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Program Logic Calculus – Repetition

Calculus realises symbolic interpreter:

I works on first active statement

I decomposition of complex statements into simpler ones
I simple assignments to updates
I accumulated update captures changed program state
I control flow branching induces proof splitting
I application of update computes weakest precondition of U ′ wrt. φ

Γ′ =⇒ {U ′}φ . . .

. . . . . .

‘branch1’ Γ, {U}(isValid .
= TRUE) =⇒ {U}〈{ok=true;}...〉φ

‘branch2’ Γ, {U}(isValid .
= FALSE) =⇒ {U}〈...〉φ

Γ =⇒ 〈if(isValid){ok=true;}...〉φ
. . .

Γ =⇒ {t := j}〈j=j+1;i=t;if(isValid){ok=true;}...〉φ
Γ =⇒ 〈t=j;j=j+1;i=t;if(isValid){ok=true;}...〉φ

Γ =⇒ 〈i=j++;if(isValid){ok=true;}...〉φ
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Are parallel updates sufficient?

How to express using updates that a formula φ is evaluated in a state
where

I program variable i has been set to 5?

{i := 5}φ
I program variable i has been increased by 1? {i := i+1}φ
I program variables i and j swapped values? {i := j ‖ j := i}φ
I all components of an array arr of length 2 have value 0?

{arr[0] := 0 ‖ arr[1] := 0}φ
I all components of an array arr of length n have value 0?

For example to deal with things like

〈int[] a = new int[n];〉
∀ int x ; (0 ≤ x < a.length→ a[x]

.
= 0)
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Quantified Updates

Definition (Quantified Update)

For T well-ordered type (no ∞ descending chains): quantified update:

{\for T x ; \if φ(x); l(x) := r(x)}

I For all objects d in T such that φ(d)
perform the updates {l(d) := r(d)} in parallel

I If there are several l with conflicting d then choose T -minimal one

I The conditional expression is optional

I Typically, x occurs in φ, l , and r (but doesn’t need to)

I There is a normal form for updates computed efficiently by KeY
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Quantified Updates Cont’d

Example (Initialization of field a for all objects in class C)

{\for C o; o.a := 0}

Example (Initialization of components of array a )

{\for int i ; a[i ] := 0}

Example (Integer types are well-ordered in KeY)

{\for int i ; a[0] := i}(a[0]
.

= 0)

I Non-standard order for ZZ (with 0 smallest and preserving < for
arguments of same sign)

I Proven automatically by update simplifier
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Loop Invariants

Symbolic execution of loops: unwind

unwindLoop
Γ =⇒ U [π if(b){p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

(We omitted U previous lectures, for simplicity.)

How to handle a loop with. . .

I 0 iterations? Unwind 1×
I 10 iterations? Unwind 11×
I 10000 iterations? Unwind 10001×
I an unknown number of iterations?

We need an invariant rule (or some form of induction)
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Loop Invariants Cont’d

Idea behind loop invariants

I A formula Inv whose validity is preserved by loop guard and body

I Consequence: if Inv was valid at start of the loop, then it still holds
after arbitrarily many loop iterations

I If the loop terminates, then Inv holds afterwards

I Construct Inv such that, together with loop exit condition, it implies
postcondition of loop

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (valid when entering loop)
Inv , b

.
= TRUE =⇒ [p]Inv (preserved by p)

Inv , b
.

= FALSE =⇒ [π ω]φ (assumed after exit)

Γ =⇒ U [π while(b) p ω]φ,∆
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Loop Invariants Cont’d

Basic Invariant Rule: Problem

loopInvariant

Γ =⇒ U Inv ,∆ (valid when entering loop)
Inv , b

.
= TRUE =⇒ [p]Inv (preserved by p)

Inv , b
.

= FALSE =⇒ [π ω]φ (assumed after exit)
Γ =⇒ U [π while(b) p ω]φ,∆

I Context Γ, ∆, U must be omitted in 2nd and 3rd premise:
I U represents state when entering loop, not after some loop iterations
I keeping Γ, ∆ without U meant executing p in prestate of program

I But: context contains important preconditions and class invariants

I Relevant context information must be added to Inv /
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I Relevant context information must be added to Inv /
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Keeping the Context

I Want to keep part of the context that is unmodified by loop

I assignable clauses for loops can tell what might be modified

@ assignable i, a[*];

I How to erase all values of assignable locations in formula Γ ?

I Anonymising update V erases information about assignable locations

{i := c} (c fresh constant symbol)
{\for x ; a[x] := f (x)} (f fresh function symbol)

V = {i := c || \for x ; a[x] := f (x)}
(c, f fresh constant resp. function symbol)
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Loop Invariants Cont’d

Improved Invariant Rule

Γ =⇒ U Inv ,∆ (valid when entering loop)
Γ =⇒ UV(Inv & b

.
= TRUE → [p]Inv),∆ (preserved by p)

Γ =⇒ UV(Inv & b
.

= FALSE → [π ω]φ),∆ (assumed after exit)

Γ =⇒ U [π while(b) p ω]φ,∆

I Context is kept as far as possible

I Invariant not ‘responsible’ for un-assignable locations
I Missing assignable clause (equiv. to assignable \everything):

I V = {∗ := ∗} wipes out all information
I Equivalent to basic invariant rule
I Avoid this! Always give a specific assignable clause
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Example with Improved Invariant Rule

(Implicit) Class Invariant: a 6 .= null

not needed for loop invariant

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x < a.length→ a[x]
.

= 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x < i→ a[x]
.

= 1)
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Example in JML/JAVA – Loop.java

public int[] a;

/*@ public normal_behavior

@ ensures (\forall int x; 0<=x && x<a.length; a[x]==1);

@ diverges true;

@*/

public void m() {

int i = 0;

/*@ loop_invariant

@ (0 <= i && i <= a.length &&

@ (\forall int x; 0<=x && x<i; a[x]==1));

@ assignable i, a[*];

@*/

while(i < a.length) {

a[i] = 1;

i++;

}

}
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Example from last week

∀ int x ;
(x

.
= n ∧ x >= 0→
[ i = 0; r = 0;

while (i<n) { i = i + 1; r = r + i;}

r=r+r-n;

]r
.

= ?)

How can we prove that the above formula is valid
(i.e. satisfied in all states)?

Solution:

@ loop_invariant

@ i>=0 && 2*r == i*(i + 1) && i <= n;

@ assignable i, r;

File: Loop2.java
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Hints

Proving assignable

I The invariant rule assumes that assignable is correct
E.g., with assignable \nothing; one can prove nonsense

I Invariant rule of KeY generates proof obligation that ensures
correctness of assignable

Setting in the KeY Prover when proving loops

I Loop treatment: Invariant

I Quantifier treatment: No Splits with Progs

I If program contains *, /:
Arithmetic treatment: DefOps

I Is search limit high enough (time out, rule apps.)?

I When proving partial correctness, add diverges true;
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Total Correctness

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

I v ≥ 0 is initially valid

I v ≥ 0 is preserved by the loop body

I v is strictly decreased by the loop body

Proving termination in JML/JAVA

I Remove directive diverges true;

I Add directive decreasing v; to loop invariant

I KeY uses suitable invariant rule and PO (with 〈...〉φ)

Example (The array loop)

@ decreasing a.length - i;

Files:

I LoopT.java

I Loop2T.java
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Method Calls – Repetition

Method Call with actual parameters arg0, . . . , argn

{arg0 := t0 || . . . || argn := tn || c := tc}〈c .m(arg0, . . . , argn);〉φ

where m declared as void m(T0 p0, . . . , Tn pn)

Actions of rule methodCall

I for each formal parameter pi of m:
declare and initialize new local variable Ti p#i =argi ;

I look up implementation class C of m, or split proof
if implementation cannot be uniquely determined

I create method invocation c.m(p#0, . . . , p#n)@C
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Method Calls Cont’d

Method Body Expand

1. Execute code that binds actual to formal parameters Ti p#i =argi ;

2. Call rule methodBodyExpand

Γ =⇒ 〈π method-frame(source=C, this=c){ body } ω〉φ,∆
Γ =⇒ 〈π c.m(p#0,...,p#n)@C; ω〉φ,∆

Symbolic Execution

Only static information available, proof splitting;
Runtime infrastructure required in calculus

File: inlineDynamicDispatch.key
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Problem

Formal specification of JAVA API and other called methods

How to perform symbolic execution when JAVA API method is called?

1. Method has reference implementation in JAVA
Inline method body and execute symbolically

Problems Reference implementation not always available
Too expensive
Impossible to deal with recursion

2. Use method contract instead of method implementation
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Method Contract Rule – Normal Behavior Case
Warning: Simplified version

/*@ public normal_behavior

@ requires normalPre;

@ ensures normalPost;

@ assignable mod;

@*/

Γ =⇒ UF(normalPre),∆ (precondition)
Γ =⇒ UVmod(F(normalPost) → 〈π ω〉φ),∆ (normal)

Γ =⇒ U〈π result = m(a1, . . . , an) ω〉φ,∆

I F(·): translation to Java DL (see last lecture)

I Vmod : anonymising update (similar to loops)
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Method Contract Rule – Exceptional Behavior Case
Warning: Simplified version

/*@ public exceptional_behavior

@ requires excPre;

@ signals (Exception exc) excPost;

@ assignable mod;

@*/

Γ =⇒ UF(excPre),∆ (precondition)
Γ =⇒ UVmod((exc 6 .= null ∧ F(excPost))

→ 〈π throw exc; ω〉φ),∆ (exceptional)

Γ =⇒ U〈π result = m(a1, . . . , an) ω〉φ,∆

I F(·): translation to Java DL

I Vmod : anonymising update (similar to loops)
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Method Contract Rule – Combined
Warning: Simplified version

KeY uses actually only one rule for both kinds of cases.

Therefore translation of postcondition φpost as follows (simplified):

φpost n ≡ F(\old(normalPre)) ∧ F(normalPost)
φpost e ≡ F(\old(excPre)) ∧ F(excPost)

Γ =⇒ U(F(normalPre) ∨ F(excPre)),∆ (precondition)
Γ =⇒ UVmodnormal

(φpost n → 〈π ω〉φ),∆ (normal)
Γ =⇒ UVmodexc ((exc 6 .= null ∧ φpost e)

→ 〈π throw exc; ω〉φ),∆ (exceptional)

Γ =⇒ U〈π result = m(a1, . . . , an) ω〉φ,∆

I F(·): translation to Java DL
I Vmod : anonymising update (similar to loops)
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Understanding Proof Situations

Reasons why a proof may not close

I bug or incomplete specification

I bug in program

I maximal number of steps reached: restart or increase # of steps

I automatic proof search fails and manual rule applications necessary

Understanding open proof goals

I follow the taken control-flow from the root to the open goal

I branch labels may give useful hints

I identify (part of) the post-condition or invariant that cannot be
proven

I sequent remains always in “pre-state”. I.e., constraints like i ≥ 0
refer to the value of i before executing the program (exception:
sub-formulae prefixed by update or modality)

I remember: Γ =⇒ o
.

= null,∆ is equivalent to Γ, o 6 .= null =⇒ ∆
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Summary

I Most JAVA features covered in KeY
I Several of remaining features available in experimental version

I Simplified multi-threaded JMM
I Floats

I Degree of automation for loop-free programs is high
I Proving loops requires user to provide invariant

I Automatic invariant generation sometimes possible

I Symbolic execution paradigm lets you use KeY
w/o understanding details of logic
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Literature for this Lecture

Essential

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 10: Using KeY

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 3: Dynamic Logic, Sections 3.1, 3.2, 3.4, 3.5,
3.6.1, 3.6.2, 3.6.3, 3.6.4, 3.6.5, 3.6.7, 3.7
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