
Software Engineering using Formal Methods
Introduction to Promela

Wolfgang Ahrendt

05 September 2013

SEFM: Promela /GU 130905 1 / 35



Towards Model Checking

System Model

Promela Program

byte n = 0;

active proctype P() {

n = 1;

}

active proctype Q() {

n = 2;

}

System Property

P,Q are never in their
critical section at the same time

Model
Checker

48

criticalSectP= 0 1 1
criticalSectQ= 1 0 1

SEFM: Promela /GU 130905 2 / 35



What is Promela?

Promela is an acronym

Process meta-language

Promela is a language for modelingmodeling
concurrentconcurrent systems

I multi-threaded

I synchronisation and message passing

I few control structures, pure (side-effect free) expressions

I data structures with finite and fixed bound

SEFM: Promela /GU 130905 3 / 35



What is Promela Not?

Promela is not a programming language

Very small language, not intended to program real systems
(we will master most of it in today’s lecture!)

I No pointers

I No methods/procedures

I No libraries

I No GUI, no standard input

I No floating point types

I Fair scheduling policy (during verification)

I No data encapsulation

I Non-deterministic

SEFM: Promela /GU 130905 4 / 35



A First Promela Program

active proctype P() {

print f ("Hello world\n")
}

Command Line Execution

Simulating (i.e., interpreting) a Promela program

> spin hello.pml

Hello world

First observations

I keyword proctype declares process named P

I C-like command and expression syntax

I C-like (simplified) formatted print

SEFM: Promela /GU 130905 5 / 35



Arithmetic Data Types

active proctype P() {

int val = 123;

int rev;

rev = (val % 10) * 100 + /* % is modulo */

((val / 10) % 10) * 10 + (val / 100);

print f ("val = %d, rev = %d\n", val , rev)

}

Observations

I Data types byte, short, int, unsigned with operations +,-,*,/,%

I Expressions computed as int, then converted to container type

I No floats, no side effects, C/Java-style comments

I No string variables (strings only in print statements)

SEFM: Promela /GU 130905 6 / 35



Booleans and Enumerations

bit b1 = 0;

bool b2 = true;

Observations

I bit is small numeric type containing 0, 1

I bool, true, false syntactic sugar for bit, 1, 0

mtype = { red , yellow , green }; //in global context

mtype light = green;

print f ("the light is %e\n", light)

Observations

I literals represented as non-0 byte: at most 255

I mtype stands for message type (first used for message names)

I There is at most one mtype per program

SEFM: Promela /GU 130905 7 / 35



Control Statements

Sequence using ; as separator; C/Java-like rules
Guarded Command
— Selection non-deterministic choice of an alternative
— Repetition loop until break (or forever)

Goto jump to a label

SEFM: Promela /GU 130905 8 / 35



Guarded Commands: Selection

active proctype P() {

byte a = 5, b = 5;

byte max , branch;

i f
:: a >= b -> max = a; branch = 1

:: a <= b -> max = b; branch = 2

f i
}

Observations

I Guards may “overlap” (more than one can be true at the same time)

I Any alternative whose guard is true is randomly selected

I When no guard true: process blocks until one becomes true

SEFM: Promela /GU 130905 9 / 35



Guarded Commands: Selection Cont’d

active proctype P() {

bool p = ...;

i f
:: p -> ...

:: true -> ...

f i
}

active proctype P() {

bool p = ...;

i f
:: p -> ...

:: e l se -> ...

f i
}

Second alternative can be se-
lected anytime, regardless of
whether p is true

Second alternative can be se-
lected only if p is false

SEFM: Promela /GU 130905 10 / 35



Guarded Statement Syntax

:: guard-statement -> command

Observations

I symbol -> is overloaded in Promela

I first statement after :: used as guard
I :: guard is admissible (empty command)
I -> is synonym for ;
I Therefore: can use ; instead of ->
I Relation guards vs. statements will get clearer later

SEFM: Promela /GU 130905 11 / 35



Guarded Commands: Repetition

active proctype P() { /* computes gcd */

int a = 15, b = 20;

do
:: a > b -> a = a - b

:: b > a -> b = b - a

:: a == b -> break
od

}

Observations

I Any alternative whose guard is true is randomly selected

I Only way to exit loop is via break or goto

I When no guard true: loop blocks until one becomes true

SEFM: Promela /GU 130905 12 / 35



Counting Loops

Counting loops such as for-loops as usual in imperative programming
languages are realized with break after the termination condition:

#define N 10 /* C-style preprocessing */

active proctype P() {

int sum = 0; byte i = 1;

do
:: i > N -> break /* test */

:: e l se -> sum = sum + i; i++ /* body ,increase */

od
}

Observations

I Don’t forget else, otherwise strange behaviour

SEFM: Promela /GU 130905 13 / 35



Arrays

#define N 5

active proctype P() {

byte a[N];

a[0] = 0;a[1] = 10;a[2] = 20;a[3] = 30;a[4] = 40;

byte sum = 0, i = 0;

do
:: i > N-1 -> break
:: e l se -> sum = sum + a[i]; i++

od;
}

Observations

I Array indexes start with 0 as in Java and C

I Arrays are scalar types: a6=b always different arrays

I Array bounds are constant and cannot be changed

I Only one-dimensional arrays (there is an (ugly) workaround)

SEFM: Promela /GU 130905 14 / 35



Record Types

typedef DATE {

byte day , month , year;

}

active proctype P() {

DATE D;

D.day = 1; D.month = 7; D.year = 62

}

Observations

I may include previously declared record types, but no self-references

I Can be used to realize multi-dimensional arrays:

typedef VECTOR {

int vector [10]

};

VECTOR matrix [5]; /* base type array in record */

matrix [3]. vector [6] = 17;

SEFM: Promela /GU 130905 15 / 35



Jumps

#define N 10

active proctype P() {

int sum = 0; byte i = 1;

do
:: i > N -> goto exitloop ;

:: e l se -> sum = sum + i; i++

od;
exitloop:

print f ("End of loop")
}

Observations

I Jumps allowed only within a process

I Labels must be unique for a process

I Can’t place labels in front of guards (inside alternative ok)

I Easy to write messy code with goto

SEFM: Promela /GU 130905 16 / 35



Inlining Code

Promela has no method or procedure calls

typedef DATE {

byte day , month , year;

}

i n l ine setDate(D, DD , MM , YY) {

D.day = DD; D.month = MM; D.year = YY

}

active proctype P() {

DATE d;

setDate(d,1,7,62)

}

The inline construct

I macro-like abbreviation mechanism for code that occurs multiply
I creates no new scope for locally declared variables

I avoid to declare variables in inline — they are visible

SEFM: Promela /GU 130905 17 / 35



Non-Deterministic Programs

Deterministic Promela programs are trivial

Assume Promela program with one process and no overlapping guards

I All variables are (implicitly or explictly) initialized

I No user input possible

I Each state is either blocking or has exactly one successor state

Such a program has exactly one possible computation!

Non-trivial Promela programs are non-deterministic!

Possible sources of non-determinism

1. Non-deterministic choice of alternatives with overlapping guards

2. Scheduling of concurrent processes

SEFM: Promela /GU 130905 18 / 35



Non-Deterministic Generation of Values

byte range;

i f
:: range = 1

:: range = 2

:: range = 3

:: range = 4

f i

Observations

I assignment statement used as guard
I assignment statement always succeeds (guard is true)
I side effect of guard is desired effect of this alternative
I also possible :: true -> range = 1 :: true -> range = 2 ...

I selects non-deterministically a value in {1, 2, 3, 4} for range

SEFM: Promela /GU 130905 19 / 35



Non-Deterministic Generation of Values Cont’d

Generation of values from explicit list impractical for large range

#define LOW 0

#define HIGH 9

byte range = LOW;

do
:: range < HIGH -> range++

:: break
od

Observations

I In each iteration, equal chance for increase of range and loop exit

I Chance of generating n in random simulation is 2−(n+1)

I Obtain no representative test cases from random simulation!
I OK for verification, because all computations are generated

SEFM: Promela /GU 130905 20 / 35



Sources of Non-Determinism

1. Non-deterministic choice of alternatives with overlapping guards

2. Scheduling of concurrent processes

SEFM: Promela /GU 130905 21 / 35



Concurrent Processes

active proctype P() {

print f ("Process P, statement 1\n");
print f ("Process P, statement 2\n")

}

active proctype Q() {

print f ("Process Q, statement 1\n");
print f ("Process Q, statement 2\n")

}

Observations

I Can declare more than one process (need unique identifier)

I At most 255 processes

SEFM: Promela /GU 130905 22 / 35



Execution of Concurrent Processes

Command Line Execution

Random simulation of two processes

> spin interleave.pml

Observations

I Scheduling of concurrent processes ‘on one processor’

I Scheduler randomly selects process to make next step

I Many different computations are possible: non-determinism

I Use -p/-g/-l options to see more execution details

SEFM: Promela /GU 130905 23 / 35



Sets of Processes

active [2] proctype P() {

print f ("Process %d, statement 1\n", _pid);

print f ("Process %d, statement 2\n", _pid)

}

Observations

I Can declare set of identical processes

I Current process identified with reserved variable _pid

I Each process can have its own local variables

Command Line Execution

Random simulation of set of two processes

> spin interleave_set.pml

SEFM: Promela /GU 130905 24 / 35



Promela Computations

1 active [2] proctype P() {

2 byte n;

3 n = 1;

4 n = 2

5 }

One possible computation of this program

2, 2

0, 0

3, 2

1, 0

3, 3

1, 1

3, 4

1, 2

4, 4

2, 2

Notation

I Program pointer (line #) for each process in upper compartment

I Value of all variables in lower compartment

Computations are either infinite or terminating or blocking

SEFM: Promela /GU 130905 25 / 35



Admissible Computations: Interleaving

Definition (Interleaving of independent computations)

Assume n independent processes P1, . . . ,Pn and process i has
computation c i = (s i0, s

i
1, s

i
2, . . .).

The computation (s0, s1, s2, . . .) is an interleaving of c1, . . . , cn iff
for all sj = s ij ′ and sk = s ik ′ with j < k it is the case that j ′ < k ′.

The interleaved state sequence
respects the execution order of each process

Observations

I Semantics of concurrent Promela program is the set of its
interleavings

I Called interleaving semantics of concurrent programs

I Not universal: in Java certain reorderings allowed

SEFM: Promela /GU 130905 26 / 35



Interleaving Cont’d

Can represent possible interleavings in a DAG

1 active [2] proctype P() {

2 byte n;

3 n = 1;

4 n = 2

5 }

2, 2

0, 0

3, 2

1, 0

2, 3

0, 1

3, 3

1, 1

4, 2

2, 0

2, 4

0, 2

3, 4

1, 2

4, 3

2, 1
4, 4

2, 2

SEFM: Promela /GU 130905 27 / 35



Atomicity

At which granularity of execution can interleaving occur?

Definition (Atomicity)

An expression or statement of a process that is executed entirely without
the possibility of interleaving is called atomic.

Atomicity in Promela

I Assignments, jumps, skip, and expressions are atomic
I In particular, conditional expressions are atomic:

(p -> q : r), C-style syntax, brackets required

I Guarded commands are not atomic

SEFM: Promela /GU 130905 28 / 35



Atomicity Cont’d

int a,b,c;

active proctype P() {

a = 1; b = 1; c = 1;

i f
:: a != 0 -> c = b / a

:: e l se -> c = b

f i
}

active proctype Q() {

a = 0

}

Command Line Execution

Interleaving into selection statement forced by interactive simulation

> spin -p -g -i zero.pml

SEFM: Promela /GU 130905 29 / 35



Atomicity Cont’d

How to prevent interleaving?

1. Consider to use expression instead of selection statement:

c = (a != 0 -> (b / a): b)

2. Put code inside scope of atomic:

active proctype P() {

a = 1; b = 1; c = 1;

atomic {

i f
:: a != 0 -> c = b / a

:: e l se -> c = b

f i
}

}

Remark: Blocking statement in atomic may lead to interleaving
(Lect. “Concurrency”)

SEFM: Promela /GU 130905 30 / 35



Usage Scenario of Promela

1. Model the essential features of a system in Promela
I abstract away from complex (numerical) computations

I make usage of non-deterministic choice of outcome

I replace unbounded data structures with finite approximations

2. Select properties that the Promela model must satisfy
I Generic Properties (discussed in later lectures)

I Mutual exclusion for access to critical resources
I Absence of deadlock
I Absence of starvation

I System-specific properties
I Event sequences (e.g., system responsiveness)

SEFM: Promela /GU 130905 31 / 35



Formalisation with Promela Abstraction

System

Requirements

Formal
Execution

Model

Formal
Requirements
Specification

Promela
Model

Formal
Properties

System

Design

Promela

Model

direct modeling
(SEFM course)

Generic
Properties

System

Properties

SEFM: Promela /GU 130905 32 / 35



Usage Scenario of Promela Cont’d

1. Model the essential features of a system in Promela
I abstract away from complex (numerical) computations

I make usage of non-deterministic choice of outcome

I replace unbounded datastructures with finite approximations
I assume fair process scheduler

2. Select properties that the Promela model must satisfy
I Mutal exclusion for access to critical resources
I Absence of deadlock
I Absence of starvation
I Event sequences (e.g., system responsiveness)

3. Verify that all possible runs of Promela model satisfy properties
I Typically, need many iterations to get model and properties right
I Failed verification attempts provide feedback via counter examples
I Topic of next week’s lecture

SEFM: Promela /GU 130905 33 / 35



Verification: Work Flow (Simplified)

Promela Program

byte n = 0;

active proctype P() {

n = 1

}

active proctype Q() {

n = 2

}

Properties

[ ](!csp || !csq)

Spin

48

csp= 0 1 1
csq= 1 0 1

SEFM: Promela /GU 130905 34 / 35



Literature for this Lecture

Ben-Ari Chapter 1, Sections 3.1–3.3, 3.5, 4.6, Chapter 6

Spin Reference card (linked from Links, Papers, and Software section
of course homepage)

jspin User manual, file doc/jspin-user.pdf in distribution

SEFM: Promela /GU 130905 35 / 35


	Promela
	Hello World
	Simple Data Types
	Control Statements
	Complex Data Types
	Inlining
	Non-Determinism
	Concurrent Processes
	Computations
	Interleaving
	Atomicity
	Usage Scenario of Promela
	Literature

