
Software Engineering using Formal Methods
First-Order Logic

Wolfgang Ahrendt

26th September 2013

SEFM: First-Order Logic 130926 1 / 53

Install the KeY-Tool...

KeY used in Friday’s exercise

Requires: Java ≥ 5

Follow instructions on course page, under:
⇒Links, Papers, and Software

We recommend using Java Web Start:

I Start KeY with two clicks
(you need to trust our self-signed certificate)

I Java Web Start installed with standard JDK/JRE

I Usually browsers know filetype.
Otherwise open KeY.jnlp with javaws.

If you want to intstall KeY locally instead, download from
www.key-project.org. For this course, install version 1.6.x.

SEFM: First-Order Logic 130926 2 / 53

www.key-project.org

Motivation for Introducing First-Order Logic

1) we specify Java programs with Java Modeling Language (JML)

JML combines

I Java expressions

I First-Order Logic (FOL)

2) we verify Java programs using Dynamic Logic

Dynamic Logic combines

I First-Order Logic (FOL)

I Java programs

SEFM: First-Order Logic 130926 3 / 53

FOL: Language and Calculus

we introduce:

I FOL as a language

I calculus for proving FOL formulas

I KeY system as propositional, and first-order, prover (for now)

I (formal semantics: if time)

SEFM: First-Order Logic 130926 4 / 53

First-Order Logic: Signature

Signature

A first-order signature Σ consists of

I a set TΣ of types

I a set FΣ of function symbols

I a set PΣ of predicate symbols

I a typing αΣ

intuitively, the typing αΣ determines
I for each function and predicate symbol:

I its arity, i.e., number of arguments
I its argument types

I for each function symbol its result type.

formally:

I αΣ(p) ∈ TΣ
∗ for all p ∈ PΣ (arity of p is |αΣ(p)|)

I αΣ(f) ∈ TΣ
∗ × TΣ for all f ∈ FΣ (arity of f is |αΣ(f)| − 1)

SEFM: First-Order Logic 130926 5 / 53

Example Signature 1 + Constants

TΣ1 = {int},
FΣ1 = {+, -} ∪ {..., -2, -1, 0, 1, 2, ...},
PΣ1 = {<}

αΣ1(<) = (int,int)
αΣ1(+) = αΣ1(-) = (int,int,int)
αΣ1(0) = αΣ1(1) = αΣ1(-1) = ... = (int)

Constant Symbols

A function symbol f with |αΣ1(f)| = 1 (i.e., with arity 0)
is called constant symbol.

here, the constant symbols are: ..., -2, -1, 0, 1, 2, ...

SEFM: First-Order Logic 130926 6 / 53

Syntax of First-Order Logic: Signature Cont’d

Type declaration of signature symbols

I Write τ x ; to declare variable x of type τ

I Write p(τ1, . . . , τr); for α(p) = (τ1, . . . , τr)

I Write τ f (τ1, . . . , τr); for α(f) = (τ1, . . . , τr , τ)

r = 0 is allowed, then write f instead of f (), etc.

Example

Variables integerArray a; int i;

Predicate Symbols isEmpty(List); alertOn;

Function Symbols int arrayLookup(int); Object o;

SEFM: First-Order Logic 130926 7 / 53

Example Signature 1 + Notation

typing of Signature 1:

αΣ1(<) = (int,int)
αΣ1(+) = αΣ1(-) = (int,int,int)
αΣ1(0) = αΣ1(1) = αΣ1(-1) = ... = (int)

can alternatively be written as:

<(int,int);

int +(int,int);

int 0; int 1; int -1; ...

SEFM: First-Order Logic 130926 8 / 53

Example Signature 2

TΣ2 = {int, LinkedIntList},
FΣ2 = {null, new, elem, next} ∪ {...,-2,-1,0,1,2,...}
PΣ2 = {}

intuitively, elem and next model fields of LinkedIntList objects

type declarations:

LinkedIntList null;

LinkedIntList new(int,LinkedIntList);

int elem(LinkedIntList);

LinkedIntList next(LinkedIntList);

and as before:
int 0; int 1; int -1; ...

SEFM: First-Order Logic 130926 9 / 53

First-Order Terms

We assume a set V of variables (V ∩ (FΣ ∪ PΣ) = ∅).
Each v ∈ V has a unique type αΣ(v) ∈ TΣ.

Terms are defined recursively:

Terms

A first-order term of type τ ∈ TΣ

I is either a variable of type τ , or

I has the form f (t1, . . . , tn),
where f ∈ FΣ has result type τ , and each ti is term of the correct
type, following the typing αΣ of f .

If f is a constant symbol, the term is written f , instead of f ().

SEFM: First-Order Logic 130926 10 / 53

Terms over Signature 1

example terms over Σ1:
(assume variables int v1; int v2;)

I -7

I +(-2, 99)

I -(7, 8)

I +(-(7, 8), 1)

I +(-(v1, 8), v2)

some variants of FOL allow infix notation of functions:

I -2 + 99

I 7 - 8

I (7 - 8) + 1

I (v1 - 8) + v2

SEFM: First-Order Logic 130926 11 / 53

Terms over Signature 2

example terms over Σ2:
(assume variables LinkedIntList o; int v ;)

I -7

I null

I new(13, null)

I elem(new(13, null))

I next(next(o))

for first-order functions modeling object fields,
we allow dotted postfix notation:

I new(13, null).elem

I o.next.next

SEFM: First-Order Logic 130926 12 / 53

Atomic Formulas

Atomic Formulas

Given a signature Σ.
An atomic formula has either of the forms

I true

I false

I t1 = t2 (“equality”),
where t1 and t2 are first-order terms of the same type.

I p(t1, . . . , tn) (“predicate”),
where p ∈ PΣ, and each ti is term of the correct type,
following the typing αΣ of p.

SEFM: First-Order Logic 130926 13 / 53

Atomic Formulas over Signature 1

example formulas over Σ1:
(assume variable int v ;)

I 7 = 8

I 7 < 8

I -2 - v < 99

I v < (v + 1)

SEFM: First-Order Logic 130926 14 / 53

Atomic Formulas over Signature 2

example formulas over Σ2:
(assume variables LinkedIntList o; int v ;)

I new(13, null) = null

I elem(new(13, null)) = 13

I next(new(13, null)) = null

I next(next(o)) = o

SEFM: First-Order Logic 130926 15 / 53

First-order Formulas

Formulas

I each atomic formula is a formula

I with φ and ψ formulas, x a variable, and τ a type,
the following are also formulas:

I ¬φ (“not φ”)
I φ ∧ ψ (“φ and ψ”)
I φ ∨ ψ (“φ or ψ”)
I φ→ ψ (“φ implies ψ”)
I φ↔ ψ (“φ is equivalent to ψ”)
I ∀ τ x ; φ (“for all x of type τ holds φ”)
I ∃ τ x ; φ (“there exists an x of type τ such that φ”)

In ∀ τ x ; φ and ∃ τ x ; φ the variable x is ‘bound’ (i.e., ‘not free’).

Formulas with no free variable are ‘closed’.

SEFM: First-Order Logic 130926 16 / 53

First-order Formulas: Examples

(signatures/types left out here)

Example (There are at least two elements)

∃x , y ;¬(x = y)

Example (Strict partial order)

Irreflexivity ∀x ;¬(x < x)
Asymmetry ∀x ; ∀y ; (x < y → ¬(y < x))
Transitivity ∀x ; ∀y ;∀z ;

(x < y ∧ y < z → x < z)

(is any of the three formulas redundant?)

SEFM: First-Order Logic 130926 17 / 53

Semantics (briefly here, more thorough later)

Domain

A domain D is a set of elements which are (potentially) the meaning of
terms and variables.

Interpretation

An interpretation I (over D) assigns meaning to the symbols in FΣ ∪ PΣ

(assigning functions to function symbols, relations to predicate symbols).

Valuation

In a given D and I, a closed formula evaluates to either T or F .

Validity

A closed formula is valid if it evaluates to T in all D and I.

In the context of specification/verification of programs:
each (D, I) is called a ‘state’.
SEFM: First-Order Logic 130926 18 / 53

Useful Valid Formulas

Let φ and ψ be arbitrary, closed formulas (whether valid of not).

The following formulas are valid:

I ¬(φ ∧ ψ)↔ ¬φ ∨ ¬ψ
I ¬(φ ∨ ψ)↔ ¬φ ∧ ¬ψ
I (true ∧ φ)↔ φ

I (false ∨ φ)↔ φ

I true ∨ φ
I ¬(false ∧ φ)

I (φ→ ψ)↔ (¬φ ∨ ψ)

I φ→ true

I false→ φ

I (true→ φ)↔ φ

I (φ→ false)↔ ¬φ

SEFM: First-Order Logic 130926 19 / 53

Useful Valid Formulas

Assume that x is the only variable which may appear freely in φ or ψ.

The following formulas are valid:

I ¬(∃ τ x ; φ)↔ ∀ τ x ; ¬φ
I ¬(∀ τ x ; φ)↔ ∃ τ x ; ¬φ
I (∀ τ x ; φ ∧ ψ)↔ (∀ τ x ; φ) ∧ (∀ τ x ; ψ)

I (∃ τ x ; φ ∨ ψ)↔ (∃ τ x ; φ) ∨ (∃ τ x ; ψ)

Are the following formulas also valid?

I (∀ τ x ; φ ∨ ψ)↔ (∀ τ x ; φ) ∨ (∀ τ x ; ψ)

I (∃ τ x ; φ ∧ ψ)↔ (∃ τ x ; φ) ∧ (∃ τ x ; ψ)

SEFM: First-Order Logic 130926 20 / 53

Remark on Concrete Syntax

Text book Spin KeY

Negation ¬ ! !
Conjunction ∧ && &
Disjunction ∨ || |
Implication →, ⊃ −> −>
Equivalence ↔ <−> <−>
Universal Quantifier ∀ x ; φ n/a \forall τ x ; φ
Existential Quantifier ∃ x ; φ n/a \exists τ x ; φ
Value equality = == =

SEFM: First-Order Logic 130926 21 / 53

Part I

Sequent Calculus for FOL

SEFM: First-Order Logic 130926 22 / 53

Reasoning by Syntactic Transformation

Prove Validity of φ by syntactic transformation of φ

Logic Calculus: Sequent Calculus based on notion of sequent:

ψ1, . . . , ψm︸ ︷︷ ︸
Antecedent

=⇒ φ1, . . . , φn︸ ︷︷ ︸
Succedent

has same meaning as

(ψ1 ∧ · · · ∧ ψm) → (φ1 ∨ · · · ∨ φn)

which has (for closed formulas ψi , φi) same meaning as

{ψ1, . . . , ψm} |= φ1 ∨ · · · ∨ φn

SEFM: First-Order Logic 130926 23 / 53

Notation for Sequents

ψ1, . . . , ψm =⇒ φ1, . . . , φn

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables

φ, ψ, . . . match formulas, Γ,∆, . . . match sets of formulas
Characterize infinitely many sequents with single schematic sequent, e.g.,

Γ =⇒ φ ∧ ψ, ∆

Matches any sequent with occurrence of conjunction in succedent

Call φ ∧ ψ main formula and Γ,∆ side formulas of sequent

Any sequent of the form Γ, φ =⇒ φ, ∆ is logically valid: axiom

SEFM: First-Order Logic 130926 24 / 53

Sequent Calculus Rules

Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

RuleName

Premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
Conclusion

Meaning: For proving the Conclusion, it suffices to prove all Premisses.

Example

andRight
Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

Admissible to have no premisses (iff conclusion is valid, e.g., axiom)

A rule is sound (correct) iff the validity of its premisses implies the
validity of its conclusion.
SEFM: First-Order Logic 130926 25 / 53

‘Propositional’ Sequent Calculus Rules

main left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ→ ψ,∆

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

SEFM: First-Order Logic 130926 26 / 53

Sequent Calculus Proofs

Goal to prove: G = ψ1, . . . , ψm =⇒ φ1, . . . , φn

I find rule R whose conclusion matches G
I instantiate R such that its conclusion is identical to G
I apply that instantiation to all premisses of R, resulting in new goals
G1, . . . , Gr

I recursively find proofs for G1, . . . , Gr
I tree structure with goal as root

I close proof branch when rule without premiss encountered

Goal-directed proof search

In KeY tool proof displayed as Java Swing tree

SEFM: First-Order Logic 130926 27 / 53

A Simple Proof

Close
∗

p =⇒ p, q

∗
p, q =⇒ q

Close

p, (p → q) =⇒ q

p ∧ (p → q) =⇒ q

=⇒ (p ∧ (p → q))→ q

A proof is closed iff all its branches are closed

Demo
prop.key

SEFM: First-Order Logic 130926 28 / 53

Proving Validity of First-Order Formulas

Proving a universally quantified formula

Claim: ∀ τ x ; φ is true

How is such a claim proved in mathematics?

All even numbers are divisible by 2 ∀ int x ; (even(x)→ divByTwo(x))

Let c be an arbitrary number Declare “unused” constant int c

The even number c is divisible by 2 prove even(c)→ divByTwo(c)

Sequent rule ∀-right

forallRight
Γ =⇒ [x/c]φ,∆

Γ =⇒ ∀ τ x ; φ,∆

I [x/c]φ is result of replacing each occurrence of x in φ with c

I c new constant of type τ

SEFM: First-Order Logic 130926 29 / 53

Proving Validity of First-Order Formulas Cont’d

Proving an existentially quantified formula

Claim: ∃ τ x ; φ is true

How is such a claim proved in mathematics?

There is at least one prime number ∃ int x ; prime(x)

Provide any “witness”, say, 7 Use variable-free term int 7

7 is a prime number prime(7)

Sequent rule ∃-right

existsRight
Γ =⇒ [x/t]φ, ∃ τ x ; φ,∆

Γ =⇒ ∃ τ x ; φ,∆

I t any variable-free term of type τ

I Proof might not work with t! Need to keep premise to try again

SEFM: First-Order Logic 130926 30 / 53

Proving Validity of First-Order Formulas Cont’d

Using a universally quantified formula

We assume ∀ τ x ; φ is true

How is such a fact used in a mathematical proof?

We know that all primes are odd ∀ int x ; (prime(x)→ odd(x))

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd prime(17)→ odd(17)

Sequent rule ∀-left

forallLeft
Γ,∀ τ x ; φ, [x/t ′]φ =⇒ ∆

Γ,∀ τ x ; φ =⇒ ∆

I t ′ any variable-free term of type τ

I We might need other instances besides t ′! Keep premise ∀ τ x ; φ

SEFM: First-Order Logic 130926 31 / 53

Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

We assume ∃ τ x ; φ is true

How is such a fact used in a mathematical proof?

We know such an element exists. Let’s give it a new name for future
reference.

Sequent rule ∃-left

existsLeft
Γ, [x/c]φ =⇒ ∆

Γ, ∃ τ x ; φ =⇒ ∆

I c new constant of type τ

SEFM: First-Order Logic 130926 32 / 53

Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

Let x , y denote integer constants, both are not zero. We know further
that x divides y .
Show: (y/x) ∗ x = y (′/′ is division on integers, i.e. the equation is not
always true, e.g. x = 2, y = 1)
Proof: We know x divides y , i.e. there exists a k such that k ∗ x = y .
Let now c denote such a k. Hence we can replace y by c ∗ x on the
right side (see slide 35). . . .

∗
...

¬(x = 0),¬(y = 0), c ∗ x = y =⇒ ((c ∗ x)/x) ∗ x = y

¬(x = 0),¬(y = 0), c ∗ x = y =⇒ (y/x) ∗ x = y

¬(x = 0),¬(y = 0),∃ int k ; k ∗ x = y =⇒ (y/x) ∗ x = y

SEFM: First-Order Logic 130926 33 / 53

Proving Validity of First-Order Formulas Cont’d

Example (A simple theorem about binary relations)

∗
p(c, d), ∀ y ; p(c , y) =⇒ p(c , d), ∃ x ; p(x , y)

p(c , d), ∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c, y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

Untyped logic: let static type of x and y be >
∃-left: substitute new constant c of type > for x
∀-right: substitute new constant d of type > for y

∀-left: free to substitute any term of type > for y , choose d
∃-right: free to substitute any term of type > for x , choose c

Close
Demo

relSimple.key
SEFM: First-Order Logic 130926 34 / 53

Proving Validity of First-Order Formulas Cont’d

Using an equation between terms

We assume t = t ′ is true

How is such a fact used in a mathematical proof?

Use x = y−1 to simplify x+1/y x = y−1 =⇒ 1 = x+1/y

Replace x in conclusion with right-hand side of equation

We know: x+1/y equal to y−1+1/y x = y−1 =⇒ 1 = y−1+1/y

Sequent rule =-left

applyEqL
Γ, t = t ′, [t/t ′]φ =⇒ ∆

Γ, t = t ′, φ =⇒ ∆
applyEqR

Γ, t = t ′ =⇒ [t/t ′]φ,∆

Γ, t = t ′ =⇒ φ,∆

I Always replace left- with right-hand side (use eqSymm if necessary)

I t,t ′ variable-free terms of the same type

SEFM: First-Order Logic 130926 35 / 53

Proving Validity of First-Order Formulas Cont’d

Closing a subgoal in a proof

I We derived a sequent that is obviously valid

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

I We derived an equation that is obviously valid

eqClose
Γ =⇒ t = t,∆

SEFM: First-Order Logic 130926 36 / 53

Sequent Calculus for FOL at One Glance

left side, antecedent right side, succedent

∀
Γ,∀ τ x ; φ, [x/t ′]φ =⇒ ∆

Γ,∀ τ x ; φ =⇒ ∆

Γ =⇒ [x/c]φ,∆

Γ =⇒ ∀ τ x ; φ,∆

∃
Γ, [x/c]φ =⇒ ∆

Γ,∃ τ x ; φ =⇒ ∆

Γ =⇒ [x/t ′]φ, ∃ τ x ; φ,∆

Γ =⇒ ∃ τ x ; φ,∆

=
Γ, t = t ′ =⇒ [t/t ′]φ,∆

Γ, t = t ′ =⇒ φ,∆ Γ =⇒ t = t,∆
(+ application rule on left side)

I [t/t ′]φ is result of replacing each occurrence of t in φ with t ′

I t,t ′ variable-free terms of type τ

I c new constant of type τ (occurs not on current proof branch)

I Equations can be reversed by commutativity

SEFM: First-Order Logic 130926 37 / 53

Recap: ‘Propositional’ Sequent Calculus Rules

main left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ→ ψ,∆

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

SEFM: First-Order Logic 130926 38 / 53

Features of the KeY Theorem Prover

Demo
rel.key, twoInstances.key

Feature List

I Can work on multiple proofs simultaneously (task list)

I Proof trees visualized as Java Swing tree

I Point-and-click navigation within proof

I Undo proof steps, prune proof trees

I Pop-up menu with proof rules applicable in pointer focus

I Preview of rule effect as tool tip

I Quantifier instantiation and equality rules by drag-and-drop

I Possible to hide (and unhide) parts of a sequent

I Saving and loading of proofs

SEFM: First-Order Logic 130926 39 / 53

Literature for this Lecture

essential:

I W. Ahrendt
Using KeY
Chapter 10 in [KeYbook]

further reading:

I M. Giese
First-Order Logic
Chapter 2 in [KeYbook]

KeYbook B. Beckert, R. Hähnle, and P. Schmitt, editors, Verification
of Object-Oriented Software: The KeY Approach, vol 4334
of LNCS (Lecture Notes in Computer Science), Springer,
2006 (access via Chalmers library → E-books → Lecture
Notes in Computer Science)

SEFM: First-Order Logic 130926 40 / 53

Part II

First-Order Semantics

SEFM: First-Order Logic 130926 41 / 53

First-Order Semantics

From propositional to first-order semantics

I In prop. logic, an interpretation of variables with {T ,F} sufficed
I In first-order logic we must assign meaning to:

I variables bound in quantifiers
I constant and function symbols
I predicate symbols

I Each variable or function value may denote a different item

I Respect typing: int i, List l must denote different items

What we need (to interpret a first-order formula)

1. A collection of typed universes of items

2. A mapping from variables to items

3. A mapping from function arguments to function values

4. The set of argument tuples where a predicate is true

SEFM: First-Order Logic 130926 42 / 53

First-Order Domains/Universes

1. A collection of typed universes of items

Definition (Universe/Domain)

A non-empty set D of items is a universe or domain
Each element of D has a fixed type given by δ : D → τ

I Notation for the domain elements of type τ ∈ T :
Dτ = {d ∈ D | δ(d) = τ}

I Each type τ ∈ T must ‘contain’ at least one domain element:
Dτ 6= ∅

SEFM: First-Order Logic 130926 43 / 53

First-Order States

3. A mapping from function arguments to function values

4. The set of argument tuples where a predicate is true

Definition (First-Order State)

Let D be a domain with typing function δ

Let f be declared as τ f (τ1, . . . , τr);

Let p be declared as p(τ1, . . . , τr);

Let I(f) : Dτ1 × · · · × Dτr → Dτ

Let I(p) ⊆ Dτ1 × · · · × Dτr

Then S = (D, δ, I) is a first-order state

SEFM: First-Order Logic 130926 44 / 53

First-Order States Cont’d

Example

Signature: int i; short j; int f(int); Object obj; <(int,int);

D = {17, 2, o} where all numbers are short

I(i) = 17
I(j) = 17
I(obj) = o

Dint I(f)

2 2
17 2

Dint ×Dint in I(<)?

(2, 2) F
(2, 17) T
(17, 2) F

(17, 17) F

One of uncountably many possible first-order states!

SEFM: First-Order Logic 130926 45 / 53

Semantics of Reserved Signature Symbols

Definition

Equality symbol = declared as = (>, >)

Interpretation is fixed as I(=) = {(d , d) | d ∈ D}
“Referential Equality” (holds if arguments refer to identical item)

Exercise: write down the predicate table for example domain

SEFM: First-Order Logic 130926 46 / 53

Signature Symbols vs. Domain Elements

I Domain elements different from the terms representing them

I First-order formulas and terms have no access to domain

Example

Signature: Object obj1, obj2;

Domain: D = {o}

In this state, necessarily I(obj1) = I(obj2) = o

SEFM: First-Order Logic 130926 47 / 53

Variable Assignments

2. A mapping from variables to objects

Think of variable assignment as environment for storage of local variables

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements
It respects the variable type, i.e., if x has type τ then β(x) ∈ Dτ

Definition (Modified Variable Assignment)

Let y be variable of type τ , β variable assignment, d ∈ Dτ :

βdy (x) :=

{
β(x) x 6= y
d x = y

SEFM: First-Order Logic 130926 48 / 53

Semantic Evaluation of Terms

Given a first-order state S and a variable assignment β
it is possible to evaluate first-order terms under S and β

Definition (Valuation of Terms)

valS,β : Term→ D such that valS,β(t) ∈ Dτ for t ∈ Termτ :

I valS,β(x) = β(x)

I valS,β(f (t1, . . . , tr)) = I(f)(valS,β(t1), . . . , valS,β(tr))

SEFM: First-Order Logic 130926 49 / 53

Semantic Evaluation of Terms Cont’d

Example

Signature: int i; short j; int f(int);

D = {17, 2, o} where all numbers are short
Variables: Object obj; int x;

I(i) = 17
I(j) = 17

Dint I(f)

2 17
17 2

Var β

obj o
x 17

I valS,β(f(f(i))) ?

I valS,β(x) ?

SEFM: First-Order Logic 130926 50 / 53

Semantic Evaluation of Formulas

Definition (Valuation of Formulas)

valS,β(φ) for φ ∈ For

I valS,β(p(t1, . . . , tr) = T iff (valS,β(t1), . . . , valS,β(tr)) ∈ I(p)

I valS,β(φ ∧ ψ) = T iff valS,β(φ) = T and valS,β(ψ) = T

I . . . as in propositional logic

I valS,β(∀ τ x ; φ) = T iff valS,βd
x

(∀ τ x ; φ) = T for all d ∈ Dτ

I valS,β(∀ τ x ; φ) = T iff valS,βd
x

(∀ τ x ; φ) = T for at least one
d ∈ Dτ

SEFM: First-Order Logic 130926 51 / 53

Semantic Evaluation of Formulas Cont’d

Example

Signature: short j; int f(int); Object obj; <(int,int);

D = {17, 2, o} where all numbers are short

I(j) = 17
I(obj) = o

Dint I(f)

2 2
17 2

Dint ×Dint in I(<)?

(2, 2) F
(2, 17) T
(17, 2) F

(17, 17) F

I valS,β(f (j) < j) ?

I valS,β(∃ int x ; f (x) = x) ?

I valS,β(∀ Object o1; ∀ Object o2; o1 = o2) ?

SEFM: First-Order Logic 130926 52 / 53

Semantic Notions

Definition (Satisfiability, Truth, Validity)

valS,β(φ) = T (φ is satisfiable)
S |= φ iff for all β : valS,β(φ) = T (φ is true in S)
|= φ iff for all S : S |= φ (φ is valid)

Closed formulas that are satisfiable are also true: one top-level notion

Example

I f (j) < j is true in S
I ∃ int x ; i = x is valid

I ∃ int x ; ¬(x = x) is not satisfiable

SEFM: First-Order Logic 130926 53 / 53

	FO Signatures
	FO Terms
	FO Formulas
	Interpretations, Validity
	Useful Validities
	Sequent Calculus for FOL
	KeY Theorem Prover

	First-Order Semantics
	Domain
	State
	Variable Assignment
	Term Valuation
	Formula Valuation
	Semantic Notions

