
Software Engineering using Formal Methods
Proof Obligations

Wolfgang Ahrendt

15 October 2013

SEFM: Proof Obligations /GU 131015 1 / 34

This Part

making the connection between

JML

and

Dynamic Logic / KeY

I generating,

I understanding,

I and proving

DL proof obligations from JML specifications

SEFM: Proof Obligations /GU 131015 2 / 34

Tutorial Example

we follow ‘KeY Quicktour for JML’ (cited below as [KQJ])

paper + sources:
see ’KeY Quicktour’ on course page, under ’Links, Papers, and Software’

scenario: simple PayCard

SEFM: Proof Obligations /GU 131015 3 / 34

Inspecting JML Specification

inspect quicktour/jml/paycard/PayCard.java

follow [KQJ, 2.2]

SEFM: Proof Obligations /GU 131015 4 / 34

New JML Feature I: Nested Specification Cases

method charge() has nested specification case: X

@ public normal_behavior

@ requires amount > 0;

@ {|

@ requires amount + balance < limit && isValid()==true;

@ ensures \result == true;

@ ensures balance == amount + \old(balance);

@ assignable balance;

@

@ also

@

@ requires amount + balance >= limit;

@ ensures \result == false;

@ ensures unsuccessfulOperations

@ == \old(unsuccessfulOperations) + 1;

@ assignable unsuccessfulOperations;

@ |}
SEFM: Proof Obligations /GU 131015 5 / 34

Nested Specification Cases

nested specification cases allow to factor out common preconditions

@ public normal_behavior

@ requires R;

@ {|

@ requires R1;

@ ensures E1;

@ assignable A1;

@

@ also

@

@ requires R2;

@ ensures E2;

@ assignable A2;

@ |}

expands to ... (next page)

SEFM: Proof Obligations /GU 131015 6 / 34

Nested Specification Cases

(previous page) ... expands to

@ public normal_behavior

@ requires R;

@ requires R1;

@ ensures E1;

@ assignable A1;

@

@ also

@

@ public normal_behavior

@ requires R;

@ requires R2;

@ ensures E2;

@ assignable A2;

SEFM: Proof Obligations /GU 131015 7 / 34

Nested Specification Cases

@ public normal_behavior

@ requires amount > 0;

@ {|

@ requires amount + balance < limit && isValid()==true;

@ ensures \result == true;

@ ensures balance == amount + \old(balance);

@ assignable balance;

@

@ also

@

@ requires amount + balance >= limit;

@ ensures \result == false;

@ ensures unsuccessfulOperations

@ == \old(unsuccessfulOperations) + 1;

@ assignable unsuccessfulOperations;

@ |}
expands to ... (next page)
SEFM: Proof Obligations /GU 131015 8 / 34

Nested Specification Cases

(previous page) ... expands to

@ public normal_behavior

@ requires amount > 0;

@ requires amount + balance < limit && isValid()==true;

@ ensures \result == true;

@ ensures balance == amount + \old(balance);

@ assignable balance;

@

@ also

@

@ public normal_behavior

@ requires amount > 0;

@ requires amount + balance >= limit;

@ ensures \result == false;

@ ensures unsuccessfulOperations

@ == \old(unsuccessfulOperations) + 1;

@ assignable unsuccessfulOperations;
SEFM: Proof Obligations /GU 131015 9 / 34

Recall: pure vs. assignable \nothing

method charge() has exceptional behavior case:

@ public exceptional_behavior

@ requires amount <= 0;

@ assignable \nothing;

assignable \nothing prohibits side effects

difference to pure:

I pure is method-global, also prohibits non-termination & exceptions

I assignable clause is local to specification case

I pure not usable in this particular context

SEFM: Proof Obligations /GU 131015 10 / 34

Generating Proof Obligations (POs)

generate EnsuresPost PO for normal behavior of charge()

follow [KQJ, 3.1+3.2]

summary:

I start KeY prover

I in quicktour/jml, open paycard

I select paycard > PayCard > charge and EnsuresPost
I inspect Assumed Invariants

assuming less invariants:
I is fully sound
I can compromise provability

sometimes invariants of other classes also needed (select class+inv.)

I select contract which modifies balance

(in JML: modifies synonymous for assignable)

I Current Goal pane displays proof obligation as DL sequent

SEFM: Proof Obligations /GU 131015 11 / 34

Generating Proof Obligations

for loading more proof obligations:
re-open Proof Obligation Browser under Tools menu (or Ctrl-B)

generate EnsuresPost PO for normal behavior of isValid()

generate EnsuresPost PO for exceptional behavior of charge()

generate PreservesOwnInv PO for charge()

expressing that charge() preserves all invariants (of its own class)

follow [KQJ, 4.3.1+4.3.2]

SEFM: Proof Obligations /GU 131015 12 / 34

Translating JML to POs in DL

in the following:

principles of translating JML to proof obligations in DL

I issues in translating arithmetic expressions

I translating this

I identifying the method’s implementation

I translating boolean JML expressions to first-order logic formulas

I translating preconditions

I translating class invariants

I translating postconditions

I storing \old fields prior to method invocation

I storing actual parameters prior to method invocation

I expressing that ’exceptions are (not) thrown’

I putting everything together

SEFM: Proof Obligations /GU 131015 13 / 34

Translating JML to POs in DL

WARNING:

following presentation is

I incomplete

I not fully precise

I simplifying

I omitting details/complications

I deviating from exact implementation in KeY

aim of the following:

enable you to read/understand proof obligations

(notational remark: stick to ASCII syntax of KeY logic in this lecture)

SEFM: Proof Obligations /GU 131015 14 / 34

Issues on Translating Arithmetic Expressions

often:

I KeY replaces arithmetic JAVA operators by generalized operators,
generic towards various integer semantics (JAVA, Math).
example: “+” becomes “javaAddInt”

I KeY inserts casts like (jint),
needed for type hierarchy among primitive types.
example: “0” becomes “(jint)(0)”

(no need to memorize this)

SEFM: Proof Obligations /GU 131015 15 / 34

Translating this

both

I explicit

I implicit

this reference translated to self

e.g., given class

public class MyClass {

...

private int f;

...

}

I f translated to self.f

I this.f translated to self.f

SEFM: Proof Obligations /GU 131015 16 / 34

Identifying the Method’s Implementation

JAVA’s dynamic dispatch selects a method’s implementation at runtime

for a method call m(args),
KeY models selection of implementation from package.Class by
m(args)@package.Class

example:

charge(x)@paycard.PayCard

executes class paycard.PayCard’s implementation of method call
charge(x)

SEFM: Proof Obligations /GU 131015 17 / 34

Translating Boolean JML Expressions

first-order logic treated fundamentally different in JML and KeY logic

JML

I formulas no separate syntactic category

I instead:
JAVA’s boolean expressions extended with first-order concepts
(i.p. quantifiers)

KeY logic

I formulas and expressions completely separate

I truth constants true, false are formulas,
boolean constants TRUE, FALSE are expressions

I atomic formulas take expressions as arguments; e.g.:
I x - y < 5
I b = TRUE

SEFM: Proof Obligations /GU 131015 18 / 34

F Translates boolean JML Expressions to Formulas

F(v) = v = TRUE

F(f) = T (f) = TRUE

F(m()) = T (m)() = TRUE

F(!b 0) = !F(b 0)
F(b 0 && b 1) = F(b 0) & F(b 1)
F(b 0 || b 1) = F(b 0) | F(b 1)
F(b 0 ==> b 1) = F(b 0) -> F(b 1)
F(b 0 <==> b 1) = F(b 0) <-> F(b 1)
F(e 0 == e 1) = E(e 0) = E(e 1)
F(e 0 != e 1) = !E(e 0) = E(e 1)
F(e 0 >= e 1) = E(e 0) >= E(e 1)

v/f/m() boolean variables/fields/pure methods
b 0, b 1 boolean JML expressions
e 0, e 1 JAVA expressions

T may add ‘self.’ or ‘@ClassName’ (see pp. 16, 17)
E may add casts, transform operators (see p. 15)
SEFM: Proof Obligations /GU 131015 19 / 34

F Translates boolean JML Expressions to Formulas

F((\forall T x; e 0)) = \forall T x;

!x = null -> F(e 0)

F((\exists T x; e 0)) = \exists T x;

!x = null & F(e 0)

F((\forall T x; e 0; e 1)) = \forall T x;

!x = null & F(e 0)
-> F(e 1)

F((\exists T x; e 0; e 1)) = \exists T x;

!x = null

& F(e 0) & F(e 1)

SEFM: Proof Obligations /GU 131015 20 / 34

Translating Preconditions

if selected contract Contr has preconditions

@ requires b_1;

@ ...

@ requires b_n;

they are translated to

PRE(Contr)
=

F(b_1) & ... & F(b_n)

SEFM: Proof Obligations /GU 131015 21 / 34

Translating Class Invariants

the invariant

class C {

...

//@ invariant inv_i;

...

}

is translated to

INV(inv_i)

=

\forall C o; ((o.<created> = TRUE & !o = null) ->

{self:=o}F(inv_i))

SEFM: Proof Obligations /GU 131015 22 / 34

Translating Postconditions

if selected contract Contr has postconditions

@ ensures b_1;

@ ...

@ ensures b_n;

they are translated to

POST (Contr)
=

F(b_1) & ... & F(b_n)

special treatment of expressions in post-condition: see next slide

SEFM: Proof Obligations /GU 131015 23 / 34

Translating Expressions in Postconditions

below, we assume the following assignable clause

@ assignable <assignable_fields> ;

translating expressions in postconditions (interesting cases only):

E(\result) = result

E(\old(e)) = Eold(e)

Eold defined like E , with the exception of:

Eold(e.f) = fAtPre(Eold(e))
Eold(f) = fAtPre(self)

for f ∈ <assignable_fields>

‘fAtPre’ intuitively refers to field ‘f’ in the pre-state
But the logic does not know. Must be expressed in formula (next slide).
SEFM: Proof Obligations /GU 131015 24 / 34

Storing Pre-State of a Field

given an assignable field f of class C

class C {

...

private T f;

...

}

translation of postcondition replaces f in \old(...) by fAtPre (p. 24)
left to do: store pre-state values of f in fAtPre

ST ORE(f)
=

\for C o; fAtPre(o) := o.f

note: not a formula, but a quantified update
(more proper explanation next lecture)

SEFM: Proof Obligations /GU 131015 25 / 34

Storing Pre-State of All Assignable Fields

if selected contract Contr has assignable clause:

@ assignable f_1, ..., f_n;

then pre-state of all assignable fields can be stored by
one parallel update:

ST ORE(Contr)
=

{ ST ORE(f_1) || ... || ST ORE(f_n) }

SEFM: Proof Obligations /GU 131015 26 / 34

Expressing Normal Termination

how can you express in DL:
method call m() will not throw an exception
(if method body from class C in package p is executed)

\<{ exc = null;

try {

m()@p.C;

} catch (Throwable e) {

exc = e;

}

}\> exc = null

note difference:

I JAVA assignments

I equation, i.e., formula

SEFM: Proof Obligations /GU 131015 27 / 34

Expressing Exceptional Termination

how can you express in DL:
method call m() will throw an exception
(if method body from class C in package p is executed)

\<{ exc = null;

try {

m()@p.C;

} catch (Throwable e) {

exc = e;

}

}\> !exc = null & < exc has right type>

SEFM: Proof Obligations /GU 131015 28 / 34

PO for Normal Behavior Contract

PO for a normal behavior contract Contr for void method m(),
with chosen assumed invariants inv_1, . . . , inv_n

==>

INV(inv_1)
& ...

& INV(inv_n)
& PRE(Contr)

-> ST ORE(Contr)
\<{ exc = null;

try {

m()@p.C;

} catch (Throwable e) {

exc = e;

}

}\> exc = null & POST (Contr)

SEFM: Proof Obligations /GU 131015 29 / 34

PO for Normal Behavior Allowing Non-Termination

PO for a normal behavior contract Contr for method m(),
where Contr has clause diverges true;

==>

INV(inv_1)
& ...

& INV(inv_n)
& PRE(Contr)

-> ST ORE(Contr)
\[{ exc = null;

try {

m()@p.C;

} catch (Throwable e) {

exc = e;

}

}\] exc = null & POST (Contr)

SEFM: Proof Obligations /GU 131015 30 / 34

PO for Normal Behavior of Non-Void Method

PO for a normal behavior contract Contr for non-void method m(),

==>

INV(inv_1)
& ...

& INV(inv_n)
& PRE(Contr)

-> ST ORE(Contr)
\<{ exc = null;

try {

result = m()@p.C;

} catch (Throwable e) {

exc = e;

}

}\> exc = null & POST (Contr)

recall: POST (Contr) translates \result to result (p. 24)

SEFM: Proof Obligations /GU 131015 31 / 34

PO for Preserving Invariants

assume method m() has contracts Contr1, . . ., Contr j

PO stating that:
Invariants inv_1, . . . , inv_n are preserved

in all cases covered by a contracts.

==>

INV(inv_1) & ... & INV(inv_n)
& (PRE(Contr1) | ... | PRE(Contr1))

-> \[{ exc = null;

try {

m()@p.C;

} catch (Throwable e) {

exc = e;

}

}\] INV(inv_1) & ... & INV(inv_n)

SEFM: Proof Obligations /GU 131015 32 / 34

Examples

don’t fit on slide: execute quicktour with KeY instead

SEFM: Proof Obligations /GU 131015 33 / 34

Literature for this Lecture

Essential

KeY Quicktour see course page, under ’Links, Papers, and Software’

SEFM: Proof Obligations /GU 131015 34 / 34

	Proof Obligations
	Tutorial Example
	Generating Proof Obligations
	Translating JML to DL
	Schematic POs
	Literature

