Software Engineering using Formal Methods Reasoning about Programs with Loops and Method Calls

Wolfgang Ahrendt

17 October 2013

Program Logic Calculus - Repetition

Calculus realises symbolic interpreter:

- works on first active statement

$$
\Gamma \Longrightarrow\langle i=j++; i f(i s V a l i d)\{o k=t r u e ;\} \ldots\rangle \phi
$$

Program Logic Calculus - Repetition

Calculus realises symbolic interpreter:

- works on first active statement
- decomposition of complex statements into simpler ones

$$
\begin{gathered}
\Gamma \Longrightarrow\langle t=j ; j=j+1 ; i=t ; i f(i s V a l i d)\{o k=t r u e ;\} \ldots\rangle \phi \\
\Gamma \Longrightarrow\langle i=j++; i f(i s V a l i d)\{o k=t r u e ;\} \ldots\rangle \phi
\end{gathered}
$$

Program Logic Calculus - Repetition

Calculus realises symbolic interpreter:

- works on first active statement
- decomposition of complex statements into simpler ones
- simple assignments to updates

$$
\begin{gathered}
\Gamma \Longrightarrow\{t:=j\}\langle j=j+1 ; i=t ; i f(i s V a l i d)\{o k=t r u e ;\} \ldots\rangle \phi \\
\Gamma \Longrightarrow\langle t=j ; j=j+1 ; i=t ; i f(i s V a l i d)\{o k=t r u e ;\} \ldots\rangle \phi \\
\Gamma \Longrightarrow\langle i=j++; i f(i s V a l i d)\{o k=t r u e ;\} \ldots\rangle \phi
\end{gathered}
$$

Program Logic Calculus - Repetition

Calculus realises symbolic interpreter:

- works on first active statement
- decomposition of complex statements into simpler ones
- simple assignments to updates
- accumulated update captures changed program state

$$
\Gamma \Longrightarrow\{t:=j\|j:=j+1\| i:=j\}\langle i f(i s V a l i d)\{o k=t r u e ;\} \ldots\rangle \phi
$$

$$
\Gamma \Longrightarrow\{t:=j\}\langle j=j+1 ; i=t ; i f(i s V a l i d)\{o k=t r u e ;\} \ldots\rangle \phi
$$

$$
\Gamma \Longrightarrow\langle t=j ; j=j+1 ; i=t ; i f(i s V a l i d)\{o k=t r u e ;\} \ldots\rangle \phi
$$

$$
\Gamma \Longrightarrow\langle i=j++; i f(i s V a l i d)\{o k=t r u e ;\} . .\rangle \phi
$$

Program Logic Calculus - Repetition

Calculus realises symbolic interpreter:

- works on first active statement
- decomposition of complex statements into simpler ones
- simple assignments to updates
- accumulated update captures changed program state (abbr. w. \mathcal{U})

$$
\Gamma \Longrightarrow\{\mathcal{U}\}\langle\text { if (isValid) \{ok=true; }\} \ldots\rangle \phi
$$

$$
\begin{gathered}
\Gamma \Longrightarrow\{t:=j\}\langle j=j+1 ; i=t ; i f(i s V a l i d)\{o k=t r u e ;\} \ldots\rangle \phi \\
\Gamma \Longrightarrow\langle t=j ; j=j+1 ; i=t ; i f(i s V a l i d)\{o k=t r u e ;\} \ldots\rangle \phi \\
\Gamma \Longrightarrow\langle i=j++; i f(i s V a l i d)\{o k=t r u e ;\} \ldots\rangle \phi
\end{gathered}
$$

Program Logic Calculus - Repetition

Calculus realises symbolic interpreter:

- works on first active statement
- decomposition of complex statements into simpler ones
- simple assignments to updates
- accumulated update captures changed program state
- control flow branching induces proof splitting

$$
\begin{aligned}
\text { 'branch1' } & \Gamma,\{\mathcal{U}\}(\text { isValid } \doteq \text { TRUE }) \Longrightarrow\{\mathcal{U}\}\langle\text { \{ok=true } ;\} \ldots\rangle \phi \\
\text { 'branch2' } & \Gamma,\{\mathcal{U}\}(\text { isValid } \doteq \text { FALSE }) \Longrightarrow\{\mathcal{U}\}\langle\ldots\rangle \phi \\
& \Gamma \Longrightarrow\{\mathcal{U}\}\left\langle\text { if (isValid) } \left\{\begin{array}{l}
\text { ok=true } ;\} \ldots\rangle \phi
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{gathered}
\Gamma \Longrightarrow\{t:=j\}\langle j=j+1 ; i=t ; i f(i s V a l i d)\{o k=t r u \theta ;\} \ldots\rangle \phi \\
\Gamma \Longrightarrow\langle t=j ; j=j+1 ; i=t ; i f(i s V a l i d)\{o k=t r u \theta ;\} \ldots\rangle \phi \\
\Gamma \Longrightarrow\langle i=j++; i f(i s V a l i d)\{o k=t r u e ;\} \ldots\rangle \phi
\end{gathered}
$$

Program Logic Calculus - Repetition

Calculus realises symbolic interpreter:

- works on first active statement
- decomposition of complex statements into simpler ones
- simple assignments to updates
- accumulated update captures changed program state
- control flow branching induces proof splitting
- application of update computes weakest precondition of \mathcal{U}^{\prime} wrt. ϕ

$$
\Gamma^{\prime} \Longrightarrow\left\{\mathcal{U}^{\prime}\right\} \phi
$$

$$
\begin{aligned}
\text { 'branch1' } & \Gamma,\{\mathcal{U}\}(\text { isValid } \doteq \text { TRUE }) \Longrightarrow\{\mathcal{U}\}\langle\{\text { ok=true } ;\} \ldots\rangle \phi \\
\text { 'branch2' } & \Gamma,\{\mathcal{U}\}(\text { isValid } \doteq \text { FALSE }) \Longrightarrow\{\mathcal{U}\}\langle\ldots\rangle \phi \\
& \Gamma \Longrightarrow\{\mathcal{U}\}\left\langle\text { if (isValid) } \left\{\begin{array}{l}
\text { ok=true } ;\} \ldots\rangle \phi \\
\hline
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{gathered}
\Gamma \Longrightarrow\{t:=j\}\langle j=j+1 ; i=t ; i f(i s V a l i d)\{o k=t r u e ;\} \ldots\rangle \phi \\
\Gamma \Longrightarrow\langle t=j ; j=j+1 ; i=t ; i f(i s V a l i d)\{o k=t r u \theta ;\} \ldots\rangle \phi \\
\Gamma \Longrightarrow\langle i=j++; i f(i s V a l i d)\{o k=t r u e ;\} \ldots\rangle \phi
\end{gathered}
$$

Are parallel updates sufficient?

How to express using updates that a formula ϕ is evaluated in a state where

- program variable i has been set to 5 ?

Are parallel updates sufficient?

How to express using updates that a formula ϕ is evaluated in a state where

- program variable i has been set to 5 ? $\quad\{i:=5\} \phi$
- program variable i has been increased by 1 ?

Are parallel updates sufficient?

How to express using updates that a formula ϕ is evaluated in a state where

- program variable i has been set to 5 ? $\quad\{i:=5\} \phi$
- program variable i has been increased by 1 ? $\quad\{i:=i+1\} \phi$
- program variables i and j swapped values?

Are parallel updates sufficient?

How to express using updates that a formula ϕ is evaluated in a state where

- program variable i has been set to 5 ? $\quad\{i:=5\} \phi$
- program variable i has been increased by 1 ? $\quad\{i:=i+1\} \phi$
- program variables i and j swapped values? $\{\mathrm{i}:=\mathrm{j} \| \mathrm{j}:=\mathrm{i}\} \phi$
- all components of an array arr of length 2 have value 0 ?

Are parallel updates sufficient?

How to express using updates that a formula ϕ is evaluated in a state where

- program variable i has been set to 5 ? $\quad\{i:=5\} \phi$
- program variable i has been increased by 1 ? $\quad\{i:=i+1\} \phi$
- program variables i and j swapped values? $\{\mathrm{i}:=\mathrm{j} \| \mathrm{j}:=\mathrm{i}\} \phi$
- all components of an array arr of length 2 have value 0 ?

$$
\{\operatorname{arr}[0]:=0 \| \operatorname{arr}[1]:=0\} \phi
$$

- all components of an array arr of length n have value 0 ?

Are parallel updates sufficient?

How to express using updates that a formula ϕ is evaluated in a state where

- program variable i has been set to 5 ? $\quad\{i:=5\} \phi$
- program variable i has been increased by 1 ? $\quad\{i:=i+1\} \phi$
- program variables i and j swapped values? \{i:= j||j:=i\} ϕ
- all components of an array arr of length 2 have value 0 ?

$$
\{\operatorname{arr}[0]:=0 \| \operatorname{arr}[1]:=0\} \phi
$$

- all components of an array arr of length n have value 0 ?

For example to deal with things like

$$
\begin{aligned}
& \langle\operatorname{int}[] a=\text { new int }[\mathrm{n}] ;\rangle \\
& \quad \forall \operatorname{int} x ;(0 \leq x<a . \text { length } \rightarrow \mathrm{a}[x] \doteq 0)
\end{aligned}
$$

Quantified Updates

Definition (Quantified Update)

For T well-ordered type (no ∞ descending chains): quantified update:

$$
\{\backslash \text { for } T x ; \backslash \operatorname{if} \phi(x) ; l(x):=r(x)\}
$$

- For all objects d in T such that $\phi(d)$ perform the updates $\{I(d):=r(d)\}$ in parallel
- If there are several / with conflicting d then choose T-minimal one
- The conditional expression is optional
- Typically, x occurs in ϕ, I, and r (but doesn't need to)
- There is a normal form for updates computed efficiently by KeY

Quantified Updates Cont'd

Example (Initialization of field a for all objects in class C)

$$
\{\backslash \text { for } C \text { o; o.a }:=0\}
$$

Quantified Updates Cont'd

Example (Initialization of field a for all objects in class C)

$$
\{\backslash \text { for } C \text { o; o.a }:=0\}
$$

Example (Initialization of components of array a)

$$
\{\backslash \text { for int } i ; \mathrm{a}[i]:=0\}
$$

Quantified Updates Cont'd

Example (Initialization of field a for all objects in class C)

$$
\{\backslash \text { for } C \text { o; o.a }:=0\}
$$

Example (Initialization of components of array a)

$$
\{\backslash \text { for int } i ; \mathrm{a}[i]:=0\}
$$

Example (Integer types are well-ordered in KeY)

$$
\{\backslash \text { for int } i ; \mathrm{a}[0]:=i\}(\mathrm{a}[0] \doteq 0)
$$

- Non-standard order for \mathbb{Z} (with 0 smallest and preserving $<$ for arguments of same sign)
- Proven automatically by update simplifier

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
$$

(We omitted \mathcal{U} previous lectures, for simplicity.)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \operatorname{if}(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

(We omitted \mathcal{U} previous lectures, for simplicity.)
How to handle a loop with. .

- 0 iterations?

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \operatorname{if}(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

(We omitted \mathcal{U} previous lectures, for simplicity.)
How to handle a loop with. .

- 0 iterations? Unwind $1 \times$

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \operatorname{if}(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

(We omitted \mathcal{U} previous lectures, for simplicity.)
How to handle a loop with. .

- 0 iterations? Unwind $1 \times$
- 10 iterations?

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \operatorname{if}(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

(We omitted \mathcal{U} previous lectures, for simplicity.)
How to handle a loop with. .

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \operatorname{if}(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

(We omitted \mathcal{U} previous lectures, for simplicity.)
How to handle a loop with. .

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations?

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
$$

(We omitted \mathcal{U} previous lectures, for simplicity.)
How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations? Unwind $10001 \times$
- an unknown number of iterations?

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
$$

(We omitted \mathcal{U} previous lectures, for simplicity.)
How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations? Unwind $10001 \times$
- an unknown number of iterations?

We need an invariant rule (or some form of induction)

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates, then Inv holds afterwards

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates, then Inv holds afterwards
- Construct Inv such that, together with loop exit condition, it implies postcondition of loop

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates, then Inv holds afterwards
- Construct Inv such that, together with loop exit condition, it implies postcondition of loop

Basic Invariant Rule

loopInvariant

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta
$$

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates, then Inv holds afterwards
- Construct Inv such that, together with loop exit condition, it implies postcondition of loop

Basic Invariant Rule

$$
\Gamma \Longrightarrow \mathcal{U} \operatorname{lnv}, \Delta \quad \text { (valid when entering loop) }
$$

loopInvariant

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta
$$

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates, then Inv holds afterwards
- Construct Inv such that, together with loop exit condition, it implies postcondition of loop

Basic Invariant Rule

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \\
\text { Inv, } b \doteq \mathrm{TRUE} \Longrightarrow[\mathrm{p}] \ln v & \\
\text { (preserved by by } \mathrm{p})
\end{array}
$$

loopInvariant

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta
$$

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates, then Inv holds afterwards
- Construct Inv such that, together with loop exit condition, it implies postcondition of loop

Basic Invariant Rule

$$
\begin{aligned}
& \Gamma \Longrightarrow \mathcal{U} \operatorname{lnv}, \Delta \quad \text { (valid when entering loop) } \\
& \text { Inv, } b \doteq \text { TRUE } \Longrightarrow[\mathrm{p}] / n v \quad \text { (preserved by } \mathrm{p} \text {) } \\
& \text { loopInvariant } \frac{\operatorname{lnv}, b \doteq \text { FALSE } \Longrightarrow[\pi \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
\end{aligned}
$$

Loop Invariants Cont'd

Basic Invariant Rule: Problem

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (valid when entering loop) } \\
\text { Inv, } b \doteq \mathrm{TRUE} \Longrightarrow[\mathrm{p}] \operatorname{Inv} & \text { (preserved by } \mathrm{p} \text {) } \\
\text { loopInvariant } & \begin{array}{c}
\operatorname{Inv}, b \doteq \mathrm{FALSE} \Longrightarrow[\pi \omega] \phi \\
\Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta
\end{array}
\end{array}
$$

Loop Invariants Cont'd

Basic Invariant Rule: Problem

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (valid when entering loop) } \\
\text { Inv, } b \doteq \mathrm{TRUE} \Longrightarrow[\mathrm{p}] \operatorname{Inv} & \text { (preserved by } \mathrm{p} \text {) } \\
\text { loopInvariant } & \begin{array}{c}
\operatorname{Inv}, b \doteq \mathrm{FALSE} \Longrightarrow[\pi \omega] \phi \\
\Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta
\end{array}
\end{array}
$$

- Context $\Gamma, \Delta, \mathcal{U}$ must be omitted in 2 nd and 3rd premise:
- \mathcal{U} represents state when entering loop, not after some loop iterations
- keeping Γ, Δ without \mathcal{U} meant executing p in prestate of program

Loop Invariants Cont'd

Basic Invariant Rule: Problem

$$
\begin{aligned}
& \Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta \quad \text { (valid when entering loop) } \\
& \operatorname{Inv}, b \doteq \text { TRUE } \Rightarrow[\mathrm{p}] / n v \quad \text { (preserved by } \mathrm{p} \text {) } \\
& \text { loopInvariant } \frac{\operatorname{Inv}, b \doteq \text { FALSE } \Longrightarrow[\pi \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) p } \omega] \phi, \Delta} \quad \text { (assumed after exit) }
\end{aligned}
$$

- Context $\Gamma, \Delta, \mathcal{U}$ must be omitted in 2nd and 3rd premise:
- \mathcal{U} represents state when entering loop, not after some loop iterations
- keeping Γ, Δ without \mathcal{U} meant executing p in prestate of program
- But: context contains important preconditions and class invariants

Loop Invariants Cont'd

Basic Invariant Rule: Problem

$\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta \quad$ (valid when entering loop) $\operatorname{Inv}, b \doteq$ TRUE $\Rightarrow[\mathrm{p}] / n v \quad$ (preserved by p)
loopInvariant $\frac{\operatorname{lnv}, b \doteq \text { FALSE } \Longrightarrow[\pi \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}$

- Context $\Gamma, \Delta, \mathcal{U}$ must be omitted in 2 nd and 3rd premise:
- \mathcal{U} represents state when entering loop, not after some loop iterations
- keeping Γ, Δ without \mathcal{U} meant executing p in prestate of program
- But: context contains important preconditions and class invariants
- Relevant context information must be added to Inv $)^{-}$

Example

$$
\begin{aligned}
& \text { int } i=0 \text {; } \\
& \text { while(i < a.length })\{ \\
& \quad a[i]=1 ; \\
& \quad \text { i++; } \\
& \}
\end{aligned}
$$

Example

(Implicit) Class Invariant: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```


Example

(Implicit) Class Invariant: $\mathrm{a} \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Example

(Implicit) Class Invariant: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \quad$ \& $i \leq$ a.length

Example

(Implicit) Class Invariant: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<$ a. length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \quad$ \& $\mathrm{i} \leq$ a.length

$$
\& \forall \operatorname{int} x ;(0 \leq x<i \rightarrow a[x] \doteq 1)
$$

Example

(Implicit) Class Invariant: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \quad$ \& $\mathrm{i} \leq$ a.length

$$
\begin{aligned}
& \& \forall \text { int } x ;(0 \leq x<i \rightarrow a[x] \doteq 1) \\
& \& a \neq \text { null }
\end{aligned}
$$

Keeping the Context

- Want to keep part of the context that is unmodified by loop

Keeping the Context

- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified
@ assignable i, a[*];

Keeping the Context

- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified
@ assignable i, $\mathrm{a}[*]$;
- How to erase all values of assignable locations in formula Γ ?

Keeping the Context

- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified
@ assignable i, a[*];
- How to erase all values of assignable locations in formula Γ ?
- Anonymising update \mathcal{V} erases information about assignable locations

$$
\{\mathrm{i}:=c\} \quad(c \text { fresh constant symbol })
$$

Keeping the Context

- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified
@ assignable i, a[*];
- How to erase all values of assignable locations in formula Γ ?
- Anonymising update \mathcal{V} erases information about assignable locations

```
\(\{\mathrm{i}:=c\} \quad\) ( \(c\) fresh constant symbol)
\(\{\backslash\) for \(x ; \mathrm{a}[x]:=f(x)\} \quad(f\) fresh function symbol)
```


Keeping the Context

- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified
@ assignable i, a[*];
- How to erase all values of assignable locations in formula Γ ?
- Anonymising update \mathcal{V} erases information about assignable locations

```
\(\{\mathrm{i}:=c\} \quad(c\) fresh constant symbol)
\(\{\backslash\) for \(x ; \mathrm{a}[x]:=f(x)\} \quad(f\) fresh function symbol)
```

$\mathcal{V}=\{\mathrm{i}:=c| |$ \for $x ; \mathrm{a}[x]:=f(x)\}$
(c, f fresh constant resp. function symbol)

Loop Invariants Cont'd

Improved Invariant Rule

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta
$$

Loop Invariants Cont'd

Improved Invariant Rule

$$
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta
$$

(valid when entering loop)

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) p } \omega] \phi, \Delta
$$

Loop Invariants Cont'd

Improved Invariant Rule

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (valid when enter } \\
\Gamma \Longrightarrow \mathcal{U} \mathcal{V}(\operatorname{Inv} \& b \doteq \operatorname{TRUE} \rightarrow[\mathrm{p}] \operatorname{lnv}), \Delta & \text { (preserved by } \mathrm{p}) \\
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta &
\end{array}
$$

Loop Invariants Cont'd

Improved Invariant Rule

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (valid when entering } \\
\Gamma \Longrightarrow \mathcal{U V}(\operatorname{Inv} \& b \doteq \mathrm{TRUE} \rightarrow[\mathrm{p}] \operatorname{lnv}), \Delta & \text { (preserved by } \mathrm{p} \text {) } \\
\Gamma \Longrightarrow \mathcal{U} \mathcal{V}(\operatorname{Inv} \& b \doteq \mathrm{FALSE} \rightarrow[\pi \omega] \phi), \Delta & \text { (assumed after exit) } \\
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta &
\end{array}
$$

Loop Invariants Cont'd

Improved Invariant Rule

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (valid when entering } \\
\Gamma \Longrightarrow \mathcal{U} \mathcal{V}(\operatorname{Inv} \& b \doteq \mathrm{TRUE} \rightarrow[\mathrm{p}] \operatorname{lnv}), \Delta & \text { (preserved by } \mathrm{p} \text {) } \\
\Gamma \Longrightarrow \mathcal{U} \mathcal{V}(\operatorname{Inv} \& b \doteq \mathrm{FALSE} \rightarrow[\pi \omega] \phi), \Delta & \text { (assumed after exit) } \\
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta &
\end{array}
$$

- Context is kept as far as possible
- Invariant not 'responsible' for un-assignable locations
- Missing assignable clause (equiv. to assignable \everything):
- $\mathcal{V}=\{*:=*\}$ wipes out all information
- Equivalent to basic invariant rule
- Avoid this! Always give a specific assignable clause

Example with Improved Invariant Rule

$$
\begin{aligned}
& \text { int } i=0 \text {; } \\
& \text { while }(i<a . l e n g t h)\{ \\
& \quad a[i]=1 ; \\
& \quad i++;
\end{aligned}
$$

Example with Improved Invariant Rule

(Implicit) Class Invariant: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```


Example with Improved Invariant Rule

(Implicit) Class Invariant: $\mathrm{a} \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Example with Improved Invariant Rule

(Implicit) Class Invariant: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \quad$ \& $i \leq$ a.length

Example with Improved Invariant Rule

(Implicit) Class Invariant: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<$ a. length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \quad$ \& $\mathrm{i} \leq$ a.length

$$
\& \forall \operatorname{int} x ;(0 \leq x<\mathrm{i} \rightarrow \mathrm{a}[x] \doteq 1)
$$

Example with Improved Invariant Rule

(Implicit) Class Invariant: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \quad$ \& $\mathrm{i} \leq$ a.length

$$
\& \forall \operatorname{int} x ;(0 \leq x<\mathrm{i} \rightarrow \mathrm{a}[x] \doteq 1)
$$

Example with Improved Invariant Rule

(Implicit) Class Invariant: a \neq null not needed for loop invariant

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<$ a.length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \quad$ \& $\mathrm{i} \leq$ a.length
\& \forall int $x ;(0 \leq x<\mathrm{i} \rightarrow \mathrm{a}[x] \doteq 1)$

Example in JML/JAVA - Loop. java

```
public int[] a;
/*@ public normal_behavior
    C ensures (\forall int x; 0<=x && x<a.length; a[x]==1);
    @ diverges true;
    @*/
public void m() {
    int i = 0;
    /*@ loop_invariant
        @ (0 <= i && i <= a.length &&
        @ (\forall int x; 0<=x && x<i; a[x]==1));
        @ assignable i, a[*];
        @*/
    while(i < a.length) {
        a[i] = 1;
        i++;
    }
}

\section*{Example from last week}
```

\forall int x;
$(x \doteq \mathrm{n} \wedge x>=0 \rightarrow$
$[\mathrm{i}=0 ; r=0$;
while (i<n) \{ i = i $+1 ; r=r+i ;\}$
$r=r+r-n$;
] $\quad \doteq$?)

```

How can we prove that the above formula is valid (i.e. satisfied in all states)?

\section*{Example from last week}
\(\forall\) int \(x\);
```

$(x \doteq \mathrm{n} \wedge x>=0 \rightarrow$
[$\mathrm{i}=0 ; \mathrm{r}=0$;
while (i<n) \{ i = i + 1; r = r + i; \}
$\mathrm{r}=\mathrm{r}+\mathrm{r}-\mathrm{n}$;
$\mathrm{lr} \doteq x * x)$

```

How can we prove that the above formula is valid (i.e. satisfied in all states)?

\section*{Example from last week}
```

\forall int x;
$(x \doteq \mathrm{n} \wedge x>=0 \rightarrow$
$[\mathrm{i}=0 ; r=0$;
while (i<n) \{ i = i $+1 ; r=r+i ;\}$
$\mathrm{r}=\mathrm{r}+\mathrm{r}-\mathrm{n}$;
$] r \doteq x * x)$

```

How can we prove that the above formula is valid (i.e. satisfied in all states)?

Solution:
© loop_invariant
@ \(i>=0\) \&\& \(2 * r==i *(i+1) \& \& i<=n\);
@ assignable i, r;

\section*{Example from last week}
```

\forall int x;
$(x \doteq \mathrm{n} \wedge x>=0 \rightarrow$
$[\mathrm{i}=0 ; r=0$;
while (i<n) \{ i = i $+1 ; r=r+i ;\}$
$\mathrm{r}=\mathrm{r}+\mathrm{r}-\mathrm{n}$;
$\mathrm{l} r \doteq x * x)$

```

How can we prove that the above formula is valid (i.e. satisfied in all states)?

Solution:
© loop_invariant
```

@ i>=0 \&\& 2*r == i*(i + 1) \&\& i <= n;

```
@ assignable i, r;

File: Loop2.java

\section*{Hints}

Proving assignable
- The invariant rule assumes that assignable is correct E.g., with assignable \nothing; one can prove nonsense
- Invariant rule of KeY generates proof obligation that ensures correctness of assignable

\section*{Hints}

Proving assignable
- The invariant rule assumes that assignable is correct E.g., with assignable \nothing; one can prove nonsense
- Invariant rule of KeY generates proof obligation that ensures correctness of assignable

\section*{Setting in the KeY Prover when proving loops}
- Loop treatment: Invariant
- Quantifier treatment: No Splits with Progs
- If program contains *, /:

Arithmetic treatment: DefOps
- Is search limit high enough (time out, rule apps.)?
- When proving partial correctness, add diverges true;

\section*{Total Correctness}

Find a decreasing integer term \(v\) (called variant)
Add the following premisses to the invariant rule:
- \(v \geq 0\) is initially valid
- \(v \geq 0\) is preserved by the loop body
- \(v\) is strictly decreased by the loop body

\section*{Total Correctness}

Find a decreasing integer term \(v\) (called variant)
Add the following premisses to the invariant rule:
- \(v \geq 0\) is initially valid
- \(v \geq 0\) is preserved by the loop body
- \(v\) is strictly decreased by the loop body

\section*{Proving termination in JML/JavA}
- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY uses suitable invariant rule and PO (with \(\langle\ldots\rangle \phi\) )

\section*{Total Correctness}

Find a decreasing integer term \(v\) (called variant)
Add the following premisses to the invariant rule:
- \(v \geq 0\) is initially valid
- \(v \geq 0\) is preserved by the loop body
- \(v\) is strictly decreased by the loop body

\section*{Proving termination in JML/JavA}
- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY uses suitable invariant rule and PO (with \(\langle\ldots\rangle \phi\) )

Example (The array loop)
© decreasing

\section*{Total Correctness}

Find a decreasing integer term \(v\) (called variant)
Add the following premisses to the invariant rule:
- \(v \geq 0\) is initially valid
- \(v \geq 0\) is preserved by the loop body
- \(v\) is strictly decreased by the loop body

\section*{Proving termination in JML/JavA}
- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY uses suitable invariant rule and PO (with \(\langle\ldots\rangle \phi\) )

Example (The array loop)
@ decreasing a.length - i;

\section*{Total Correctness}

Find a decreasing integer term \(v\) (called variant)
Add the following premisses to the invariant rule:
- \(v \geq 0\) is initially valid
- \(v \geq 0\) is preserved by the loop body
- \(v\) is strictly decreased by the loop body

\section*{Proving termination in JML/JavA}
- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY uses suitable invariant rule and PO (with \(\langle\ldots\rangle \phi\) )

Example (The array loop)
© decreasing a.length - i;

Files:
- LoopT.java
- Loop2T.java

\section*{Method Calls - Repetition}

Method Call with actual parameters \(\arg _{0}, \ldots, \arg { }_{n}\)
\[
\left\{\arg _{0}:=t_{0}\|\ldots\| \arg _{n}:=t_{n} \| c:=t_{c}\right\}\left\langle c \cdot m\left(\arg _{0}, \ldots, \arg _{n}\right) ;\right\rangle \phi
\]
where \(m\) declared as void \(m\left(T_{0} p_{0}, \ldots, T_{n} p_{n}\right)\)

\section*{Actions of rule methodCall}
- for each formal parameter \(p_{i}\) of \(m\) : declare and initialize new local variable \(\mathrm{T}_{\mathrm{i}} \mathrm{p} \# \mathrm{i}=\arg _{i}\);

\section*{Method Calls - Repetition}

Method Call with actual parameters \(\arg _{0}, \ldots, \arg { }_{n}\)
\[
\left\{\arg _{0}:=t_{0}\|\ldots\| \arg _{n}:=t_{n} \| c:=t_{c}\right\}\left\langle c \cdot m\left(\arg _{0}, \ldots, \arg _{n}\right) ;\right\rangle \phi
\]
where \(m\) declared as void \(m\left(T_{0} p_{0}, \ldots, T_{n} p_{n}\right)\)

\section*{Actions of rule methodCall}
- for each formal parameter \(p_{i}\) of \(m\) : declare and initialize new local variable \(\mathrm{T}_{\mathrm{i}} \mathrm{p} \# \mathrm{i}=\arg _{i}\);
- look up implementation class \(C\) of \(m\), or split proof if implementation cannot be uniquely determined

\section*{Method Calls - Repetition}

Method Call with actual parameters \(\arg _{0}, \ldots, \arg { }_{n}\)
\[
\left\{\arg _{0}:=t_{0}\|\ldots\| \arg _{n}:=t_{n} \| c:=t_{c}\right\}\left\langle c . m\left(\arg _{0}, \ldots, \arg _{n}\right) ;\right\rangle \phi
\]
where \(m\) declared as void \(m\left(T_{0} p_{0}, \ldots, T_{n} p_{n}\right)\)

\section*{Actions of rule methodCall}
- for each formal parameter \(p_{i}\) of \(m\) : declare and initialize new local variable \(\mathrm{T}_{\mathrm{i}} \mathrm{p} \# \mathrm{i}=\arg _{i}\);
- look up implementation class \(C\) of \(m\), or split proof if implementation cannot be uniquely determined
- create method invocation c.m(p\#0, .., p\#n)@C

\section*{Method Calls Cont'd}

\section*{Method Body Expand}
1. Execute code that binds actual to formal parameters \(\mathrm{T}_{\mathrm{i}} \mathrm{p} \# \mathrm{i}=\arg _{i}\);
2. Call rule methodBodyExpand
\[
\frac{\Gamma \Longrightarrow\langle\pi \text { method-frame }(\text { source }=C, \text { this }=c)\{\text { body }\} \omega\rangle \phi, \Delta}{\Gamma \Longrightarrow\langle\pi \mathrm{c} \cdot \mathrm{~m}(\mathrm{p} \# 0, \ldots, \mathrm{p} \# \mathrm{n}) @ C ; \omega\rangle \phi, \Delta}
\]

\section*{Method Calls Cont'd}

\section*{Method Body Expand}
1. Execute code that binds actual to formal parameters \(\mathrm{T}_{\mathrm{i}} \mathrm{p} \# \mathrm{i}=\arg _{i}\);
2. Call rule methodBodyExpand
\[
\frac{\Gamma \Longrightarrow\langle\pi \text { method-frame }(\text { source }=C, \text { this }=c)\{\text { body }\} \omega\rangle \phi, \Delta}{\Gamma \Longrightarrow\langle\pi \mathrm{c} \cdot \mathrm{~m}(\mathrm{p} \# 0, \ldots, \mathrm{p} \# \mathrm{n}) @ C ; \omega\rangle \phi, \Delta}
\]

Symbolic Execution
Only static information available, proof splitting;

\section*{Method Calls Cont'd}

\section*{Method Body Expand}
1. Execute code that binds actual to formal parameters \(\mathrm{T}_{\mathrm{i}} \mathrm{p} \# \mathrm{i}=\arg _{i}\);
2. Call rule methodBodyExpand
\[
\frac{\Gamma \Longrightarrow\langle\pi \text { method-frame (source }=C, \text { this }=\mathrm{c})\{\text { body }\} \omega\rangle \phi, \Delta}{\Gamma \Longrightarrow\langle\pi \mathrm{c} \cdot \mathrm{~m}(\mathrm{p} \# 0, \ldots, \mathrm{p} \# \mathrm{n}) @ \mathrm{C} ; \omega\rangle \phi, \Delta}
\]

Symbolic Execution
Only static information available, proof splitting; Runtime infrastructure required in calculus

\section*{Method Calls Cont'd}

\section*{Method Body Expand}
1. Execute code that binds actual to formal parameters \(\mathrm{T}_{\mathrm{i}} \mathrm{p} \# \mathrm{i}=\arg _{i}\);
2. Call rule methodBodyExpand
\[
\frac{\Gamma \Longrightarrow\langle\pi \text { method-frame }(\text { source }=C, \text { this }=c)\{\text { body }\} \omega\rangle \phi, \Delta}{\Gamma \Longrightarrow\langle\pi \mathrm{c} \cdot \mathrm{~m}(\mathrm{p} \# 0, \ldots, \mathrm{p} \# \mathrm{n}) @ C ; \omega\rangle \phi, \Delta}
\]

Symbolic Execution
Only static information available, proof splitting; Runtime infrastructure required in calculus

File: inlineDynamicDispatch.key

\section*{Problem}

\section*{Formal specification of JAVA API and other called methods} How to perform symbolic execution when JaVA API method is called?
1. Method has reference implementation in Java Inline method body and execute symbolically

\section*{Problem}

\section*{Formal specification of JAVA API and other called methods How to perform symbolic execution when JaVA API method is called? \\ 1. Method has reference implementation in Java \\ Inline method body and execute symbolically \\ Problems Reference implementation not always available}

\section*{Problem}

\section*{Formal specification of JAVA API and other called methods How to perform symbolic execution when JaVA API method is called? \\ 1. Method has reference implementation in Java \\ Inline method body and execute symbolically \\ Problems Reference implementation not always available \\ Too expensive}

\section*{Problem}

\section*{Formal specification of JAVA API and other called methods How to perform symbolic execution when JaVA API method is called? \\ 1. Method has reference implementation in Java \\ Inline method body and execute symbolically \\ Problems Reference implementation not always available \\ Too expensive Impossible to deal with recursion}

\section*{Problem}

\section*{Formal specification of JAVA API and other called methods} How to perform symbolic execution when JaVA API method is called?
1. Method has reference implementation in Java

Inline method body and execute symbolically
Problems Reference implementation not always available
Too expensive
Impossible to deal with recursion
2. Use method contract instead of method implementation

\section*{Method Contract Rule - Normal Behavior Case}

\section*{Warning: Simplified version}
/*@ public normal_behavior
© requires normalPre;
© ensures normalPost;
© assignable mod;
@*/

\section*{Method Contract Rule - Normal Behavior Case}

\section*{Warning: Simplified version}
/*@ public normal_behavior
© requires normalPre;
@ ensures normalPost;
© assignable mod;
@*/
\[
\begin{aligned}
& \Gamma \Longrightarrow \mathcal{U} \mathcal{F} \text { (normalPre) }, \Delta \quad \text { (precondition) } \\
& \Gamma \Longrightarrow \mathcal{U}\left\langle\pi \text { result }=\mathrm{m}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) \omega\right\rangle \phi, \Delta
\end{aligned}
\]
- \(\mathcal{F}(\cdot)\) : translation to Java DL (see last lecture)

\section*{Method Contract Rule - Normal Behavior Case}

\section*{Warning: Simplified version}
/*@ public normal_behavior
@ requires normalPre;
@ ensures normalPost;
© assignable mod;
@*/
\[
\begin{aligned}
& \Gamma \Longrightarrow \mathcal{U} \mathcal{F}(\text { normalPre }), \Delta \quad \text { (precondition) } \\
& \Gamma \Longrightarrow \mathcal{U} \mathcal{V}_{\bmod }(\mathcal{F}(\text { normalPost }) \rightarrow\langle\pi \omega\rangle \phi), \Delta \quad \text { (normal) } \\
& \hline \Gamma \Longrightarrow \mathcal{U}\left\langle\pi \text { result }=\mathrm{m}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) \omega\right\rangle \phi, \Delta
\end{aligned}
\]
- \(\mathcal{F}(\cdot)\) : translation to Java DL (see last lecture)
- \(\mathcal{V}_{\text {mod }}\) : anonymising update (similar to loops)

\section*{Method Contract Rule - Exceptional Behavior Case}

\section*{Warning: Simplified version}
/*@ public exceptional_behavior
© requires excPre;
@ signals (Exception exc) excPost;
© assignable mod;
@*/

\section*{Method Contract Rule - Exceptional Behavior Case}

\section*{Warning: Simplified version}
```

/*@ public exceptional_behavior
@ requires excPre;
@ signals (Exception exc) excPost;
@ assignable mod;
@*/

```
\[
\Gamma \Longrightarrow \mathcal{U} \mathcal{F}(\mathrm{excPre}), \Delta \quad \text { (precondition) }
\]
\[
\Gamma \Longrightarrow \mathcal{U}\left\langle\pi \text { result }=\mathrm{m}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) \omega\right\rangle \phi, \Delta
\]
- \(\mathcal{F}(\cdot)\) : translation to Java DL
- \(\mathcal{V}_{\text {mod }}\) : anonymising update (similar to loops)

\section*{Method Contract Rule - Exceptional Behavior Case}

\section*{Warning: Simplified version}
```

/*@ public exceptional_behavior
@ requires excPre;
@ signals (Exception exc) excPost;
@ assignable mod;
@*/
\Gamma\Longrightarrow\mathcal{UF}}\mathrm{ (excPre), }\Delta\quad\mathrm{ (precondition)
\Gamma\Longrightarrow\mathcal{UV}}\mp@subsup{\mathcal{mod}}{\mathrm{ mod }}{((exc}\not=\mathrm{ null }\wedge\mathcal{F}(\mathrm{ excPost })
->\langle\pi}\mathrm{ throw exc; }\omega\rangle\phi),\Delta (exceptional)
\Gamma }\Longrightarrow\mathcal{U}\langle\pi\mathrm{ result =m(a (a, ,., ann) }\omega\rangle\phi,

```
- \(\mathcal{F}(\cdot)\) : translation to Java DL
- \(\mathcal{V}_{\text {mod }}\) : anonymising update (similar to loops)

\section*{Method Contract Rule - Combined}

Warning: Simplified version
KeY uses actually only one rule for both kinds of cases.

\section*{Method Contract Rule - Combined}

\section*{Warning: Simplified version}

KeY uses actually only one rule for both kinds of cases.
Therefore translation of postcondition \(\phi_{\text {post }}\) as follows (simplified):
\[
\begin{aligned}
\phi_{\text {post_n }} & \equiv \mathcal{F}(\backslash \text { old }(\text { normalPre })) \wedge \mathcal{F}(\text { normalPost }) \\
\phi_{\text {post_e }} & \equiv \mathcal{F}(\backslash \text { old }(\text { excPre })) \wedge \mathcal{F}(\text { excPost })
\end{aligned}
\]

\section*{Method Contract Rule - Combined}

\section*{Warning: Simplified version}

KeY uses actually only one rule for both kinds of cases.
Therefore translation of postcondition \(\phi_{\text {post }}\) as follows (simplified):
\[
\begin{aligned}
\phi_{\text {post_n }} & \equiv \mathcal{F}(\backslash \text { old }(\text { normalPre })) \wedge \mathcal{F}(\text { normalPost }) \\
\phi_{\text {post_e }} & \equiv \mathcal{F}(\backslash \text { old }(\text { excPre })) \wedge \mathcal{F}(\text { excPost })
\end{aligned}
\]
\[
\Gamma \Longrightarrow \mathcal{U}(\mathcal{F}(\text { normalPre }) \vee \mathcal{F}(\text { excPre })), \Delta \quad(\text { precondition })
\]
\[
\Gamma \Longrightarrow \mathcal{U}\left\langle\pi \text { result }=\mathrm{m}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) \omega\right\rangle \phi, \Delta
\]
- \(\mathcal{F}(\cdot)\) : translation to Java DL
- \(\mathcal{V}_{\text {mod }}\) : anonymising update (similar to loops)

\section*{Method Contract Rule - Combined}

\section*{Warning: Simplified version}

KeY uses actually only one rule for both kinds of cases.
Therefore translation of postcondition \(\phi_{\text {post }}\) as follows (simplified):
\[
\begin{aligned}
\phi_{\text {post_n }} & \equiv \mathcal{F}(\backslash \text { old }(\text { normalPre })) \wedge \mathcal{F}(\text { normalPost }) \\
\phi_{\text {post_e }} & \equiv \mathcal{F}(\backslash \text { old }(\text { excPre })) \wedge \mathcal{F}(\text { excPost })
\end{aligned}
\]
\[
\begin{aligned}
& \Gamma \Longrightarrow \mathcal{U}(\mathcal{F}(\text { normalPre }) \vee \mathcal{F}(\text { excPre })), \Delta \quad \text { (precondition }) \\
& \Gamma \Longrightarrow \mathcal{U} \mathcal{V}_{\text {mod }_{\text {normal }}}\left(\phi_{\text {post_n }} \rightarrow\langle\pi \omega\rangle \phi\right), \Delta \quad(\text { normal })
\end{aligned}
\]
\[
\Gamma \Longrightarrow \mathcal{U}\left\langle\pi \text { result }=\mathrm{m}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) \omega\right\rangle \phi, \Delta
\]
- \(\mathcal{F}(\cdot)\) : translation to Java DL
- \(\mathcal{V}_{\text {mod }}\) : anonymising update (similar to loops)

\section*{Method Contract Rule - Combined}

\section*{Warning: Simplified version}

KeY uses actually only one rule for both kinds of cases.
Therefore translation of postcondition \(\phi_{\text {post }}\) as follows (simplified):
\[
\begin{aligned}
\phi_{\text {post_n }} & \equiv \mathcal{F}(\backslash \text { old }(\text { normalPre })) \wedge \mathcal{F}(\text { normalPost }) \\
\phi_{\text {post_e }} & \equiv \mathcal{F}(\backslash \text { old }(\text { excPre })) \wedge \mathcal{F}(\text { excPost })
\end{aligned}
\]
\[
\begin{aligned}
& \Gamma \Longrightarrow \mathcal{U}(\mathcal{F}(\text { normalPre }) \vee \mathcal{F}(\text { excPre })), \Delta \quad \text { (precondition) } \\
& \Gamma\left.\Longrightarrow \mathcal{U} \mathcal{V}_{\text {mod }_{\text {normal }}\left(\phi_{\text {post_n }} \rightarrow\langle\pi \omega\rangle \phi\right), \Delta} \quad \text { (normal }\right) \\
& \Gamma \Longrightarrow \mathcal{U}^{\text {mod }_{\text {exc }}}\left(\left(\text { exc } \neq \text { null } \wedge \phi_{\text {post_e }}\right)\right. \\
&\rightarrow\langle\pi \text { throw exc } ; \omega\rangle \phi), \Delta \quad \text { (exceptional }) \\
& \Gamma \Longrightarrow \mathcal{U}\left\langle\pi \text { result }=\mathrm{m}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) \omega\right\rangle \phi, \Delta
\end{aligned}
\]
- \(\mathcal{F}(\cdot)\) : translation to Java DL
- \(\mathcal{V}_{\text {mod }}\) : anonymising update (similar to loops)

\section*{Understanding Proof Situations}

Reasons why a proof may not close
- bug or incomplete specification
- bug in program
- maximal number of steps reached: restart or increase \# of steps
- automatic proof search fails and manual rule applications necessary

\section*{Understanding Proof Situations}

Reasons why a proof may not close
- bug or incomplete specification
- bug in program
- maximal number of steps reached: restart or increase \# of steps
- automatic proof search fails and manual rule applications necessary

Understanding open proof goals
- follow the taken control-flow from the root to the open goal
- branch labels may give useful hints
- identify (part of) the post-condition or invariant that cannot be proven
- sequent remains always in "pre-state". I.e., constraints like \(i \geq 0\) refer to the value of \(i\) before executing the program (exception: sub-formulae prefixed by update or modality)
- remember: \(\Gamma \Longrightarrow 0 \doteq\) null,\(\Delta\) is equivalent to \(\Gamma, \circ \neq\) null \(\Longrightarrow \Delta\)

\section*{Summary}
- Most Java features covered in KeY
- Several of remaining features available in experimental version
- Simplified multi-threaded JMM
- Floats
- Degree of automation for loop-free programs is high
- Proving loops requires user to provide invariant
- Automatic invariant generation sometimes possible
- Symbolic execution paradigm lets you use KeY w/o understanding details of logic

\section*{Literature for this Lecture}

> Essential
> KeY Book Verification of Object-Oriented Software (see course web page), Chapter 10: Using KeY
> KeY Book Verification of Object-Oriented Software (see course web page), Chapter 3: Dynamic Logic, Sections 3.1, 3.2, 3.4, 3.5, \(\quad 3.6 .1,3.6 .2,3.6 .3,3.6 .4,3.6 .5,3.6 .7,3.7\)```

