
DISTRIBUTED SYSTEMS II

REPLICATION

Prof Philippas Tsigas

Distributed Computing and Systems Research Group

Copyright © George

Coulouris, Jean Dollimore,

Tim Kindberg 2001

email: authors@cdk2.net

This material is made

available for private study

and for direct use by

individual teachers.

It may not be included in any

product or employed in any

service without the written

permission of the authors.

Viewing: These slides

must be viewed in

slide show mode.

Teaching material

based on Distributed

Systems: Concepts

and Design, Edition 3,

Addison-Wesley 2001.

Distributed Systems Course

Replication

14.1 Introduction to replication

14.2 System model and group

communication

14.3 Fault-tolerant services

14.4 Highly available services

14.4.1 Gossip architecture

14.5 Transactions with replicated data

3

Introduction to replication

 replication can provide the following

 performance enhancement
– e.g. several web servers can have the same DNS name and the servers are

selected in turn. To share the load.

– replication of read-only data is simple, but replication of changing data has
overheads

 fault-tolerant service
– guarantees correct behaviour in spite of certain faults (can include timeliness)

– if f of f+1 servers crash then 1 remains to supply the service

– if f of 2f+1 servers have byzantine faults then they can supply a correct service

 availability is hindered by
– server failures

 replicate data at failure- independent servers and when one fails, client may use
another.

– network partitions and disconnected operation

 Users of mobile computers deliberately disconnect, and then on re-connection,
resolve conflicts

 •

Replication of data :- the maintenance of

copies of data at multiple computers

4

Availiability

 is used for repairable systems

It is the probability that the system is operational at
any random time t.

It can also be specified as a proportion of time that
the system is available for use in a given interval
(0,T).

4

5

Requirements for replicated data

 Replication transparency
– clients see logical objects (not several physical copies)

 they access one logical item and receive a single result

 Consistency
– specified to suit the application,

 e.g. when a user of a diary disconnects, their local copy may be
inconsistent with the others and will need to be reconciled when they
connect again. But connected clients using different copies should get
consistent results. These issues are addressed in Bayou and Coda.

•

6

A basic architectural model for the management of
replicated data

FE

Requests and

replies

C

Replica C

Service

Clients

Front ends

managers

RM

RM
FE

RM

Figure 14.1

•

A collection of RMs provides a service to clients

Clients see a service that gives them access to logical

objects, which are in fact replicated at the RMs

Clients request operations: those without updates are called read-only

requests the others are called update requests (they may include reads)

Clients request are handled by front ends. A

front end makes replication transparent.

7

14.2.1 System model

 each logical object is implemented by a collection of physical
copies called replicas
– the replicas are not necessarily consistent all the time (some may

have received updates, not yet conveyed to the others)

 we assume an asynchronous system where processes fail
only by crashing and generally assume no network partitions

 replica managers
– a RM contains replicas on a computer and access them directly

– RMs apply operations to replicas recoverably

 i.e. they do not leave inconsistent results if they crash

– objects are copied at all RMs unless we state otherwise

– static systems are based on a fixed set of RMs

– in a dynamic system: RMs may join or leave (e.g. when they crash)

– a RM can be a state machine, which has the following properties:

•

State Machine Semantic Characterization

 Outputs of a state machine are complitely

determined by the sequence of requests it

processes indepedent of time and any other activity

in the system.

 Vague about internal structure

8

State Machine: Examples

State machine
 Server:

 Word store[N]

 Read(int loc) {

 send store[loc] to client;

}

Write[int loc, word val] {

store[loc]=val

}

Client

memory.write(100, 4)

Memory.read(100)

Receive v from memory

Not a state machine

 while true do
 read sensor

 q := compute adjustment

 send q to actuator

 end while

9

State Machine no Replication Response Guarantees

10

Client
Server

Response Guarantees

1) Requests issued by a single client to a state

machine are processed in the order issued (FIFO

request delivery)

2)

– Request r to state machine s by client c1

– could have caused request r’ to s by client c2,

then

– s processes r before r’

11

12

13

Requests are buffered

until they become stable

to be processed

All replicas process the same sequence of requests

1. Uniquely identify the requests.

2. Order the requests. Do not forget the guarantees

that we expect.
1. Server have to know when to service a request. (When a request is

stable)

14

When to process a reguest – Stability Detection

 3 methods:
– Logical clocks

– Real-time clocks

– Server-generated ids

15

Logical Clocks

 Assign integer T(e,p) to event e from processor p:
– If e is a sending of a message

– If e is a receiving of a message

– Importanat event

Properties:

T(e,p) < T(e1,q) or vice-versa

If e could have caused e1, then T(e,p)<T(e1,q)

16

p<q<r

17

Synchronized Real-Time Clocks

– If a message sent with uid t will be received no

later than t+D by local clock.

– Uids differ by D at most at any time

18

Server-generated ids

 Clients first get an id from the server then issue the

id to issue a request (like a sequencer).

19

State Machine

20

Client
Server

State Machine

21

Client
Server

22

State Machine approach to Replication

•

Each RM

 applies operations atomically

 its state is a deterministic function of its initial state and the operations
applied

 all replicas start identical and carry out the same sequence of operations

 Its operations must not be affected by clock readings etc.

Replication

 Place a copy of the server state machine on multiple

network nodes.

 ? Communication of the requests?

 ? Coordination ?

 Want:

• All replicas start in the same state

• All replicas receive the same set of requests

• All replicas process the same sequence of requests

23

24

Four phases in performing a request

 issue request
– the FE either

 sends the request to a single RM that passes it on to the others

 or multicasts the request to all of the RMs

 coordination + agreement
– the RMs decide whether to apply the request; and decide on its ordering

relative to other requests (according to FIFO, causal or total ordering)

 execution
– the RMs execute the request (sometimes tentatively)

 response
– one or more RMs reply to FE. e.g.

 for high availability give first response to client.

 to tolerate byzantine faults, take a vote

•

FIFO ordering: if a FE issues r then r', then any correct RM handles r before r' Causal ordering: if r  r', then any correct RM handles r before r' Total ordering: if a correct RM handles r before r', then any correct RM

handles r before r'

RMs agree - I.e. reach a consensus as to effect of the request. In Gossip, all RMs

eventually receive updates.

25

13.3.2. Active replication for fault tolerance

 the RMs are state machines all playing the same role and organised as a
group.

– all start in the same state and perform the same operations in the same order so that
their state remains identical

 If an RM crashes it has no effect on performance of the service because
the others continue as normal

 It can tolerate byzantine failures because the FE can collect and compare
the replies it receives

FE C FE C RM

RM

RM
Figure 14.5

•

a FE multicasts each request

to the group of RMs (and

FE’s)

the RMs process each request
identically and reply

Requires totally ordered reliable

multicast so that all RMs perfrom

the same operations in the same

order

What sort of system do we need to perform totally ordered reliable multicast?

26

Active replication - five phases in performing a client
request

 Request
– FE attaches a unique id and uses totally ordered reliable multicast to send

request to RMs. FE can at worst, crash. It does not issue requests in parallel

 Coordination
– the multicast delivers requests to all the RMs in the same (total) order.

 Execution
– every RM executes the request. They are state machines and receive

requests in the same order, so the effects are identical. The id is put in the
response

 Agreement
– no agreement is required because all RMs execute the same operations in

the same order, due to the properties of the totally ordered multicast.

 Response
– FEs collect responses from RMs. FE may just use one or more responses. If it

is only trying to tolerate crash failures, it gives the client the first response.

•

27

Requirements for replicated data

 Replication transparency
– clients see logical objects (not several physical copies)

 they access one logical item and receive a single result

 Consistency
 (General Consistency Models)

•

General Consistency Models

 What consistency do we expect from concurrent

operations

28

Borrowed from H. Attiya 29

Executing Operations

P1

invocation response

P2

P3

30

Interleaving Operations

Concurrent execution

31

Interleaving Operations

(External) behavior

32

Interleaving Operations, or Not

Sequential execution

33

Interleaving Operations, or Not

Sequential behavior: invocations & response alternate and

match (on process & object)

Sequential specification: All the legal sequential behaviors,

satisfying the semantics of the ADT

– E.g., for a (LIFO) stack: pop returns the last item pushed

34

Correctness: Sequential consistency

[Lamport, 1979]

 For every concurrent execution there is a sequential

execution that
– Contains the same operations

– Is legal (obeys the sequential specification)

– Preserves the order of operations by the same process

35

Sequential Consistency: Examples

push(4)

pop():4 push(7)

Concurrent (LIFO) stack

push(4)

pop():4 push(7)

Last In First Out





36

Sequential Consistency: Examples

push(4)

pop():7 push(7)

Concurrent (LIFO) stack

Last In First Out



37

Sequential Consistency is not Composable

enq(Q1,X) enq(Q2,X) Deq (Q1,Y) enq(Q2,Y) enq(Q1,Y) deq(Q2,X)

The execution is not sequentially consistent

38

Sequential Consistency is not Composable

enq(Q1,X) deq(Q1,Y) enq(Q1,Y) enq(Q2,X) enq(Q2,Y) deq(Q2,X)

The execution projected on each object is

sequentially consistent

Safety: Linearizability

– Sequential specification defines legal sequential executions

– Concurrent operations allowed to be interleaved

– For every concurrent execution there is a sequential execution that

 Contains the same operations

 Is legal (obeys the sequential specification)

 Preserves the real-time order of all operations

time

push(4)

pop():4 push(7)

push(4)

pop():4 push(7)

Last In First Out

concurrent

LIFO stack

T1

T2

Safety: Linearizability

– Sequential specification defines legal sequential executions

– Concurrent operations allowed to be interleaved

– Operations appear to execute atomically

 External observer gets the illusion that each operation takes effect

instantaneously at some point between its invocation and its response

time

push(4)

pop():4 push(7)

push(4)

pop():4 push(7)

Last In First Out

concurrent

LIFO stack

T1

T2

41

Linearizability (p566) the strictest criterion for a
replication system

 The correctness criteria for replicated objects are defined by
referring to a virtual interleaving which would be correct

•

Consider a replicated service with two clients, that perform read and update

operations. A client waits for one operation to complete before doing another.

Client operations o10, o11, o12 and o20, o21, o22 at a single server

are interleaved in some order e.g. o20, o21, o10, o22 , o11, o12

(client 1 does o10 etc)

– For any set of client operations there is a virtual interleaving (which would be
correct for a set of single objects).

– Each client sees a view of the objects that is consistent with this, that is, the
results of clients operations make sense within the interleaving

 the bank example did not make sense: if the second update is observed,the first
update should be observed too.

a replicated object service is linearizable if for any execution
there is some interleaving of clients’ operations such that:

–the interleaved sequence of operations meets the specification of a (single)
correct copy of the objects

–the order of operations in the interleaving is consistent with the real time at
which they occurred

linearizability is not intended to be used with transactional replication systems

–The real-time requirement means clients should receive up-to-date information

but may not be practical due to difficulties of synchronizing clocks

a weaker criterion is sequential consistency

