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Introduction to replication 

 replication can provide the following 

 performance enhancement 
– e.g. several web servers can have the same DNS name and the servers are 

selected in turn. To share the load. 

– replication of read-only data is simple, but replication of changing data has 
overheads 

 fault-tolerant service 
– guarantees correct behaviour in spite of certain faults (can include timeliness) 

– if f of f+1 servers crash then 1 remains to supply the service 

– if f of 2f+1 servers have byzantine faults then they can supply a correct service  

 availability is hindered by 
– server failures 

 replicate data  at failure- independent servers and when one fails, client may use 
another.  

–  network partitions and disconnected operation  

 Users of mobile computers deliberately disconnect, and then on re-connection, 
resolve conflicts 

 • 

Replication of data :- the maintenance of 

copies of data at multiple computers 
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Availiability 

 is used for repairable systems 

 

It is the probability that the system is operational at 
any random time t. 

 

It can also be specified as a proportion of time that 
the system is available for use in a given interval  
(0,T).   

4 
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Requirements for replicated data 

 Replication transparency 
– clients see logical objects (not several physical copies) 

 they access one logical item and receive a single result 

 Consistency 
– specified to suit the application,  

 e.g. when a user of a diary disconnects, their local copy may be 
inconsistent with the others and will need to be reconciled when they 
connect again.  But connected clients using different copies should get 
consistent results. These issues are addressed in Bayou and Coda. 

 

• 
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A basic architectural model for the management of 
replicated data 

FE 

Requests and 

replies 

C 

Replica C 

Service 

Clients 

Front ends 

managers 

RM 

RM 
FE 

RM 

Figure 14.1 

• 

A collection of RMs provides a service to clients 

Clients see a service that gives them access to logical 

objects, which are in  fact replicated at the RMs 

Clients request operations: those without updates are called read-only 

requests the others are called update requests (they may include reads) 

Clients request are handled by front ends. A 

front end makes replication transparent.  
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14.2.1 System model 

 each logical object is implemented by a collection of physical 
copies called replicas 
– the replicas are not necessarily consistent all the time (some may 

have received updates, not yet conveyed to the others) 

 we assume an asynchronous system where processes fail 
only by crashing and generally assume no network partitions 

 replica managers  
– a RM contains replicas on a computer and access them directly 

– RMs apply operations to replicas recoverably 

 i.e. they do not leave inconsistent results if they crash 

– objects are copied at all RMs unless we state otherwise 

– static systems are based on a fixed set of RMs 

– in a dynamic system: RMs may join or leave (e.g. when they crash) 

– a RM can be a state machine, which has the following properties: 

• 



State Machine Semantic Characterization 

 Outputs of a state machine are complitely 

determined by the sequence of requests it 

processes indepedent of time and any other activity 

in the system. 

 

 Vague about internal structure 

 

8 



State Machine: Examples 

State machine 
 Server: 

 Word store[N] 

 

 Read(int loc) { 

 send store[loc] to client; 

} 

Write[int loc, word val] { 

store[loc]=val 

} 

Client 

 

memory.write(100, 4) 

Memory.read(100) 

Receive v from memory 

Not a state machine 

 while true do 
 read sensor 

 q := compute adjustment 

 send q to actuator 

 end while 

9 



State Machine no Replication Response Guarantees 

  

10 

Client 
Server 



Response Guarantees  

1) Requests issued by a single client to a state 

machine are processed in the order issued (FIFO 

request delivery) 

2)   

– Request r to state machine s by client c1 

– could have caused request r’ to s by client c2, 

then  

– s processes r before r’ 

 

11 
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Requests are buffered 

until they become stable 

to be processed 



All replicas process the same sequence of requests 

1. Uniquely identify the requests. 

2. Order the requests. Do not forget the guarantees 

that we expect. 
1. Server have to know when to service a request. (When a request is 

stable) 

14 



When to process a reguest – Stability Detection 

 3 methods: 
– Logical clocks 

– Real-time clocks 

– Server-generated ids 

15 



Logical Clocks 

 Assign integer T(e,p) to event e from processor p: 
– If e is a sending of a message 

– If e is a receiving of a message 

– Importanat event 

 

Properties: 

T(e,p) < T(e1,q) or vice-versa 

If e could have caused e1, then T(e,p)<T(e1,q) 
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p<q<r 
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Synchronized Real-Time Clocks 

– If a message sent with uid t will be received no 

later than t+D by local clock. 

– Uids differ by D at most at any time 
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Server-generated ids 

 Clients first get an id from the server then issue the 

id to issue a request (like a sequencer). 

19 



State Machine 

  

20 

Client 
Server 



State Machine 
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Client 
Server 
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State Machine approach to Replication 

• 

Each RM 

 applies operations atomically 

 its state is a deterministic function of its initial state and the operations             
applied 

 all replicas start identical and carry out the same sequence of operations 

 Its operations must not be affected by clock readings etc. 



Replication 

 Place a copy of the server state machine on multiple 

network nodes. 

 

 ? Communication of the requests? 

 ? Coordination ? 

 

 Want: 

• All replicas start in the same state  

• All replicas receive the same set of requests 

• All replicas process the same sequence of requests 

 

 

23 
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Four phases in performing a request 

 issue request  
– the FE either 

 sends the request  to a single RM that passes it on to the others  

 or multicasts the request to all of the RMs 

 coordination + agreement  
– the RMs decide whether to apply the request; and decide on its ordering 

relative to other requests (according to FIFO, causal or total ordering) 

 execution 
– the RMs execute the request (sometimes tentatively) 

 response 
– one or more RMs reply to FE. e.g. 

  for high availability give first response to client.  

 to tolerate byzantine faults, take a vote 

 

• 

FIFO ordering: if a FE issues r then r', then any correct RM handles r before r' Causal ordering: if  r  r', then any correct RM handles r before r' Total ordering: if a correct RM handles  r before r', then any correct RM 

handles r before r' 

RMs agree - I.e. reach a consensus as to effect of the request. In Gossip, all RMs  

eventually receive updates.  
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13.3.2. Active replication for fault tolerance 

 the RMs are state machines all playing the same role and organised as a 
group.  

– all start in the same state and perform the same operations in the same order so that 
their state remains identical 

 If an RM crashes it has no effect on performance of the service because 
the others continue as normal 

 It can tolerate byzantine failures because the FE can collect and compare 
the replies it receives 

FE C FE C RM 

RM 

RM 
Figure 14.5 

• 

a FE multicasts each request 

to the group of RMs (and 

FE’s) 

the RMs process each request 
identically and reply 

Requires totally ordered reliable 

multicast so that all RMs perfrom 

the same operations in the same 

order 

What sort of system do we need to perform totally ordered reliable multicast? 
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Active replication - five phases in performing a client 
request 

 Request 
– FE attaches a unique id and uses totally ordered reliable multicast to send 

request to RMs. FE can at worst, crash. It does not issue requests in parallel 

 Coordination 
– the multicast delivers requests to all the RMs in the same (total) order. 

 Execution 
– every RM executes the request. They are state machines and receive 

requests in the same order, so the effects are identical. The id is put in the 
response 

 Agreement 
– no agreement is  required because all RMs execute the same operations in 

the same order, due to the properties of the totally ordered multicast. 

 Response 
– FEs collect responses from RMs. FE may just use one or more responses. If it 

is only trying to tolerate crash failures, it gives the client the first response. 

• 
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Requirements for replicated data 

 Replication transparency 
– clients see logical objects (not several physical copies) 

 they access one logical item and receive a single result 

 Consistency 
 (General Consistency Models)  

  

 

• 



General Consistency Models 

 What consistency do we expect from concurrent 

operations 

28 



Borrowed from H. Attiya  29 

Executing Operations 

P1 

invocation response 

P2 

P3 
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Interleaving Operations 

Concurrent execution 
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Interleaving Operations 

(External) behavior 
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Interleaving Operations, or Not 

Sequential execution 
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Interleaving Operations, or Not 

 

 

 

Sequential behavior: invocations & response alternate and 

match (on process & object) 

Sequential specification: All the legal sequential behaviors, 

satisfying the semantics of the ADT 

– E.g., for a (LIFO) stack: pop returns the last item pushed 
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Correctness: Sequential consistency 

[Lamport, 1979] 

 For every concurrent execution there is a sequential 

execution that 
– Contains the same operations 

– Is legal (obeys the sequential specification) 

– Preserves the order of operations by the same process   
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Sequential Consistency: Examples 

push(4) 

pop():4 push(7) 

Concurrent (LIFO) stack 

push(4) 

pop():4 push(7) 

Last In First Out 

 

 
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Sequential Consistency: Examples 

push(4) 

pop():7 push(7) 

Concurrent (LIFO) stack 

Last In First Out 

 
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Sequential Consistency is not Composable 

enq(Q1,X) enq(Q2,X) Deq (Q1,Y) enq(Q2,Y) enq(Q1,Y) deq(Q2,X) 

The execution is not sequentially consistent 



38 

Sequential Consistency is not Composable 

enq(Q1,X) deq(Q1,Y) enq(Q1,Y) enq(Q2,X) enq(Q2,Y) deq(Q2,X) 

The execution projected on each object is  

sequentially consistent 



Safety: Linearizability 

– Sequential specification defines legal sequential executions 

– Concurrent operations allowed to be interleaved  

– For every concurrent execution there is a sequential execution that 

 Contains the same operations 

 Is legal (obeys the sequential specification) 

 Preserves the real-time order of all operations 

 

 

time 

push(4) 

pop():4 push(7) 

push(4) 

pop():4 push(7) 

Last In First Out 

concurrent  

LIFO stack 

T1 

T2 



Safety: Linearizability 

– Sequential specification defines legal sequential executions 

– Concurrent operations allowed to be interleaved  

– Operations appear to execute atomically  

 External observer gets the illusion that each operation takes effect 

instantaneously  at some point between its invocation and its response  

 

 

 

 

time 

push(4) 

pop():4 push(7) 

push(4) 

pop():4 push(7) 

Last In First Out 

concurrent  

LIFO stack 

T1 

T2 
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Linearizability (p566) the strictest criterion for a 
replication system 

 The correctness criteria for replicated objects are defined by 
referring to a virtual interleaving which would be correct 

 

• 

Consider a replicated service with two clients, that  perform read and update 

operations. A client waits for one operation to complete before doing another. 

Client operations o10, o11, o12 and o20, o21, o22 at a single server 

are interleaved in some order e.g. o20, o21, o10, o22 , o11, o12  

(client 1 does o10 etc) 

– For any set of client operations there is a virtual interleaving (which would be 
correct for a set of single objects).  

– Each client sees a view of the objects that is consistent with this, that is, the 
results of clients operations make sense within the interleaving 

 the bank example did not make sense: if the second update is observed,the  first 
update should be observed too.  

 

a replicated object service is linearizable if for any execution 
there is some interleaving of clients’ operations such that: 

–the interleaved sequence of operations meets the specification of a (single) 
correct copy of the objects 

–the order of operations in the interleaving is consistent with the real time at 
which they occurred 

linearizability is not intended to be used with transactional replication systems 

–The real-time requirement means clients should receive up-to-date information 

but may not be practical due to difficulties of synchronizing clocks  

a weaker criterion is sequential consistency  


