Software Engineering using Formal Methods First-Order Logic

Wolfgang Ahrendt

26th September 2013

Install the KeY-Tool...

KeY used in Friday's exercise

Requires: Java ≥ 5
Follow instructions on course page, under:
\Rightarrow Links, Papers, and Software
We recommend using Java Web Start:

- Start KeY with two clicks
(you need to trust our self-signed certificate)
- Java Web Start installed with standard JDK/JRE
- Usually browsers know filetype.

Otherwise open KeY.jnlp with javaws.
If you want to intstall KeY locally instead, download from www.key-project.org. For this course, install version 1.6.x.

Motivation for Introducing First-Order Logic

1) we specify Java programs with Java Modeling Language (JML)

JML combines

- Java expressions
- First-Order Logic (FOL)

2) we verify Java programs using Dynamic Logic

Dynamic Logic combines

- First-Order Logic (FOL)
- Java programs

FOL: Language and Calculus

we introduce:

- FOL as a language
- calculus for proving FOL formulas
- KeY system as propositional, and first-order, prover (for now)
- (formal semantics: if time)

First-Order Logic: Signature

Signature

A first-order signature Σ consists of

- a set T_{Σ} of types
- a set F_{Σ} of function symbols
- a set P_{Σ} of predicate symbols
- a typing α_{Σ}
intuitively, the typing α_{Σ} determines
- for each function and predicate symbol:
- its arity, i.e., number of arguments
- its argument types
- for each function symbol its result type.
formally:
- $\alpha_{\Sigma}(p) \in T_{\Sigma}{ }^{*}$ for all $p \in P_{\Sigma}$ (arity of p is $\left|\alpha_{\Sigma}(p)\right|$)
- $\alpha_{\Sigma}(f) \in T_{\Sigma}{ }^{*} \times T_{\Sigma}$ for all $f \in F_{\Sigma} \quad$ (arity of f is $\left|\alpha_{\Sigma}(f)\right|-1$)

Example Signature $1+$ Constants

$$
\begin{aligned}
& T_{\Sigma_{1}}=\{\text { int }\} \\
& F_{\Sigma_{1}}=\{+,-\} \cup\{\ldots,-2,-1,0,1,2, \ldots\}, \\
& P_{\Sigma_{1}}=\{<\} \\
& \alpha_{\Sigma_{1}}(<)=(\text { int }, \text { int }) \\
& \alpha_{\Sigma_{1}}(+)=\alpha_{\Sigma_{1}}(-)=(\text { int }, \text { int }, \text { int }) \\
& \alpha_{\Sigma_{1}}(0)=\alpha_{\Sigma_{1}}(1)=\alpha_{\Sigma_{1}}(-1)=\ldots=(\text { int })
\end{aligned}
$$

Constant Symbols

A function symbol f with $\left|\alpha_{\Sigma_{1}}(f)\right|=1$ (i.e., with arity 0) is called constant symbol.
here, the constant symbols are: ..., $-2,-1,0,1,2, \ldots$

Syntax of First-Order Logic: Signature Cont'd

Type declaration of signature symbols

- Write τx; to declare variable x of type τ
- Write $p\left(\tau_{1}, \ldots, \tau_{r}\right)$; for $\alpha(p)=\left(\tau_{1}, \ldots, \tau_{r}\right)$
- Write $\tau f\left(\tau_{1}, \ldots, \tau_{r}\right)$; for $\alpha(f)=\left(\tau_{1}, \ldots, \tau_{r}, \tau\right)$
$r=0$ is allowed, then write f instead of $f()$, etc.

Example

Variables	integerArray a; int i;
Predicate Symbols	isEmpty(List); alertOn;
Function Symbols	int arrayLookup(int); Object o;

Example Signature $1+$ Notation

typing of Signature 1:

$$
\begin{aligned}
& \alpha_{\Sigma_{1}}(<)=(\text { int }, \text { int }) \\
& \alpha_{\Sigma_{1}}(+)=\alpha_{\Sigma_{1}}(-)=(\text { int }, \text { int }, \text { int }) \\
& \alpha_{\Sigma_{1}}(0)=\alpha_{\Sigma_{1}}(1)=\alpha_{\Sigma_{1}}(-1)=\ldots=(\text { int })
\end{aligned}
$$

can alternatively be written as:

```
<(int,int);
int +(int,int);
int 0; int 1; int -1;
```


Example Signature 2

```
\(T_{\Sigma_{2}}=\{\) int, LinkedIntList \(\}\),
\(F_{\Sigma_{2}}=\{\) null, new, elem, next \(\} \cup\{\ldots,-2,-1,0,1,2, \ldots\}\)
\[
P_{\Sigma_{2}}=\{ \}
\]
```

intuitively, elem and next model fields of LinkedIntList objects
type declarations:
LinkedIntList null;
LinkedIntList new(int,LinkedIntList);
int elem(LinkedIntList);
LinkedIntList next(LinkedIntList);
and as before:
int 0; int 1; int -1 ;

First-Order Terms

We assume a set V of variables $\left(V \cap\left(F_{\Sigma} \cup P_{\Sigma}\right)=\emptyset\right)$.
Each $v \in V$ has a unique type $\alpha_{\Sigma}(v) \in T_{\Sigma}$.
Terms are defined recursively:

Terms

A first-order term of type $\tau \in T_{\Sigma}$

- is either a variable of type τ, or
- has the form $f\left(t_{1}, \ldots, t_{n}\right)$, where $f \in F_{\Sigma}$ has result type τ, and each t_{i} is term of the correct type, following the typing α_{Σ} of f.

If f is a constant symbol, the term is written f, instead of $f()$.

Terms over Signature 1

example terms over Σ_{1} :
(assume variables int v_{1}; int v_{2};)

- -7
- +(-2, 99)
- $-(7,8)$
- +(-(7, 8), 1)
- +(-($\left.\left.v_{1}, 8\right), v_{2}\right)$
some variants of FOL allow infix notation of functions:
- $-2+99$
- 7 - 8
- $(7-8)+1$
- $\left(v_{1}-8\right)+v_{2}$

Terms over Signature 2

example terms over Σ_{2} :
(assume variables LinkedIntList o; int v;)

- -7
- null
- new(13, null)
- $\operatorname{elem}(\operatorname{new}(13$, null))
- next(next(o))
for first-order functions modeling object fields, we allow dotted postfix notation:
- new(13, null).elem
- o.next.next

Atomic Formulas

Atomic Formulas

Given a signature Σ.
An atomic formula has either of the forms

- true
- false
- $t_{1}=t_{2} \quad$ ("equality"),
where t_{1} and t_{2} are first-order terms of the same type.
- $p\left(t_{1}, \ldots, t_{n}\right)$ ("predicate"), where $p \in P_{\Sigma}$, and each t_{i} is term of the correct type, following the typing α_{Σ} of p.

Atomic Formulas over Signature 1

example formulas over Σ_{1} :
(assume variable int v;)

- $7=8$
- $7<8$
- $-2-v<99$
- $v<(v+1)$

Atomic Formulas over Signature 2

example formulas over Σ_{2} :
(assume variables LinkedIntList o; int v;)

- new(13, null) = null
- elem(new(13, null)) $=13$
- next(new(13, null)) = null
- next(next(o)) $=0$

First-order Formulas

Formulas

- each atomic formula is a formula
- with ϕ and ψ formulas, x a variable, and τ a type, the following are also formulas:
- $\neg \phi$ ("not ϕ^{\prime})
- $\phi \wedge \psi \quad$ (" ϕ and ψ ")
- $\phi \vee \psi$ (" ϕ or ψ ")
- $\phi \rightarrow \psi$ (" ϕ implies ψ ")
- $\phi \leftrightarrow \psi \quad$ (" ϕ is equivalent to ψ ")
- $\forall \tau x ; \phi \quad$ ("for all x of type τ holds ϕ ")
- $\exists \tau x ; \phi \quad$ ("there exists an x of type τ such that ϕ ")

In $\forall \tau x ; \phi$ and $\exists \tau x ; \phi$ the variable x is 'bound' (i.e., 'not free').
Formulas with no free variable are 'closed'.

First-order Formulas: Examples

(signatures/types left out here)

Example (There are at least two elements)
$\exists x, y ; \neg(x=y)$

Example (Strict partial order)
Irreflexivity $\forall x ; \neg(x<x)$
Asymmetry $\forall x ; \forall y ;(x<y \rightarrow \neg(y<x))$
Transitivity $\forall x ; \forall y ; \forall z$;

$$
(x<y \wedge y<z \rightarrow x<z)
$$

(is any of the three formulas redundant?)

Semantics (briefly here, more thorough later)

Domain

A domain \mathcal{D} is a set of elements which are (potentially) the meaning of terms and variables.

Interpretation

An interpretation \mathcal{I} (over \mathcal{D}) assigns meaning to the symbols in $F_{\Sigma} \cup P_{\Sigma}$ (assigning functions to function symbols, relations to predicate symbols).

Valuation

In a given \mathcal{D} and \mathcal{I}, a closed formula evaluates to either T or F.

Validity

A closed formula is valid if it evaluates to T in all \mathcal{D} and \mathcal{I}.
In the context of specification/verification of programs:
each $(\mathcal{D}, \mathcal{I})$ is called a 'state'.

Useful Valid Formulas

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).
The following formulas are valid:

- $\neg(\phi \wedge \psi) \leftrightarrow \neg \phi \vee \neg \psi$
- $\neg(\phi \vee \psi) \leftrightarrow \neg \phi \wedge \neg \psi$
- $($ true $\wedge \phi) \leftrightarrow \phi$
- (false $\vee \phi) \leftrightarrow \phi$
- true $\vee \phi$
- $\neg($ false $\wedge \phi)$
- $(\phi \rightarrow \psi) \leftrightarrow(\neg \phi \vee \psi)$
- $\phi \rightarrow$ true
- false $\rightarrow \phi$
- $($ true $\rightarrow \phi) \leftrightarrow \phi$
- $(\phi \rightarrow$ false $) \leftrightarrow \neg \phi$

Useful Valid Formulas

Assume that x is the only variable which may appear freely in ϕ or ψ.
The following formulas are valid:

- $\neg(\exists \tau x ; \phi) \leftrightarrow \forall \tau x ; \neg \phi$
- $\neg(\forall \tau x ; \phi) \leftrightarrow \exists \tau x ; \neg \phi$
- $(\forall \tau x ; \phi \wedge \psi) \leftrightarrow(\forall \tau x ; \phi) \wedge(\forall \tau x ; \psi)$
- $(\exists \tau x ; \phi \vee \psi) \leftrightarrow(\exists \tau x ; \phi) \vee(\exists \tau x ; \psi)$

Are the following formulas also valid?

- $(\forall \tau x ; \phi \vee \psi) \leftrightarrow(\forall \tau x ; \phi) \vee(\forall \tau x ; \psi)$
- $(\exists \tau x ; \phi \wedge \psi) \leftrightarrow(\exists \tau x ; \phi) \wedge(\exists \tau x ; \psi)$

Remark on Concrete Syntax

	Text book	Spin	KeY	
Negation	\neg	$!$	$!$	
Conjunction	\wedge	$\& \&$	$\&$	
Disjunction	\vee	$\\|$	\mid	
Implication	\rightarrow, \supset	\rightarrow	\rightarrow	
Equivalence	\leftrightarrow	\rightarrow	$<-$	
Universal Quantifier	$\forall x ; \phi$	n / a	\backslash forall $\tau x ; \phi$	
Existential Quantifier	$\exists x ; \phi$	n / a	\backslash exists $\tau x ; \phi$	
Value equality	$=$	$==$	$=$	

Part I

Sequent Calculus for FOL

Reasoning by Syntactic Transformation

Prove Validity of ϕ by syntactic transformation of ϕ

Logic Calculus: Sequent Calculus based on notion of sequent:

has same meaning as

$$
\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right) \quad \rightarrow \quad\left(\phi_{1} \vee \cdots \vee \phi_{n}\right)
$$

which has (for closed formulas ψ_{i}, ϕ_{i}) same meaning as

$$
\left\{\psi_{1}, \ldots, \psi_{m}\right\} \quad \models \quad \phi_{1} \vee \cdots \vee \phi_{n}
$$

Notation for Sequents

$$
\psi_{1}, \ldots, \psi_{m} \quad \Rightarrow \quad \phi_{1}, \ldots, \phi_{n}
$$

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables

ϕ, ψ, \ldots match formulas, Γ, Δ, \ldots match sets of formulas
Characterize infinitely many sequents with single schematic sequent, e.g.,

$$
\Gamma \quad \Longrightarrow \quad \phi \wedge \psi, \Delta
$$

Matches any sequent with occurrence of conjunction in succedent

Call $\phi \wedge \psi$ main formula and Γ, Δ side formulas of sequent
Any sequent of the form $\Gamma, \phi \Longrightarrow \phi, \Delta$ is logically valid: axiom

Sequent Calculus Rules

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

Meaning: For proving the Conclusion, it suffices to prove all Premisses.
Example
andRight $\frac{\Gamma \Longrightarrow \phi, \Delta \quad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \wedge \psi, \Delta}$
Admissible to have no premisses (iff conclusion is valid, e.g., axiom) A rule is sound (correct) iff the validity of its premisses implies the validity of its conclusion.

‘Propositional’ Sequent Calculus Rules

$$
\text { close } \overline{\Gamma, \phi \Longrightarrow \phi, \Delta} \quad \text { true } \overline{\Gamma \Longrightarrow \text { true, } \Delta} \quad \text { false } \overline{\Gamma, \text { false } \Longrightarrow \Delta}
$$

Sequent Calculus Proofs

Goal to prove: $\mathcal{G}=\psi_{1}, \ldots, \psi_{m} \Longrightarrow \phi_{1}, \ldots, \phi_{n}$

- find rule \mathcal{R} whose conclusion matches \mathcal{G}
- instantiate \mathcal{R} such that its conclusion is identical to \mathcal{G}
- apply that instantiation to all premisses of \mathcal{R}, resulting in new goals $\mathcal{G}_{1}, \ldots, \mathcal{G}_{r}$
- recursively find proofs for $\mathcal{G}_{1}, \ldots, \mathcal{G}_{r}$
- tree structure with goal as root
- close proof branch when rule without premiss encountered

Goal-directed proof search In KeY tool proof displayed as Java Swing tree

A Simple Proof

$\frac{\frac{\operatorname{CLOSE} \frac{*}{p \Longrightarrow p, q} \quad \frac{*}{p, q \Longrightarrow q} \mathrm{CLOSE}}{p,(p \rightarrow q) \Longrightarrow q}}{\frac{p \wedge(p \rightarrow q) \Longrightarrow q}{\Longrightarrow(p \wedge(p \rightarrow q)) \rightarrow q}}$

A proof is closed iff all its branches are closed
Demo
prop.key

Proving Validity of First-Order Formulas

Proving a universally quantified formula
Claim: $\forall \tau x ; \phi$ is true
How is such a claim proved in mathematics?
All even numbers are divisible by $2 \quad \forall \operatorname{int} x ;(\operatorname{even}(x) \rightarrow \operatorname{divByTwo}(x))$
Let c be an arbitrary number Declare "unused" constant int c
The even number c is divisible by 2 prove \quad even $(c) \rightarrow$ divByTwo (c)

Sequent rule \forall-right

$$
\text { forallRight } \frac{\Gamma \Longrightarrow[x / c] \phi, \Delta}{\Gamma \Longrightarrow \forall \tau x ; \phi, \Delta}
$$

- $[x / c] \phi$ is result of replacing each occurrence of x in ϕ with c
- c new constant of type τ

Proving Validity of First-Order Formulas Cont'd

Proving an existentially quantified formula
Claim: $\exists \tau x ; \phi$ is true
How is such a claim proved in mathematics?
There is at least one prime number \exists int x; prime (x)
Provide any "witness", say, $7 \quad$ Use variable-free term int 7
7 is a prime number prime(7)

Sequent rule \exists-right

$$
\text { existsRight } \frac{\Gamma \Longrightarrow[x / t] \phi, \exists \tau x ; \phi, \Delta}{\Gamma \Longrightarrow \exists \tau x ; \phi, \Delta}
$$

- t any variable-free term of type τ
- Proof might not work with t ! Need to keep premise to try again

Proving Validity of First-Order Formulas Cont'd

Using a universally quantified formula

We assume $\forall \tau x ; \phi$ is true
How is such a fact used in a mathematical proof?
We know that all primes are odd $\quad \forall \operatorname{int} x$; $(\operatorname{prime}(x) \rightarrow \operatorname{odd}(x))$

In particular, this holds for 17
We know: if 17 is prime it is odd prime(17) \rightarrow odd(17)

Sequent rule \forall-left

$$
\text { forallLeft } \frac{\Gamma, \forall \tau x ; \phi,\left[x / t^{\prime}\right] \phi \Longrightarrow \Delta}{\Gamma, \forall \tau x ; \phi \Longrightarrow \Delta}
$$

- t^{\prime} any variable-free term of type τ
- We might need other instances besides t^{\prime} ! Keep premise $\forall \tau x ; \phi$

Proving Validity of First-Order Formulas Cont'd

Using an existentially quantified formula

We assume $\exists \tau x ; \phi$ is true
How is such a fact used in a mathematical proof?
We know such an element exists. Let's give it a new name for future reference.

Sequent rule \exists-left

$$
\text { existsLeft } \frac{\Gamma,[x / c] \phi \Longrightarrow \Delta}{\Gamma, \exists \tau x ; \phi \Longrightarrow \Delta}
$$

- c new constant of type τ

Proving Validity of First-Order Formulas Cont'd

Using an existentially quantified formula
Let x, y denote integer constants, both are not zero. We know further that x divides y.
Show: $(y / x) * x=y\left({ }^{\prime} /{ }^{\prime}\right.$ is division on integers, i.e. the equation is not always true, e.g. $x=2, y=1$)
Proof: We know x divides y, i.e. there exists a k such that $k * x=y$. Let now c denote such a k. Hence we can replace y by $c * x$ on the right side (see slide 35).
*
$\neg(x=0), \neg(y=0), c * x=y \Longrightarrow((c * x) / x) * x=y$
$\neg(x=0), \neg(y=0), c * x=y \Longrightarrow(y / x) * x=y$
$\neg(x=0), \neg(y=0), \exists$ int $k ; k * x=y \Longrightarrow(y / x) * x=y$

Proving Validity of First-Order Formulas Cont'd

Example (A simple theorem about binary relations)

$\frac{*}{p(c, d), \forall y ; p(c, y) \Longrightarrow p(c, d), \exists x ; p(x, y)}$
$\frac{p(c, d), \forall y ; p(c, y) \Longrightarrow \exists x ; p(x, d)}{\forall y ; p(c, y) \Longrightarrow \exists x ; p(x, d)}$
$\forall y ; p(c, y) \Longrightarrow \forall y ; \exists x ; p(x, y)$
$\exists x ; \forall y ; p(x, y) \Longrightarrow \forall y ; \exists x ; p(x, y)$

Untyped logic: let static type of x and y be T \exists-left: substitute new constant c of type T for x \forall-right: substitute new constant d of type T for y \forall-left: free to substitute any term of type T for y, choose d \exists-right: free to substitute any term of type T for x, choose c Close

Proving Validity of First-Order Formulas Cont'd

Using an equation between terms

We assume $t=t^{\prime}$ is true
How is such a fact used in a mathematical proof?
Use $x=y-1$ to simplify $x+1 / y \quad x=y-1 \Longrightarrow 1=x+1 / y$
Replace x in conclusion with right-hand side of equation
We know: $x+1 / y$ equal to $y-1+1 / y \quad x=y-1 \Longrightarrow 1=y-1+1 / y$
Sequent rule $=$-left
applyEqL $\frac{\Gamma, t=t^{\prime},\left[t / t^{\prime}\right] \phi \Longrightarrow \Delta}{\Gamma, t=t^{\prime}, \phi \Longrightarrow \Delta} \quad$ applyEqR $\frac{\Gamma, t=t^{\prime} \Longrightarrow\left[t / t^{\prime}\right] \phi, \Delta}{\Gamma, t=t^{\prime} \Longrightarrow \phi, \Delta}$

- Always replace left- with right-hand side (use eqSymm if necessary)
- t, t^{\prime} variable-free terms of the same type

Proving Validity of First-Order Formulas Cont'd

Closing a subgoal in a proof

- We derived a sequent that is obviously valid

$$
\text { close } \overline{\Gamma, \phi \Longrightarrow \phi, \Delta} \quad \text { true } \overline{\Gamma \Longrightarrow \text { true, } \Delta} \quad \text { false } \overline{\Gamma, \text { false } \Longrightarrow \Delta}
$$

- We derived an equation that is obviously valid

$$
\text { eqClose } \overline{\Gamma \Longrightarrow t=t, \Delta}
$$

Sequent Calculus for FOL at One Glance

$\left.\begin{array}{l|l|l} & \text { left side, antecedent } & \text { right side, succedent } \\ \hline \forall & \frac{\Gamma, \forall \tau x ; \phi,\left[x / t^{\prime}\right] \phi \Rightarrow \Delta}{\Gamma, \forall \tau x ; \phi \Rightarrow \Delta} & \frac{\Gamma \Rightarrow[x / c] \phi, \Delta}{\Gamma \Rightarrow \forall \tau ; \phi, \Delta} \\ \exists & \frac{\Gamma,[x / c] \phi \Rightarrow \Delta}{\Gamma, \exists \tau x ; \phi \Rightarrow \Delta} & \frac{\Gamma \Rightarrow\left[x / t^{\prime}\right] \phi, \exists \tau x ; \phi, \Delta}{\Gamma \Rightarrow \exists \tau x ; \phi, \Delta} \\ = & \frac{\Gamma, t=t^{\prime} \Rightarrow\left[t / t^{\prime}\right] \phi, \Delta}{\Gamma, t=t^{\prime} \Rightarrow \phi, \Delta} & \\ (+ \text { application rule on left side })\end{array}\right)$

- $\left[t / t^{\prime}\right] \phi$ is result of replacing each occurrence of t in ϕ with t^{\prime}
- t, t^{\prime} variable-free terms of type τ
- c new constant of type τ (occurs not on current proof branch)
- Equations can be reversed by commutativity

Recap: ‘Propositional’ Sequent Calculus Rules

$$
\text { close } \overline{\Gamma, \phi \Longrightarrow \phi, \Delta} \quad \text { true } \overline{\Gamma \Longrightarrow \text { true, } \Delta} \quad \text { false } \overline{\Gamma, \text { false } \Longrightarrow \Delta}
$$

Features of the KeY Theorem Prover

Demo

> rel.key, twoInstances.key

Feature List

- Can work on multiple proofs simultaneously (task list)
- Proof trees visualized as Java Swing tree
- Point-and-click navigation within proof
- Undo proof steps, prune proof trees
- Pop-up menu with proof rules applicable in pointer focus
- Preview of rule effect as tool tip
- Quantifier instantiation and equality rules by drag-and-drop
- Possible to hide (and unhide) parts of a sequent
- Saving and loading of proofs

Literature for this Lecture

essential:

- W. Ahrendt

Using KeY
Chapter 10 in [KeYbook]
further reading:

- M. Giese

First-Order Logic
Chapter 2 in [KeYbook]
KeYbook B. Beckert, R. Hähnle, and P. Schmitt, editors, Verification of Object-Oriented Software: The KeY Approach, vol 4334 of LNCS (Lecture Notes in Computer Science), Springer, 2006 (access via Chalmers library \rightarrow E-books \rightarrow Lecture Notes in Computer Science)

Part II

First-Order Semantics

First-Order Semantics

From propositional to first-order semantics

- In prop. logic, an interpretation of variables with $\{T, F\}$ sufficed
- In first-order logic we must assign meaning to:
- variables bound in quantifiers
- constant and function symbols
- predicate symbols
- Each variable or function value may denote a different item
- Respect typing: int i, List 1 must denote different items

What we need (to interpret a first-order formula)

1. A collection of typed universes of items
2. A mapping from variables to items
3. A mapping from function arguments to function values
4. The set of argument tuples where a predicate is true

First-Order Domains/Universes

1. A collection of typed universes of items

Definition (Universe/Domain)

A non-empty set \mathcal{D} of items is a universe or domain
Each element of \mathcal{D} has a fixed type given by $\delta: \mathcal{D} \rightarrow \tau$

- Notation for the domain elements of type $\tau \in \mathcal{T}$: $\mathcal{D}^{\tau}=\{d \in \mathcal{D} \mid \delta(d)=\tau\}$
- Each type $\tau \in \mathcal{T}$ must 'contain' at least one domain element: $\mathcal{D}^{\tau} \neq \emptyset$

First-Order States

3. A mapping from function arguments to function values
4. The set of argument tuples where a predicate is true

Definition (First-Order State)

Let \mathcal{D} be a domain with typing function δ
Let f be declared as $\tau f\left(\tau_{1}, \ldots, \tau_{r}\right)$;
Let p be declared as $p\left(\tau_{1}, \ldots, \tau_{r}\right)$;
Let $\mathcal{I}(f): \mathcal{D}^{\tau_{1}} \times \cdots \times \mathcal{D}^{\tau_{r}} \rightarrow \mathcal{D}^{\tau}$
Let $\mathcal{I}(p) \subseteq \mathcal{D}^{\tau_{1}} \times \cdots \times \mathcal{D}^{\tau_{r}}$
Then $\mathcal{S}=(\mathcal{D}, \delta, \mathcal{I})$ is a first-order state

First-Order States Cont'd

Example

Signature: int i; short j; int f(int); Object obj; <(int,int); $\mathcal{D}=\{17,2, o\}$ where all numbers are short

$$
\begin{gathered}
\mathcal{I}(i)=17 \\
\mathcal{I}(j)=17 \\
\mathcal{I}(\mathrm{obj})=0 \\
\begin{array}{|r|c|}
\hline \mathcal{D}^{\text {int }} & \mathcal{I}(f) \\
\hline 2 & 2 \\
17 & 2 \\
\hline
\end{array}
\end{gathered}
$$

$\mathcal{D}^{\text {int }} \times \mathcal{D}^{\text {int }}$	in $\mathcal{I}(<) ?$
$(2,2)$	F
$(2,17)$	T
$(17,2)$	F
$(17,17)$	F

One of uncountably many possible first-order states!

Semantics of Reserved Signature Symbols

Definition

Equality symbol $=$ declared as $=(\top, \top)$
Interpretation is fixed as $\mathcal{I}(=)=\{(d, d) \mid d \in \mathcal{D}\}$
"Referential Equality" (holds if arguments refer to identical item)
Exercise: write down the predicate table for example domain

Signature Symbols vs. Domain Elements

- Domain elements different from the terms representing them
- First-order formulas and terms have no access to domain

Example

Signature: Object obj1, obj2;
Domain: $\mathcal{D}=\{0\}$
In this state, necessarily $\mathcal{I}(o b j 1)=\mathcal{I}(o b j 2)=o$

Variable Assignments

2. A mapping from variables to objects

Think of variable assignment as environment for storage of local variables

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements It respects the variable type, i.e., if x has type τ then $\beta(x) \in \mathcal{D}^{\tau}$

Definition (Modified Variable Assignment)

Let y be variable of type τ, β variable assignment, $d \in \mathcal{D}^{\tau}$:

$$
\beta_{y}^{d}(x):= \begin{cases}\beta(x) & x \neq y \\ d & x=y\end{cases}
$$

Semantic Evaluation of Terms

> Given a first-order state \mathcal{S} and a variable assignment β it is possible to evaluate first-order terms under \mathcal{S} and β

Definition (Valuation of Terms)

 val $_{\mathcal{S}, \beta}:$ Term $\rightarrow \mathcal{D}$ such that val $_{\mathcal{S}, \beta}(t) \in \mathcal{D}^{\tau}$ for $t \in \operatorname{Term}_{\tau}$:- $\operatorname{val}_{\mathcal{S}, \beta}(x)=\beta(x)$
- $\operatorname{val}_{\mathcal{S}, \beta}\left(f\left(t_{1}, \ldots, t_{r}\right)\right)=\mathcal{I}(f)\left(\operatorname{val}_{\mathcal{S}, \beta}\left(t_{1}\right), \ldots, \operatorname{val}_{\mathcal{S}, \beta}\left(t_{r}\right)\right)$

Semantic Evaluation of Terms Cont'd

Example

Signature: int i; short j; int $f(i n t)$;
$\mathcal{D}=\{17,2, o\}$ where all numbers are short
Variables: Object obj; int x;

$$
\begin{aligned}
& \mathcal{I}(i)=17 \\
& \mathcal{I}(j)=17
\end{aligned}
$$

$\mathcal{D}^{\text {int }}$	$\mathcal{I}(\mathrm{f})$
2	17
17	2

Var	β
obj	o
\mathbf{x}	17

- $\operatorname{val}_{\mathcal{S}, \beta}(\mathrm{f}(\mathrm{f}(\mathrm{i})))$?
$-\operatorname{val}_{\mathcal{S}, \beta}(x)$?

Semantic Evaluation of Formulas

Definition (Valuation of Formulas)

val ${ }_{\mathcal{S}, \beta}(\phi)$ for $\phi \in$ For

- $\operatorname{val}_{\mathcal{S}, \beta}\left(p\left(t_{1}, \ldots, t_{r}\right)=T \quad\right.$ iff $\quad\left(\operatorname{val}_{\mathcal{S}, \beta}\left(t_{1}\right), \ldots\right.$, val $\left._{\mathcal{S}, \beta}\left(t_{r}\right)\right) \in \mathcal{I}(p)$
- $\operatorname{val}_{\mathcal{S}, \beta}(\phi \wedge \psi)=T \quad$ iff $\quad \operatorname{val}_{\mathcal{S}, \beta}(\phi)=T$ and $\operatorname{val}_{\mathcal{S}, \beta}(\psi)=T$
- as in propositional logic
- val $\mathcal{S}_{\mathcal{S}, \beta}(\forall \tau x ; \phi)=T \quad$ iff \quad val ${\mathcal{S}, \beta_{x}^{d}}(\forall \tau x ; \phi)=T$ for all $d \in \mathcal{D}^{\tau}$
- val $\left.\right|_{\mathcal{S}, \beta}(\forall \tau x ; \phi)=T$ iff $\quad v a l_{\mathcal{S}, \beta_{x}^{d}}(\forall \tau x ; \phi)=T$ for at least one $d \in \mathcal{D}^{\tau}$

Semantic Evaluation of Formulas Cont'd

Example

Signature: short j; int f(int); Object obj; <(int,int);
$\mathcal{D}=\{17,2, o\}$ where all numbers are short
$\mathcal{I}(j)=17$
$\mathcal{I}(\mathrm{obj})=0$

$\mathcal{D}^{\text {int }}$	$\mathcal{I}(f)$
2	2
17	2

$\mathcal{D}^{\text {int }} \times \mathcal{D}^{\text {int }}$	in $\mathcal{I}(<) ?$
$(2,2)$	F
$(2,17)$	T
$(17,2)$	F
$(17,17)$	F

- $\operatorname{val}_{\mathcal{S}, \beta}(f(j)<j) ?$
- val $\mathcal{S}_{\mathcal{S}, \beta}(\exists \operatorname{int} x ; f(x)=x)$?
$-v a l_{\mathcal{S}, \beta}(\forall$ Object o1; \forall Object o2; o1 $=o 2)$?

Semantic Notions

Definition (Satisfiability, Truth, Validity)

$$
\begin{array}{clll}
\text { val }_{\mathcal{S}, \beta}(\phi)=T & & (\phi \text { is satisfiable }) \\
\mathcal{S} \models \phi & \text { iff } & \text { for all } \beta: \text { val }\left.\right|_{\mathcal{S}, \beta}(\phi)=T & (\phi \text { is true in } \mathcal{S}) \\
\models \phi & \text { iff } & \text { for all } \mathcal{S}: \quad \mathcal{S} \models \phi & (\phi \text { is valid })
\end{array}
$$

Closed formulas that are satisfiable are also true: one top-level notion

Example

- $f(j)<j$ is true in \mathcal{S}
- \exists int $x ; i=x$ is valid
- \exists int $x ; \neg(x=x)$ is not satisfiable

