keeps eating

forever.

We assume that each philosopher eats for at

most k time units, K >> 1.

/

L2.1 Philippas Tsigas

Symmetry

We say that a solution to a distributed problem

is symmetric if:

e all processes are identical (nothing that
distinguishes one computer from the other).

e all processes run the same code

e all shared (or local) variables have the

same input value.

_ /

DS Il L2.2 Philippas Tsigas

4 O

There is no symmetric solution to the dinning

Impossibility Result

philosophers problem

Proof Assume for the purpose of contradiction

that there is a solution A.

Consider a “round-robin” execution « of A in
which first philosopher p; makes its first step
then ps ... then p,,. We can prove by induction
that after this first round all philosophers are
going to be in the same state and all links are

going to have the same messages.

Now we can prove again by induction on the
number of rounds that at the end of each round
all philosophers are alway going to be in the

same state.

The last one means that if philosopher p; at
some point starts eating its neighbours will
start eating together with him (by the end of

the respective round. Contradiction accessibie
Qmmon resources are referred ny the processes with their local /

DS II L2.3 Philippas Tsigas

names

_ /

DS Il L2.4 Philippas Tsigas

4 O

RightLeft DP Protocol

For simplicity n is even

We give different protocols to the philosophers:
one for the philosophers that we call with odd

indices and one for those with even indices.
The basic strategy is very simple:

Odd-numbered philosophers seek their right
fork first

FEven-numbered philosophers seek their left fork
first

A philosopher seeks a chopstick by putting its
id at the end of that chopstick’s queue. The
philosopher obtains the chopstick when its
index reaches the front of that chopstick’s
queue. When a philosopher finishes eating, it
returns both chopsticks by removing its index

from their queues.

DS II L2.5 Philippas Tsigas

4 O

IDEA: A chopstick between two philosophers is
either the first chopstick for both or the second
chopstick for both.

Time Complexity

Time Complexity: Roughly 3x, k >> 1.

_ /

DS II L2.6 Philippas Tsigas

Same code to the processes

You can ask from your system (philosophers)
to get unique names from the range [0..n — 1].
But this is not going to be local because the

philosophers have to learn n.

You can ask from your processes to get a color
from the set of colours P = { black, white }, so

that no two neighbours get the same color.

Can this be done?

_ /

DS 1l L2.7 Philippas Tsigas

Leader Election

Let G = (V,E) define the network topology. Each
process i has a variable L(i) that defines the leader.
The goal is to reach a configuration, where

V1) e V: 1jare non-faulty :: L(i) € V and
L(i)) = L(j) and L(i) is non-faulty

Often reduces to maxima (or minima) finding problem.
(if we ignore the failure detection part)

Maxima finding on a unidirectional ring

Chang-Roberts algorithm.

Initially all initiator processes are red.

Each initiator process | sends out token <i> G
|

{For each initiator i}

do token <j>received A | <i— skip (do nothing)
token <j>A | > i — send token <j>; color := black G e
token <> A j=i > L(i) =1

N (5

{Non-initiators remain black, and act as routers}

do token <j> received — send <j> od The ids may not be nicely ordered

like this

Message complexity = O(n2). Why?
What are the best and the worst cases?

LEADER LEARNS THE NETWORK

token <>A | > 1 — send token <> and also append your id I; color
= black

* |eader colors the graph localy
e Brodcasts the coloring

Dinning Philosophers Cnt.

We can have a solution to the dinning
philosophers problem if we start with a Black
¢ White coloring of the ring.

The Black & White coloring can be seen as a
preprocessing phase though that need to be
done from the system when philosophers leave
the table or new ones are joining.

On average if between two coloring phases

processes spend time proportional to n at the
table ...

_ /

DS II L2.8 Philippas Tsigas

4 O

Philosophers vs. Chopsticks

Let us have look at the algorithm that we
described in the previous lecture.

The algorithm looked like this:
e Hungry?

e Get a Black & White color if you do not

have one.
e If you are Black seek right chopstick first
e if you are White seek left chopstick first

e After finish eating put the chopstick back

_ /

DS II L2.9 Philippas Tsigas

4 O

Philosophers vs. Chopsticks Cnt.

A new algorithm?

e Hungry?

e (Give a Black € White “consistent” color to

your chopsticks if you have not done that.

e Seek Black chopstick first

Remember: The idea of the first algorithm
was that a chopstick between two philosophers
is either the first (here black) chopstick for both
or the second (here white) chopstick for both.

_ /

DS II L2.10 Philippas Tsigas

How do I color chopsticks?

_ /

DS Il L2.11 Philippas Tsigas

4 O

Resource Allocation

Generalising the Dinning Philosophers

A resource allocation problem consists of a
finite set of resources and some competing

Processes.

Processes request access to the resources from
time to time in order to execute a code segment
called critical section. Upon being granted all
the requested resources, a process proceeds to
use them and eventually relinquishes them.

Requirements;

1. Mutual exclusion No resource should be
accessed by more than one process at the

same time.

2. No Starvation As long as processes do
not fail, no process should wait forever for

requested resources.

_ /

DS Il L2.12 Philippas Tsigas

~

-

We generalise in a straightforward way the

Resource Allocation Solution

RightLeft Dinning philosophers algorithm to an

arbitrary resource allocation problem.

We first construct the Resource Graph:

e The nodes of this graph represent the

resources

e There is a node from one node to another
if there is some process that uses both the

resources.

_ /

DS II 12.13 Philippas Tsigas

-

We node-color the resource graph

Coloring again

_ /

DS Il L2.14 Philippas Tsigas

4 O

The Generalisation

Each process seeks its resources in increasing
order according to the total ordering

constructed by the coloring.

A process seeks a resource by putting its index

at the end of that resource’s queue.

The process obtains the resource when its index

reaches the front of that resource’s queue.

When a process exits C, it returns all of its
resources by removing its index from their

queues.

Let us assume that k£ is the maximum number

of processes that require any single resource.

What is the time complexity of the algorithm?

_ /

DS II L2.15 Philippas Tsigas

	din.pdf
	Slide Number 1

