
DISTRIBUTED SYSTEMS II

REPLICATION CNT. II

Prof Philippas Tsigas

Distributed Computing and Systems Research Group

2

The Quorum consensus method for Replication

 To prevent transactions in different partitions from producing
inconsistent results
– make a rule that operations can be performed in only one of the partitions.

 RMs in different partitions cannot communicate:
– each subgroup decides independently whether they can perform operations.

 A quorum is a subgroup of RMs whose size gives it the right
to perform operations.
– e.g. if having the majority of the RMs could be the criterion

 in quorum consensus schemes
– update operations may be performed by a subset of the RMs

 and the other RMs have out-of-date copies

 version numbers or timestamps are used to determine which copies are up-to-date

 operations are applied only to copies with the current version number

•

3

Gifford’s quorum consensus file replication scheme

 a number of ‘votes’ is assigned to each physical copy of a logical file at an

RM

– a vote is a weighting giving the desirability of using a particular copy.

– each read operation must obtain a read quorum of R votes before it can read from any

up-to-date copy

– each write operation must obtain a write quorum of W votes before it can do an update

operation.

– R and W are set for a group of replica managers such that

 W > half the total votes

 R + W > total number of votes for the group

– ensuring that any pair contain common copies (i.e. a read quorum and a write quorum

or two write quora)

•

4

Gifford’s quorum consensus -
performing read and write operations

 before a read operation, a read quorum is collected
– by making version number enquiries at RMs to find a set of copies, the sum of whose

votes is not less than R (not all of these copies need be up to date).

– as each read quorum overlaps with every write quorum, every read quorum is certain to
include at least one current copy.

– the read operation may be applied to any up-to-date copy.

 before a write operation, a write quorum is collected
– by making version number enquiries at RMs to find a set with up-to-date copies, the

sum of whose votes is not less than W.

– if there are insufficient up-to-date copies, then an out-of-date file is replaced with a
current one, to enable the quorum to be established.

– the write operation is then applied by each RM in the write quorum, the version number
is incremented and completion is reported to the client.

– the files at the remaining available RMs are then updated in the background.

 Two-phase read/write locking is used for concurrency control
– the version number enquiry sets read locks (read and write quora overlap)

•

5

Gifford’s quorum consensus: configurability of groups
of replica managers

 groups of RMs can be configured to give different
performance or reliability characteristics
– once the R and W have been chosen for a set of RMs:

– the reliability and performance of write operations may be increased by
decreasing W

– and similarly for reads by decreasing R

 the performance of read operations is degraded by the need
to collect a read consensus

 examples from Gifford
– three examples show the range of properties that can be achieved by

allocating weights to the various RMs in a group and assigning R and W
appropriately

– weak representatives (on local disk) have zero votes, get a read quorum from
RMs with votes and then read from the local copy

•

6

Gifford’s quorum consensus examples (1979)

Example 1 Example 2 Example 3

Latency Replica 1 75 75 75

(milliseconds) Replica 2 65 100 750

Replica 3 65 750 750

Voting Replica 1 1 2 1

configuration Replica 2 0 1 1

Replica 3 0 1 1

Quorum R 1 2 1

sizes W 1 3 3

Derived performance of file suite:

Read Latency 65 75 75

Blocking probability 0.01 0.0002 0.000001

Write Latency 75 100 750

Blocking probability 0.01 0.0101 0.03

Example 1 is configured for a file with high read to write ratio

with several weak representatives and a single RM.

Replication is used for performance, not reliability.

The RM can be accessed in 75 ms and the two clients can access

their weak representatives in 65 ms, resulting in lower latency and

less network traffic

Example 2 is configured for a file with a moderate read to write ratio

which is accessed mainly from one local network. Local RM has 2

votes and remote RMs 1 vote each.

Reads can be done at the local RM, but writes must access one local

RM and one remote RM. If the local RM fails only reads are allowed

Example 3 is configured for a file with a very high read to write ratio.

Reads can be done at any RM and the probability of the file being

unavailable is small. But writes must access all RMs.

Derived performance

latency

blocking probability - probability

that a quorum cannot be

obtained, assuming probability

of 0.01 that any single RM is

unavailable

•

Distributed Replicated FIFO Queue

1. State Machine Approach (One copy of the Queue

on each replica)

2. Quorun Consensus
1. Can we use the approach above?

7

Distributed Replicated FIFO Queue

1. State Machine Approach (One copy of the Queue

on each replica)

2. Quorun Consensus:
1. Propably representing a state machine does not help here. Instead

represent the queue as a log of versioned entries:

 1.enq(x)

 2.enq(y)

 3.deq(x)

8

FIFO Queue

Can we use the log representation of the FIFO queue

to build a distributed highly available queue based

on quorum consensus?

 Enter enq or deq:

 Read queue version

 Compute new version

 Write new version

Make sure that all quorums intersect!
9

FIFO Queue

 Here is a new replication protocol:

Definition: To merge a log:

– Short entries in version order

– Discard Duplicates

– Merge logs from the initial read operation

– Reconstruct object’s state from log

– Apply operation and compute new entry

– Append new entry to log and write log to the the final quorum

– Each replica merges logs

10

11

12

13

Log Compaction

 Here is a more compact queue representation:
– No deq records

– The event horizon: enq version of most recently dequed item

– The sequence of undequed enq entries

To merge:

– take latest event horizon

– Discrad earlier enq entries

– Sort remaining enq entries, discard duplicates

Replicas can send event horizons in ”gossip” messages. Page (21)

14

Log Compaction

 Event horizons are type-specific, but many similar

ideas can work

 Garbage collection:
– Local: discard entries that can’t effect the future

– Non-local use background ”gossip” to discard entries.

15

Quorum Assignments

 How are quorums chosen?
– deq needs to know about earlier enq operations

– deq needs to know about earlier deq operations

– enq does not need to know about other operations

16

Depends-On Relation

 Let
– D be a relation on opertions

– h any operation sequence

– and p any operation

A view of h to p is

• a sequence of g of h

• contains every q such that pDq

• If g contains q, then it contains any earlier r such that qDr

Definition: D is a depends-on relation if whenever g.p is legal, so is h.p

17

Depends-On relation

 Quorum consensus replication is correct if and only

if the quorum intersection is a depends-on relation

18

19

The passive (primary-backup) model for fault tolerance

 There is at any time a single primary RM and one or more secondary
(backup, slave) RMs

 FEs communicate with the primary which executes the operation and
sends copies of the updated data to the result to backups

 if the primary fails, one of the backups is promoted to act as the primary

FE C

FE C

RM

Primary

Backup

Backup

RM

RM

Figure 14.4

•

The FE has to find the primary, e.g. after it crashes and another takes over

20

Passive (primary-backup) replication. Five phases.

 The five phases in performing a client request are as follows:

 1. Request:

– a FE issues the request, containing a unique identifier, to the primary RM

 2. Coordination:
– the primary performs each request atomically, in the order in which it receives

it relative to other requests

– it checks the unique id; if it has already done the request it re-sends the
response.

 3. Execution:

– The primary executes the request and stores the response.

 4. Agreement:
– If the request is an update the primary sends the updated state, the response

and the unique identifier to all the backups. The backups send an
acknowledgement.

 5. Response:
– The primary responds to the FE, which hands the response back to the client.

•

21

Passive (primary-backup) replication (discussion)

 This system implements linearizability, since the primary
sequences all the operations on the shared objects

 If the primary fails, the system is linearizable, if a single
backup takes over exactly where the primary left off, i.e.:
– the primary is replaced by a unique backup

– surviving RMs agree which operations had been performed at take over

 view-synchronous group communication can achieve this
– when surviving backups receive a view without the primary, they use an

agreed function to calculate which is the new primary.

– The new primary registers with name service

– view synchrony also allows the processes to agree which operations were
performed before the primary failed.

– E.g. when a FE does not get a response, it retransmits it to the new primary

– The new primary continues from phase 2 (coordination -uses the unique
identifier to discover whether the request has already been performed.

•

View-synchronous Group Communication

 Systems with dynamic groups extend this model by providing explicit join and

leave operations to adapt the group membership over time. Moreover, such

systems can exclude faulty servers automatically from the membership. Still,

reaching agreement on the group membership in the presence of failures is not

trivial.

Two approaches have been considered:

1. Run a consensus protocol among the all previous group members to agree on the future

group membership. This is the canonical approach, tolerates further failures during the

membership change, but involves the potentially expensive consensus primitive.

2. Integrate consensus with the membership protocol and run it only among the (hopefully)

correct members. Since this consensus algorithm needs not tolerate failures, it can be

simpler; but because further failures may still occur, it provides different guarantees.

The second approach is taken by view-synchronous group communication systems and related

group membership algorithms.

22

23

Discussion of passive replication

 To survive f process crashes, f+1 RMs are required
– it cannot deal with byzantine failures because the client can't get replies from

the backup RMs

 To design passive replication that is linearizable
– View synchronous communication has relatively large overheads

– Several rounds of messages per multicast

– After failure of primary, there is latency due to delivery of group view

 variant in which clients can read from backups
– which reduces the work for the primary

– get sequential consistency but not linearizability

 Sun NIS uses passive replication with weaker guarantees
– Weaker than sequential consistency, but adequate to the type of data stored

– achieves high availability and good performance

– Master receives updates and propagates them to slaves using 1-1
communication. Clients can uses either master or slave

– updates are not done via RMs - they are made on the files at the master •

