
DISTRIBUTED SYSTEMS II

FAULT-TOLERANT AGREEMENT

Prof Philippas Tsigas

Distributed Computing and Systems Research Group

Copyright © George

Coulouris, Jean Dollimore,

Tim Kindberg 2001

email: authors@cdk2.net

This material is made

available for private study

and for direct use by

individual teachers.

It may not be included in any

product or employed in any

service without the written

permission of the authors.

Viewing: These slides

must be viewed in

slide show mode.

Teaching material

based on Distributed

Systems: Concepts

and Design, Edition 3,

Addison-Wesley 2001.

Distributed Systems Course

Coordination and Agreement

11.5 Consensus and Related problems

Agreement

 All processes start with an initial value from some

set V

 •Every process has to decide on a value in V such

that:
– Agreement: no two non-faulty processes decide on different values

– Validity: if all processes start with the same value v, then no non-

faulty process decides on a value different from v

– Termination: all non-faulty processes decide within finite time

3

4

The one general problem (Trivial!)

 Battlefield

G

Troops

5

The two general problem:

 <------------------------------->

messengers

Blue army Red army

Blue
G

Red
G

Enemy

6

 Blue and red army must attack

 at same time

 Blue and red generals synchronize

 through messengers

 Messengers (messages) can be lost

Rules:

7

How Many Messages Do We Need?

BG RG

attack at 9am

assume blue starts...

Is this enough??

8

How Many Messages Do We Need?

BG RG

attack at 9am

assume blue starts...

Is this enough??

ack (red goes at 9am)

9

How Many Messages Do We Need?

BG RG

attack at 9am

assume blue starts...

Is this enough??

ack (red goes at 9am)

got ack

10

Stated problem is Impossible!

 Theorem: There is no protocol that uses a finite

number of messages that solves the two-generals

problem (as stated here)

 Proof: Consier the shortest such protocol(execution)

– Consider last message

– Protocol must work if last message never arrives

– So don’t send it

– But, now you have a shorter protocol(execution)

11

Stated problem is Impossible!

 Theorem: There is no protocol that uses a finite

number of messages that solves the two-generals

problem (as stated here)

Alternatives??

12

Probabilistic Approach?

 Send as many messages as possible, hope one

gets through...

BG RG

attack at 9am

assume blue starts...

attack at 9am

attack at 9am

attack at 9am

13

Eventual Commit

 Eventually both sides attack...

BG RG

attack ASAP

assume blue starts...

 on my way!

retransmits
retransmits

14

2-Phase Eventual Commit

 Eventually both sides attack...

BG RG

ready to attack?

assume blue starts...

 yes, at your disposal

 attack ASAP

 ack

retransmits

retransmits

phase 1

phase 2

15

•Chalmers surrounded by army units

•Armies have to attack simultaneously in order to conquer Chalmers

•Communication between generals by means of messengers

•Some generals of the armies are traitors

The Byzantine agreement problem

 One process(the source or commander) starts with a binary value

 •Each of the remaining processes (the lieutenants) has to decide on a

binary value such that:

 •Agreement: all non-faulty processes agree on the same value

 •Validity: if the source is non-faulty, then all non-faulty processes agree

on the initial value of the source

 •Termination: all processes decide within finite time

 •So if the source is faulty, the non-faulty processes can agree on any

value

 •It is irrelevant on what value a faulty process decides

16

Byzantine Empire

Conditions for a solution for Byzantine faults

• Number of processes: n

• Maximum number of possibly failing processes: f

• Necessary and sufficient condition for a solution to Byzantine

agreement:

 f<n/3

 •Minimal number of rounds in a deterministic solution:

 f+1

 •There exist randomized solutions with a lower expected number of

rounds

18

Senario 1

19

Senario 2

20

Impossibility of 1-resilient 3-processor Agreement

21

A:VA=0

B:VB=0

C:VC=0 A´:VA´=1

B´:VB´=1

C´:VC´=1

E1

Impossibility of 1-resilient 3-processor Agreement

22

A:VA=0

B:VB=0

C:VC=0 A´:VA´=1

B´:VB´=1

C´:VC´=1

E0

Impossibility of 1-resilient 3-processor Agreement

23

A:VA=0

B:VB=0

C:VC=0 A´:VA´=1

B´:VB´=1

C´:VC´=1

E1

Impossibility of 1-resilient 3-processor Agreement

24

A:VA=0

B:VB=0

C:VC=0 A´:VA´=1

B´:VB´=1

C´:VC´=1

E2

Proof

• In E0 A and B decide 0

• In E1 B´ and C´ decide 1

• In E2 C´ has to decide 1 and A has to decide 0,

contradiction!

25

t-resilient algorithm requiring n<=3t processors, t=>2

26

P1, P4 P2 P3

P1, P2, P3, P4 ...

P´1 P´2 P´3

o For a system with at most f processes crashing, the
algorithm proceeds in f+1 rounds (with timeout), using
basic multicast.

o Valuesr
i: the set of proposed values known to Pi at the

beginning of round r.
o Initially Values0

i = {} ; Values1
i = {vi}

 for round = 1 to f+1 do

 multicast (Values ri – Valuesr-1
i)

 Values r+1
i Valuesr

i

 for each Vj received

 Values r+1
i = Values r+1

i Vj

 end

 end

 di = minimum(Values f+2
i)

Consensus in a Synchronous System

Proof of Correctness

 Proof by contradiction.

 Assume that two processes differ in their final set

of values.

 Assume that pi possesses a value v that pj does

not possess.
 A third process, pk, sent v to pi, and crashed before sending v to

pj.

 Any process sending v in the previous round must have crashed;

otherwise, both pk and pj should have received v.

 Proceeding in this way, we infer at least one crash in each of the

preceding rounds.

 But we have assumed at most f crashes can occur and there are

f+1 rounds contradiction.

Byzantine agreem. with authentication

• Every message carries a signature

• The signature of a loyal general cannot be forged

• Alteration of the contents of a signed message can be detected

• Every (loyal) general can verify the signature of any other (loyal)

general

• Any number f of traitors can be allowed

• Commander is process 0

• Structure of message from (and signed by) the commander, and

subsequently signed and sent by lieutenants Li1, Li2,…:

• (v : s0 : si1: … : sik)

• Every lieutenant maintains a set of orders V

• Some choice function on V for deciding (e.g., majority, minimum)

29

 •Algorithm in commander:
send(v: s0)to every lieutenant

– Algorithm in every lieutenant Li:
 upon receipt of (v : s0: si1: …. : sik) do

 if (v not in V) then

 V := V union {v}

 if (k < f) then

 for(j in {1,2,…,n-1} \{i,i1,…,ik}) do

 send(v: s0: si1: … : sik: i) to Lj

If (Li will not receive any more messages) then decide(choice(V))

30

