
DISTRIBUTED SYSTEMS II
RESOURCE ALLOCATION: DRINKING PHILOSOPHERS

Prof Philippas Tsigas
Distributed Computing and Systems Research Group



Con�ict �� Precedence Graph

Undirected graph� in which edges represent shared
resources between processes we call this graph conflict
graph�

The algorithm by Chandy and Misra resolves con�icts
by de�ning for every possible con�ict a precedence relation�

� When two processes compete for a resource the one
with higher precedence may access the resource �rst�

� In order to receive a solution which is fair these
precedences will have to change dynamically�

The directed graph graph that changes dynamically is called
precedence graph�

For each resource an edge of the precedence graph is
directed from processes with lower precedence to processes
with higher precedence�

� Typeset by FoilTEX � �



The precedences of the graph are chosen such that it
is always possible to distinguish at least one process from
all other processes i�e� this process can enter its critical
section� �NO DEADLOCK�

This is ensured by the existence of at least one process
which has higher precedence for all its shared resources� A
process with this property is called sink�

Its existence is guaranteed when the precedence graph
is always acyclic�

By changing directions of edges it is possible to change
the precedences dynamically�

This must happen in a way that the precedence graph
stays acyclic� so progress� fairness and mutual exclusion is
guaranteed�

� Typeset by FoilTEX � �



Starting with a DAG

� The graph is initialised acyclic for example by a node	
colouring algorithm�

� The graph can remain acyclic if after use of the critical
section a process reverse all adjacent precedences in one
step�

� Need a mechanism to keep the sense of direction�

� Typeset by FoilTEX � �



The mechanism

Forks which have the property to be either clean or
dirty�

� A fork will be cleanedbefore it is send to a neighbour
process�

� A clean fork will become dirty when the holder of the
resource enters the critical section�

� After use it remains dirty until it is sent to a neighbour
process�

� Typeset by FoilTEX � �



The dynamic DAG

� The respective precedence graph H can be de�ned in
the following way�

� For all pairs of processes p and q which share a common
resource� �p�q� one of the following statements is true�


� p holds the fork for the resource and the fork is clean

�� q holds the fork for the resource and the fork is dirty

�� the fork for the resource is in transit from q to p

� Typeset by FoilTEX � �



Requesting Forks

The request of forks is realized by request tokens�

For each fork there exist one request token such that
only the holder of the request token can request a fork�

A hungry process requests a fork by sending the request
token to the owner of the desired fork�

A process is not interested in accessing its resources
when it holds a request token but not a fork�

� Typeset by FoilTEX � �



The algorithm

The algorithm is initialised by an acyclic precedence
graph H and all processes with lower precedence own dirty
forks while processes with higher precedence own request
tokens�

All processes are thinking i�e they are not interested in
their resources�

A process which becomes hungry will send all its request
token to neighbour processes and wait until it received
all forks�

� A process which received all forks will change its state
to eating�

� A process which leaves the critical section

changes the state of all its forks to dirty� Then
for all held request token the respective fork is sent
to neighbour processes�

The above steps assume following rules�

� Typeset by FoilTEX � �



Receiving a request token for fork f �


� If processors state is dierent from eating and f is
dirty then f will be sent to the requesting processor�

�� If processors state was also hungry then the request
token will also be sent back�

Receiving a fork f � The state of f will be set to clean�

� Typeset by FoilTEX � 	



Chandy-Misra[84] (Hygenic) Solution
Details

 if diner does not have fork – it sends request to the 
neighbor

 process
gives up 
dirty forks
and holds
clean

 diner
can only
wait for higher
priority 
neighbor

• notice after eating, diner is a source (all his forks are 
dirty)

• graph remains acyclic throughout operation
• acyclic graph has a sink (lowest priority diner), that diner 

is guaranteed to eat



Correctness

Mutual Exclusion�

Proof� The precedence graph H is acyclic� �

No Starvation

Proof� Let the depth in H of any process p be de�ned
as the maximum number of edges along a path from p to
another process without predecessor� The proof will show
by induction that a process of depth k will eventually eat if
predecessors at depth k�� can eat� �

� Typeset by FoilTEX � 




Complexities

Communication Complexity� O�degree�

Proof� A process sends at most one request token to
each neighbour and receives from each neighbour at most
one fork� �

Tine Complexity� O�n�

� Typeset by FoilTEX � ��



Time Complexity

W

Max distance from sink = 1

W

B

B

W

B

Fast

Slow



W

Max distance from sink = 2

W

B

B

W

B

Fast

Slow



W

Max distance from sink = 2

W

B

B

W

B
SlowFast



W

Max distance from sink = 2

W

B

B

W

B
Slow

Fast



W 

Max distance from sink = 3 

W 

B 

B 

W 

B 
Slow 


	din.pdf
	Slide Number 1




