
DISTRIBUTED SYSTEMS II

REPLICATION CNT.

Prof Philippas Tsigas

Distributed Computing and Systems Research Group

Borrowed from H. Attiya 2

Executing Operations

P1

invocation response

P2

P3

3

Interleaving Operations

Concurrent execution

4

Interleaving Operations

(External) behavior

5

Interleaving Operations, or Not

Sequential execution

6

Interleaving Operations, or Not

Sequential behavior: invocations & response alternate and

match (on process & object)

Sequential specification: All the legal sequential behaviors,

satisfying the semantics of the ADT

– E.g., for a (LIFO) stack: pop returns the last item pushed

7

Correctness: Sequential consistency

[Lamport, 1979]

 For every concurrent execution there is a sequential

execution that
– Contains the same operations

– Is legal (obeys the sequential specification)

– Preserves the order of operations by the same process

8

Sequential Consistency: Examples

push(4)

pop():4 push(7)

Concurrent (LIFO) stack

push(4)

pop():4 push(7)

Last In First Out

9

Sequential Consistency: Examples

push(4)

pop():7 push(7)

Concurrent (LIFO) stack

Last In First Out

10

Sequential Consistency is not Composable

enq(Q1,X) enq(Q2,X) Deq (Q1,Y) enq(Q2,Y) enq(Q1,Y) deq(Q2,X)

The execution is not sequentially consistent

enq(Q1,Y) ->enq(Q1,X) =>

enq(Q2,Y)->enq(Q2,X)

11

Sequential Consistency is not Composable

enq(Q1,X) deq(Q1,Y) enq(Q1,Y) enq(Q2,X) enq(Q2,Y) deq(Q2,X)

The execution projected on each object is

sequentially consistent

Safety: Linearizability

– Sequential specification defines legal sequential executions

– Concurrent operations allowed to be interleaved

– For every concurrent execution there is a sequential execution that

 Contains the same operations

 Is legal (obeys the sequential specification)

 Preserves the real-time order of all operations

time

push(4)

pop():4 push(7)

push(4)

pop():4 push(7)

Last In First Out

concurrent

LIFO stack

T1

T2

Safety: Linearizability

– Sequential specification defines legal sequential executions

– Concurrent operations allowed to be interleaved

– Operations appear to execute atomically

 External observer gets the illusion that each operation takes effect

instantaneously at some point between its invocation and its response

time

push(4)

pop():4 push(7)

push(4)

pop():4 push(7)

Last In First Out

concurrent

LIFO stack

T1

T2

14

Sequential consistency (p567)

Client 1: Client 2:

setBalanceB(x,1)

getBalanceA(y)

getBalanceA(x)

setBalanceA(y,2)

•

this is possible under a naive replication

strategy, even if neither A or B fails -

the update at B has not yet been

propagated to A when client 2 reads it

it is not linearizable because client2’s getBalance is after client 1’s setBalance in real time.

but the following interleaving satisfies both criteria for sequential consistency :

getBalanceA(y) 0; getBalanceA(x) 0; setBalanceB(x,1); setBalanceA(y,2)

the following is sequentially consistent but not linearizable

15

Active replication for fault tolerance: State Machine
Approach

 the RMs are state machines all playing the same role and organised as a
group.

– all start in the same state and perform the same operations in the same order so that
their state remains identical

 If an RM crashes it has no effect on performance of the service because
the others continue as normal

 It can tolerate byzantine failures because the FE can collect and compare
the replies it receives

FE C FE C RM

RM

RM
Figure 14.5

•

a FE multicasts each request

to the group of RMs (and

FE’s)

the RMs process each request
identically and reply

Requires totally ordered reliable

multicast so that all RMs perfrom

the same operations in the same

order

16

Active replication - five phases in performing a client
request

 Request
– FE attaches a unique id and uses totally ordered reliable multicast to send

request to RMs. FE can at worst, crash. It does not issue requests in parallel

 Coordination
– the multicast delivers requests to all the RMs in the same (total) order.

 Execution
– every RM executes the request. They are state machines and receive

requests in the same order, so the effects are identical. The id is put in the
response

 Agreement
– no agreement is required because all RMs execute the same operations in

the same order, due to the properties of the totally ordered multicast.

 Response
– FEs collect responses from RMs. FE may just use one or more responses. If it

is only trying to tolerate crash failures, it gives the client the first response.

•

17

Replication for Highly available services: The gossip
approach

 we discuss the application of replication techniques to make
services highly available.
– we aim to give clients access to the service with:

 reasonable response times for as much of the time as possible

 even if some results do not conform to sequential consistency

 e.g. a disconnected user may accept temporarily inconsistent results if they can
continue to work and fix inconsistencies later

 eager versus lazy updates
– fault-tolerant systems send updates to RMs in an ‘eager’ fashion (as soon as

possible) and reach agreement before replying to the client

– for high availability, clients should:

 only need to contact a minimum number of RMs and

 be tied up for a minimum time while RMs coordinate their actions

– weaker consistency generally requires less agreement and makes data more
available. Updates are propagated 'lazily'.

•

18

14.4.1 The gossip architecture

 the gossip architecture is a framework for implementing highly available
services

– data is replicated close to the location of clients

– RMs periodically exchange ‘gossip’ messages containing updates

 gossip service provides two types of operations
– queries - read only operations

– updates - modify (but do not read) the state

 FE sends queries and updates to any chosen RM
– one that is available and gives reasonable response times

 Two guarantees (even if RMs are temporarily unable to communicate

– each client gets a consistent service over time (i.e. data reflects the updates seen by
client, even if the use different RMs). Vector timestamps are used – with one entry per
RM.

– relaxed consistency between replicas. All RMs eventually receive all updates. RMs use
ordering guarantees to suit the needs of the application (generally causal ordering).
Client may observe stale data.

•

19

Query and update operations in a gossip service

 The service consists of a collection of RMs that exchange gossip messages

 Queries and updates are sent by a client via an FE to an RM

•

Query Val

FE

RM RM

RM

Query, prev Val, new

Update

FE

Update, prev Update id

Service

Clients
Figure 14.6

prev is a vector timestamp for the latest version seen by the FE (and client)

new is the vector

timestamp of the

resulting value, val

update id is the vector

timestamp of the update

Gossip

Causal ordering

20

Gossip processing of queries and updates

 The five phases in performing a client request are:

– request

 FEs normally use the same RM and may be blocked on queries

 update operations return to the client as soon as the operation is passed to the FE

– update response - the RM replies as soon as it has seen the update

– coordination

 the RM waits to apply the request until the ordering constraints apply.

 this may involve receiving updates from other RMs in gossip messages

– execution - the RM executes the request

– query response - if the request is a query the RM now replies:

– agreement

 RMs update one another by exchanging gossip messages (lazily)

• e.g. when several updates have been collected

• or when an RM discovers it is missing an update

•

Causal ordering

21

22

Front ends propagate their timestamps whenever clients
communicate directly

 each FE keeps a vector timestamp of the latest value seen (prev)

– which it sends in every request

– clients communicate with one another via FEs which pass vector
timestamps

FE

Clients

FE

Service

Vector
timestamps

RM RM

RM

gossip

Figure 14.7

client-to-client communication

can lead to causal

relationships between

operations.

•

23

A gossip replica manager, showing its main state
components

•

Replica timestamp

Update log

Value timestamp

Value

Executed operation table

Stable

updates

Updates

Gossip

messages

FE

Replica
timestamp

Replica log

OperationID Update Prev

FE

Replica manager

Other replica managers

Timestamp table

Figure 14.8

value - application

state (each RM is a

state machine) we

are only talking

about one value

here

value timestamp (updated each time an update is

applied to the value)

replica timestamp - indicates updates accepted by RM in log (different from

value’s timestamp if some updates are not yet stable)

update log - held-back until ordering allows it to be applied (when it becomes stable) also held until

updates have been received by all other RMs

executed operation table - prevents an operation being

applied twice e.g. if received from other RMs as well as FE

timestamp table -a collection of vector timestamps

received from other RMs in gossip messages. It is used

to know when RMs have received updates

24

Processing of query and update operations

 Vector timestamp held by RM i consists of:
– ith element holds updates received from FEs by that RM

– jth element holds updates received by RM j and propagated to RM i

 Query operations contain q.prev
– they can be applied if q.prev ≤ valueTS (value timestamp)

– failing this, the RM can wait for gossip message or initiate them

 e.g. if valueTS = (2,5,5) and q.prev = (2,4,6) - RM 0 has missed an update

from RM 2

– Once the query can be applied, the RM returns valueTS (new) to the

FE. The FE merges new with its vector timestamp

•

RMs are numbered 0, 1, 2,…

e.g. in a gossip system with 3 RMs a value of (2,4,5) at RM 0 means that the

value there reflects the first 2 updates accepted from FEs at RM 0, the first 4 at

RM 1 and the first 5 at RM 2.

25

Gossip update operations

 Update operations are processed in causal order
– A FE sends update operation u.op, u.prev, u.id to RM i

 A FE can send a request to several RMs, using same id

– When RM i receives an update request, it checks whether it is new, by looking for the id
in its executed ops table and its log

– if it is new, the RM

 increments by 1 the ith element of its replica timestamp,

 assigns a unique vector timestamp ts to the update

 and stores the update in its log

logRecord = <i, ts, u.op, u.prev, u.id>

– The timestamp ts is calculated from u.prev by replacing its ith element by the ith
element of the replica timestamp.

– The RM returns ts to the FE,which merges it with its vector timestamp

– For stability u.prev ≤ valueTS

– That is, the valueTS reflects all updates seen by the FE.

– When stable, the RM applies the operation u.op to the value,updates valueTS and adds
u.id to the executed operation table.

•

26

Gossip messages

 an RM uses entries in its timestamp table to estimate which
updates another RM has not yet received
– The timestamp table contains a vector timestamp for each other replica,

collected from gossip messages

 an RM receiving gossip message m has the following main
tasks
– merge the arriving log with its own (omit those with ts ≤ replicaTS)

– apply in causal order updates that are new and have become stable

– remove redundant entries from the log and executed operation table when it is
known that they have been applied by all RMs

– merge its replica timestamp with m.ts, so that it corresponds to the additions in
the log

•

27

Discussion of Gossip architecture

 the gossip architecture is designed to provide a highly
available service

 clients with access to a single RM can work when other RMs
are inaccessible
– but it is not suitable for data such as bank accounts

– it is inappropriate for updating replicas in real time (e.g. a conference)

 scalability
– as the number of RMs grow, so does the number of gossip messages

– for R RMs, the number of messages per request (2 for the request and the
rest for gossip) = 2 + (R-1)/G

 G is the number of updates per gossip message

 increase G and improve number of gossip messages, but make latency worse

 for applications where queries are more frequent than updates, use some read-only
replicas, which are updated only by gossip messages

•

28

The Quorum consensus method for Replication

 To prevent transactions in different partitions from producing
inconsistent results
– make a rule that operations can be performed in only one of the partitions.

 RMs in different partitions cannot communicate:
– each subgroup decides independently whether they can perform operations.

 A quorum is a subgroup of RMs whose size gives it the right
to perform operations.
– e.g. if having the majority of the RMs could be the criterion

 in quorum consensus schemes
– update operations may be performed by a subset of the RMs

 and the other RMs have out-of-date copies

 version numbers or timestamps are used to determine which copies are up-to-date

 operations are applied only to copies with the current version number

•

29

Gifford’s quorum consensus file replication scheme

 a number of ‘votes’ is assigned to each physical copy of a logical file at an

RM

– a vote is a weighting giving the desirability of using a particular copy.

– each read operation must obtain a read quorum of R votes before it can read from any

up-to-date copy

– each write operation must obtain a write quorum of W votes before it can do an update

operation.

– R and W are set for a group of replica managers such that

 W > half the total votes

 R + W > total number of votes for the group

– ensuring that any pair contain common copies (i.e. a read quorum and a write quorum

or two write quora)

– therefore in a partition it is not possible to perform conflicting operations on the same

file, but in different partitions.

•

