Software Engineering using Formal Methods Reasoning about Programs with Dynamic Logic

Wolfgang Ahrendt, Laura Kovács

10 October 2013

(JAVA) Dynamic Logic

Typed FOL

► + (JAVA) programs p

(JAVA) Dynamic Logic

Typed FOL

- ► + (JAVA) programs p
- ightharpoonup + modalities $\langle p \rangle \phi$, $[p] \phi$ (p program, ϕ DL formula)

(JAVA) Dynamic Logic

Typed FOL

- ► + (JAVA) programs p
- ightharpoonup + modalities $\langle p \rangle \phi$, $[p] \phi$ (p program, ϕ DL formula)
- ▶ + ... (later)

(JAVA) Dynamic Logic

Typed FOL

- ► + (JAVA) programs p
- $ightharpoonup + \text{modalities } \langle p \rangle \phi$, $[p] \phi$ (p program, ϕ DL formula)
- ▶ + ... (later)

Remark on Hoare Logic and DL

```
In Hoare logic {Pre} p {Post}
```

In DL Pre \rightarrow [p]Post

(Pre, Post must be FOL)

(Pre, Post any DL formula)

Proving DL Formulas

An Example

```
∀ int x;

(x \doteq n \land x >= 0 \rightarrow [i = 0; r = 0;

while(i < n){i = i + 1; r = r + i;}

r = r + r - n;

|r \doteq x * x|
```

How can we prove that the above formula is valid (i.e. satisfied in all states)?

Semantics of Sequents

 $\Gamma = \{\phi_1, \dots, \phi_n\}$ and $\Delta = \{\psi_1, \dots, \psi_m\}$ sets of program formulas where all logical variables occur bound

Recall:
$$s \models (\Gamma \Longrightarrow \Delta)$$
 iff $s \models (\phi_1 \land \cdots \land \phi_n) \rightarrow (\psi_1 \lor \cdots \lor \psi_m)$

Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over Program Formulas)

A sequent $\Gamma \Rightarrow \Delta$ over program formulas is valid iff

$$s \models (\Gamma \Longrightarrow \Delta)$$
 in all states s

CHALMERS/GU 131010

Semantics of Sequents

 $\Gamma=\{\phi_1,\ldots,\phi_n\}$ and $\Delta=\{\psi_1,\ldots,\psi_m\}$ sets of program formulas where all logical variables occur bound

Recall:
$$s \models (\Gamma \Longrightarrow \Delta)$$
 iff $s \models (\phi_1 \land \cdots \land \phi_n) \rightarrow (\psi_1 \lor \cdots \lor \psi_m)$

Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over Program Formulas)

A sequent $\Gamma \Longrightarrow \Delta$ over program formulas is valid iff

$$s \models (\Gamma \Longrightarrow \Delta)$$
 in all states s

Consequence for program variables

Initial value of program variables implicitly "universally quantified"

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula What is "top-level" in a sequential program p; q; r;?

Symbolic Execution (King, late 60s)

- ► Follow the natural control flow when analysing a program
- ► Values of some variables unknown: symbolic state representation

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula What is "top-level" in a sequential program p; q; r;?

Symbolic Execution (King, late 60s)

- ► Follow the natural control flow when analysing a program
- ► Values of some variables unknown: symbolic state representation

Example

Compute the final state after termination of

$$x=x+y$$
; $y=x-y$; $x=x-y$;

General form of rule conclusions in symbolic execution calculus

```
\langle \mathtt{stmt}; \mathtt{rest} \rangle \phi, [stmt; rest]\phi
```

- ► Rules symbolically execute *first* statement ('active statement')
- Repeated application of such rules corresponds to symbolic program execution

General form of rule conclusions in symbolic execution calculus

```
\langle \mathtt{stmt}; \ \mathtt{rest} \rangle \phi, \qquad [\mathtt{stmt}; \ \mathtt{rest}] \phi
```

- ► Rules symbolically execute *first* statement ('active statement')
- Repeated application of such rules corresponds to symbolic program execution

```
Example (updates/swap2.key, Demo , active statement)
\programVariables {
  int x; int y; }

\problem {
    x > y -> \<{x=x+y; y=x-y; x=x-y;}\> y > x
}
```

Symbolic execution of conditional

Symbolic execution must consider all possible execution branches

Symbolic execution of conditional

$$\text{if } \frac{ \text{$\Gamma,b \doteq true} \Longrightarrow \langle p\text{; rest}\rangle \phi, \Delta \qquad \text{$\Gamma,b \doteq false} \Longrightarrow \langle q\text{; rest}\rangle \phi, \Delta }{ \text{$\Gamma \Longrightarrow \langle if (b) \{ p \} else \{ q \} ; rest}\rangle \phi, \Delta }$$

Symbolic execution must consider all possible execution branches

Symbolic execution of loops: unwind

$$\begin{array}{c} \text{unwindLoop} \ \ \, \frac{\Gamma \Longrightarrow \langle \, \text{if (b) \{ p; while (b) p } \}; \, \text{rest} \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle \text{while (b) \{p\}; rest} \rangle \phi, \Delta} \end{array}$$

Updates for KeY-Style Symbolic Execution

Needed: a Notation for Symbolic State Changes

- symbolic execution should 'walk' through program in natural direction
- need a succint representation of state changes effected by a program in one symbolic execution branch
- want to simplify effects of program execution early
- want to apply effects late (to branching conditions and post condition)

Updates for KeY-Style Symbolic Execution

Needed: a Notation for Symbolic State Changes

- symbolic execution should 'walk' through program in natural direction
- need a succint representation of state changes effected by a program in one symbolic execution branch
- want to simplify effects of program execution early
- want to apply effects late (to branching conditions and post condition)

We use dedicated notation for simple state changes: updates

Explicit State Updates

Definition (Syntax of Updates, Updated Terms/Formulas)

If v is program variable, t FOL term type-compatible with v, t' any FOL term, and ϕ any DL formula, then

- $\mathbf{v} := \mathbf{t}$ is an update
- $\{v := t\}\phi$ is DL formula

Definition (Semantics of Updates)

State s interprets flexible symbols f with $\mathcal{I}_s(f)$

 β variable assignment for logical variables in $t,\,\rho$ transition relation:

$$ho(\{\mathtt{v}:=t\})(s,eta)=s'$$
 where s' identical to s except $\mathcal{I}_{s'}(\mathtt{v})=\mathit{val}_{s,eta}(t)$

Explicit State Updates Cont'd

Facts about updates $\{v := t\}$

- ▶ Update semantics almost identical to that of assignment
- ▶ Value of update also depends on logical variables in t, i.e., β
- Updates are not assignments: right-hand side is FOL term $\{x := n\}\phi$ cannot be turned into assignment (n logical variable) $\langle x=i++; \rangle \phi$ cannot directly be turned into update
- ▶ Updates are not equations: change value of flexible terms

Computing Effect of Updates (Automated)

Rewrite rules for update followed by ...

$$\begin{aligned} & \text{program variable} & \left\{ \begin{array}{l} \{\mathbf{x} := t\}\mathbf{y} & \leadsto & \mathbf{y} \\ \{\mathbf{x} := t\}\mathbf{x} & \leadsto & t \end{array} \right. \\ & \text{logical variable} & \left\{ \mathbf{x} := t\}\mathbf{w} & \leadsto & \mathbf{w} \right. \\ & \text{complex term} & \left\{ \mathbf{x} := t \right\} f(t_1, \dots, t_n) \leadsto f(\{\mathbf{x} := t\}t_1, \dots, \{\mathbf{x} := t\}t_n) \\ & \qquad \qquad (f \text{ rigid}) \end{aligned}$$

$$\begin{aligned} & \text{FOL formula} & \left\{ \begin{array}{l} \{\mathbf{x} := t\}(\phi \ \& \ \psi) & \leadsto \{\mathbf{x} := t\}\phi \ \& \ \{\mathbf{x} := t\}\psi \\ & \qquad \qquad \ldots \\ & \{\mathbf{x} := t\}(\forall \ \tau \ y; \ \phi) \leadsto \forall \ \tau \ y; \ (\{\mathbf{x} := t\}\phi) \end{array} \right. \end{aligned}$$

program formula No rewrite rule for $\{x:=t\}(\langle p\rangle\phi)$ unchanged!

Update rewriting delayed until p symbolically executed

Assignment Rule Using Updates

Symbolic execution of assignment using updates

$$\operatorname{assign} \ \frac{\Gamma \Longrightarrow \{\mathtt{x} := t\} \langle \mathtt{rest} \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle \mathtt{x} = \mathtt{t}; \ \mathtt{rest} \rangle \phi, \Delta}$$

- ► Simple! No variable renaming, etc.
- Works as long as t has no side effects (ok in simple DL)
- ▶ Special cases needed for $x = t_1 + t_2$, etc.

Demo

updates/assignmentToUpdate.key

How to apply updates on updates?

Example

Symbolic execution of

$$t=x; x=y; y=t;$$

yields:

$${t := x}{x := y}{y := t}$$

Need to compose three sequential state changes into a single one:

Parallel Updates

How to apply updates on updates?

Example

Symbolic execution of

$$\{t := x\}\{x := y\}\{y := t\}$$

Need to compose three sequential state changes into a single one:

parallel updates

Definition (Parallel Update)

A parallel update is expression of the form $\{l_1 := v_1 || \cdots || l_n := v_n\}$ where each $\{l_i := v_i\}$ is simple update

- All v_i computed in old state before update is applied
- Updates of all locations l_i executed simultaneously
- ▶ Upon conflict $l_i = l_i$, $v_i \neq v_i$ later update (max $\{i, j\}$) wins

CHALMERS/GU 14 / 43

Definition (Parallel Update)

A parallel update is expression of the form $\{l_1:=v_1||\cdots||l_n:=v_n\}$ where each $\{l_i:=v_i\}$ is simple update

- ▶ All *v_i* computed in old state before update is applied
- ▶ Updates of all locations *l_i* executed simultaneously
- ▶ Upon conflict $l_i = l_j$, $v_i \neq v_j$ later update $(\max\{i, j\})$ wins

Definition (Composition Sequential Updates/Conflict Resolution)

$$\{l_1 := r_1\}\{l_2 := r_2\} = \{l_1 := r_1||l_2 := \{l_1 := r_1\}r_2\}$$

Definition (Parallel Update)

A parallel update is expression of the form $\{l_1 := v_1 || \cdots || l_n := v_n\}$ where each $\{l_i := v_i\}$ is simple update

- ▶ All v_i computed in old state before update is applied
- ▶ Updates of all locations *l_i* executed simultaneously
- ▶ Upon conflict $l_i = l_j$, $v_i \neq v_j$ later update $(\max\{i, j\})$ wins

Definition (Composition Sequential Updates/Conflict Resolution)

```
 \{I_1 := r_1\} \{I_2 := r_2\} = \{I_1 := r_1 | I_2 := \{I_1 := r_1\} r_2\} 
 \{I_1 := v_1 | | \cdots | | I_n := v_n\} x = \begin{cases} x & \text{if } x \notin \{I_1, \dots, I_n\} \\ v_k & \text{if } x = I_k, x \notin \{I_{k+1}, \dots, I_n\} \end{cases}
```

Symbolic Execution with Updates

(by Example)

$$\Rightarrow$$
 x < y -> (int t=x; x=y; y=t;) y < x

$$x < y \implies \{t:=x\} \langle x=y; y=t; \rangle y < x$$

$$\vdots$$

$$\implies x < y \rightarrow \langle int t=x; x=y; y=t; \rangle y < x$$

$$\begin{array}{c} \mathtt{x} < \mathtt{y} \implies \{\mathtt{t} := \mathtt{x} \mid | \mathtt{x} := \mathtt{y} \} \{\mathtt{y} := \mathtt{t} \} \langle \rangle \ \mathtt{y} < \mathtt{x} \\ \vdots \\ \mathtt{x} < \mathtt{y} \implies \{\mathtt{t} := \mathtt{x} \} \{\mathtt{x} := \mathtt{y} \} \langle \mathtt{y} = \mathtt{t} ; \rangle \ \mathtt{y} < \mathtt{x} \\ \vdots \\ \mathtt{x} < \mathtt{y} \implies \{\mathtt{t} := \mathtt{x} \} \langle \mathtt{x} = \mathtt{y} ; \ \mathtt{y} = \mathtt{t} ; \rangle \ \mathtt{y} < \mathtt{x} \\ \vdots \\ \implies \mathtt{x} < \mathtt{y} \implies \langle \mathtt{int} \ \mathtt{t} = \mathtt{x} ; \ \mathtt{x} = \mathtt{y} ; \ \mathtt{y} = \mathtt{t} ; \rangle \ \mathtt{y} < \mathtt{x} \end{array}$$

$$\begin{array}{c} x < y \implies \{x := y \mid \mid y := x\} \langle \rangle \; y < x \\ \vdots \\ x < y \implies \{t := x \mid \mid x := y \mid \mid y := x\} \langle \rangle \; y < x \\ \vdots \\ x < y \implies \{t := x \mid \mid x := y\} \{y := t\} \langle \rangle \; y < x \\ \vdots \\ x < y \implies \{t := x\} \{x := y\} \langle y = t; \rangle \; y < x \\ \vdots \\ x < y \implies \{t := x\} \langle x = y; \; y = t; \rangle \; y < x \\ \vdots \\ \implies x < y \implies \{\text{int } t = x; \; x = y; \; y = t; \rangle \; y < x \\ \end{array}$$

$$\begin{array}{c} x < y \implies x < y \\ \vdots \\ x < y \implies \{x :=y \mid\mid y :=x \} \langle \rangle \; y < x \\ \vdots \\ x < y \implies \{t :=x \mid\mid x :=y \mid\mid y :=x \} \langle \rangle \; y < x \\ \vdots \\ x < y \implies \{t :=x \mid\mid x :=y \} \{y :=t \} \langle \rangle \; y < x \\ \vdots \\ x < y \implies \{t :=x \} \{x :=y \} \langle y =t; \rangle \; y < x \\ \vdots \\ x < y \implies \{t :=x \} \langle x =y; \; y =t; \rangle \; y < x \\ \vdots \\ \implies x < y \implies \{t :=x; \; x =y; \; y =t; \rangle \; y < x \\ \vdots \\ \implies x < y \implies \langle int \; t =x; \; x =y; \; y =t; \rangle \; y < x \\ \end{array}$$

Example

KeY automatically deletes overwritten (unnecessary) updates

updates/swap2.key

Example

```
symbolic execution of x=x+y; y=x-y; x=x-y; gives  (\{x := x+y\}\{y := x-y\})\{x := x-y\} = \\ \{x := x+y \mid \mid y := (x+y)-y\}\{x := x-y\} = \\ \{x := x+y \mid \mid y := (x+y)-y \mid \mid x := (x+y)-((x+y)-y)\} = \\ \{x := x+y \mid \mid y := x \mid \mid x := y\} = \\ \{y := x \mid \mid x := y\}
```

KeY automatically deletes overwritten (unnecessary) updates

Demo

updates/swap2.key

Parallel updates to store intermediate state of symbolic computation

Another use of Updates

If you would like to quantify over a program variable ...

Another use of Updates

If you would like to quantify over a program variable ...

Not allowed: $\forall \tau \ i; \langle \dots i \dots \rangle \phi$

$$\forall \tau \; \mathbf{i}; \langle \dots \mathbf{i} \dots \rangle \phi$$

(program \neq logical variable)

Another use of Updates

If you would like to quantify over a program variable ...

Not allowed:
$$\forall \tau \ \mathbf{i}; \langle \dots \mathbf{i} \dots \rangle \phi$$

 $(program \neq logical variable)$

Instead

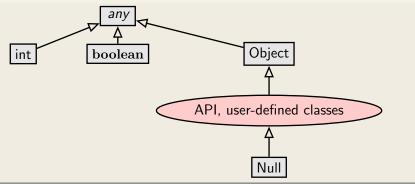
Quantify over value, and assign it to program variable:

$$\forall \tau i_0; \{i := i_0\} \langle \dots i \dots \rangle \phi$$

Modeling 00 Programs Object Creation Method Calls Null Pointers

Java Type Hierarchy

Signature based on Java's type hierarchy



Each class referenced in API and target program is in signature with appropriate partial order

Modelling Fields

Modeling instance fields

Person int age int id int setAge(int i) int getId()

- ▶ Each $o \in D^{\mathsf{Person}}$ has associated age value
- $ightharpoonup \mathcal{I}(age)$ is mapping from Person to int
- Field values can be changed
- For each class C with field a of type τ:
 FSym_f declares flexible function τ a(C);

Modelling Fields

Modeling instance fields

	Person
int int	age id
	<pre>setAge(int i) getId()</pre>

- ▶ Each $o \in D^{\mathsf{Person}}$ has associated age value
- $ightharpoonup \mathcal{I}(age)$ is mapping from Person to int
- Field values can be changed
- For each class C with field a of type τ:
 FSym_f declares flexible function τ a(C);

Field Access

```
Signature \ FSym_f \colon \ \ \mathbf{int} \ \ \mathsf{age}(\mathsf{Person}); \qquad \mathsf{Person} \ \ \mathsf{p};
```

Typed FOL
$$age(p) > = 0$$

Navigation expressions in typed FOL look exactly as in JAVA/JML SEFM: Java DL CHALMERS/GU 131011

Modeling Fields in FOL Cont'd

Resolving Overloading

Overloading resolved by qualifying with class name: p.age@(Person)

Changing the value of fields

How to translate assignment to field p.age=17; ?

$$\text{assign } \frac{\Gamma \Longrightarrow \{\mathtt{l} := t\} \langle \mathtt{rest} \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle \mathtt{l} = \mathtt{t}; \ \mathtt{rest} \rangle \phi, \Delta}$$

Admit on left-hand side of update program location expressions

Modeling Fields in FOL Cont'd

Resolving Overloading

Overloading resolved by qualifying with class name: p.age@(Person)

Changing the value of fields

How to translate assignment to field p.age=17; ?

$$\text{assign } \frac{\Gamma \Longrightarrow \{\text{p.age} := 17\} \langle \text{rest} \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle \text{p.age} = 17; \text{ rest} \rangle \phi, \Delta}$$

Admit on left-hand side of update program location expressions

SEFM: Java DL CHALMERS/GU 131010 21 / 43

Generalise Definition of Updates

Definition (Syntax of Updates, Updated Terms/Formulas)

If I is program location (e.g., o.a), t FOL term type-compatible with I, t' any FOL term, and ϕ any DL formula, then

- ▶ *l* := *t* is an update
- $ightharpoonup \{I := t\}t' \text{ is DL term}$
- $\{I := t\} \phi$ is DL formula

Definition (Semantics of Updates, Field Case)

State s interprets field a with $\mathcal{I}_s(a)$

 β variable assignment for logical variables in t

$$\rho(\{o.a := t\})(s, \beta) = s'$$
 where s' identical to s except $\mathcal{I}_{s'}(a)(o) = val_{s,\beta}(t)$

SEFM: Java DL CHALMERS/GU 131010 22 / 43

Dynamic Logic - KeY input file

```
KeY
\javaSource "path to source code";

\programVariables { Person p; }

\problem {
    \<{ p.age = 18; }\> p.age = 18
}

KeY —
```

KeY reads in all source files and creates automatically the necessary signature (sorts, field functions)

SEFM: Java DL CHALMERS/GU 131010 23 / 43

Dynamic Logic - KeY input file

```
KeY
\javaSource "path to source code";

\programVariables { Person p; }

\problem {
    \<{ p.age = 18; }\> p.age = 18
}

KeY —
```

KeY reads in all source files and creates automatically the necessary signature (sorts, field functions)

Demo updates/firstAttributeExample.key

SEFM: Java DL CHALMERS/GU 131010 23 / 43

Does abrupt termination count as 'normal' termination? No! Need to distinguish 'normal' and exceptional termination

Does abrupt termination count as 'normal' termination? No! Need to distinguish 'normal' and exceptional termination

 $ightharpoonup \langle p \rangle \phi$: p terminates normally and formula ϕ holds in final state (total correctness)

SEFM: Java DL CHALMERS/GU 131010 24 / 43

Does abrupt termination count as 'normal' termination? No! Need to distinguish 'normal' and exceptional termination

- $ightharpoonup \langle p \rangle \phi$: p terminates normally and formula ϕ holds in final state (total correctness)
- ▶ [p] ϕ : If p terminates normally then formula ϕ holds in final state (partial correctness)

Does abrupt termination count as 'normal' termination? No! Need to distinguish 'normal' and exceptional termination

- $ightharpoonup \langle p \rangle \phi$: p terminates normally and formula ϕ holds in final state (total correctness)
- ▶ [p] ϕ : If p terminates normally then formula ϕ holds in final state (partial correctness)

Abrupt termination on top-level counts as non-termination!

Dynamic Logic - KeY input file

```
— KeY —
\javaSource "path to source code";
\programVariables {
\problem {
      p != null -> \<{ p.age = 18; }\> p.age = 18
                                                 — KeY —
```

Only provable when no top-level exception thrown

SEFM: Java DL CHALMERS/GU 131010 25 / 43

Computing the effect of updates with field locations is complex

Example

▶ Signature $FSym_f$: C a(C); C b(C); C o;

Computing the effect of updates with field locations is complex

Example

- ▶ Signature $FSym_f$: C a(C); C b(C); C o;
- ► Consider {o.a := o}{o.b := o.a}

Computing the effect of updates with field locations is complex

Example

- ▶ Signature $FSym_f$: C a(C); C b(C); C o;
- $Consider {o.a := o}{o.b := o.a}$
- ► First update may affect left side of second update

Computing the effect of updates with field locations is complex

Example

- ▶ Signature $FSym_f$: C a(C); C b(C); C o;
- Consider $\{o.a := o\}\{o.b := o.a\}$
- ► First update may affect left side of second update
- ▶ o.a and o.b might refer to same object (be aliases)

Computing the effect of updates with field locations is complex

Example

- ▶ Signature $FSym_f$: C a(C); C b(C); C o;
- Consider $\{o.a := o\}\{o.b := o.a\}$
- ► First update may affect left side of second update
- ▶ o.a and o.b might refer to same object (be aliases)

KeY applies rules automatically, you don't need to worry about details

SEFM: Java DL CHALMERS/GU 131010 26 / 43

The Self Reference

Modeling reference this to the receiving object

Special name for the object whose JAVA code is currently executed:

```
in JML: Object this;
in Java: Object this;
in KeY: Object self;
```

Default assumption in JML-KeY translation: self! = null

Which Objects do Exist?

How to model object creation with new?

Which Objects do Exist?

How to model object creation with new?

Constant Domain Assumption

Assume that domain $\mathcal D$ is the same in all states of LTS $\mathcal K=(\mathcal S,\rho)$

Desirable consequence:

Validity of rigid FOL formulas unaffected by programs containing new()

$$\models \forall \tau \ x; \ \phi \rightarrow [p](\forall \tau \ x; \ \phi)$$
 is valid for rigid ϕ

Which Objects do Exist?

How to model object creation with new?

Constant Domain Assumption

Assume that domain $\mathcal D$ is the same in all states of LTS $\mathcal K=(\mathcal S,\rho)$

Desirable consequence:

Validity of rigid FOL formulas unaffected by programs containing new()

$$\models \forall \tau \ x; \ \phi \rightarrow [p](\forall \tau \ x; \ \phi)$$
 is valid for rigid ϕ

Realizing Constant Domain Assumption

- ► Flexible function boolean <created>(Object);
- ▶ Equal to true iff argument object has been created
- ▶ Initialized as $\mathcal{I}(\langle created \rangle)(o) = F$ for all $o \in \mathcal{D}$
- ▶ Object creation modeled as {o.<created> := true} for next "free" o

SEFM: Java DL CHALMERS/GU 131010 28 / 43

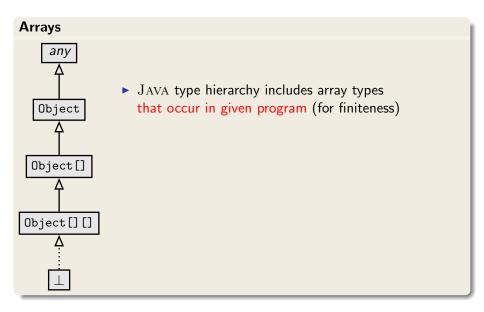
Object Creation Round Tour Java Programs Arrays Side Effects Abrupt Termination Aliasing Method Calls **Null Pointers** Initialization API

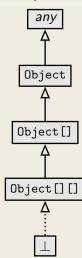
Dynamic Logic to (almost) full Java

KeY supports full sequential Java, with some limitations:

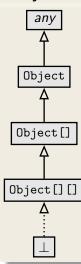
- Limited concurrency
- ► No generics
- No I/O
- No floats
- ▶ No dynamic class loading or reflexion
- ▶ API method calls: need either JML contract or implementation

SEFM: Java DL CHALMERS/GU 131010 30 / 43

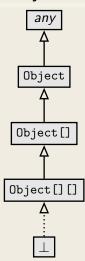




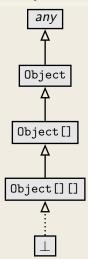
- ► JAVA type hierarchy includes array types that occur in given program (for finiteness)
- ▶ Types ordered according to JAVA subtyping rules



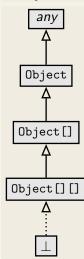
- ► JAVA type hierarchy includes array types that occur in given program (for finiteness)
- ► Types ordered according to JAVA subtyping rules
- ► Model array with flexible function T [] (ARR, int)



- ► JAVA type hierarchy includes array types that occur in given program (for finiteness)
- ▶ Types ordered according to JAVA subtyping rules
- ► Model array with flexible function T [] (ARR, int)
- ► Instead of [](a,i), we write a[i]



- ► JAVA type hierarchy includes array types that occur in given program (for finiteness)
- ▶ Types ordered according to JAVA subtyping rules
- ► Model array with flexible function T [] (ARR, int)
- ▶ Instead of [](a,i), we write a[i]
- Arrays a and b can refer to same object (aliases)



- ► JAVA type hierarchy includes array types that occur in given program (for finiteness)
- ▶ Types ordered according to JAVA subtyping rules
- ► Model array with flexible function T [] (ARR, int)
- ▶ Instead of [](a,i), we write a[i]
- Arrays a and b can refer to same object (aliases)
- KeY implements update application and simplification rules for array locations

Java Features in Dynamic Logic: Complex Expressions

Complex expressions with side effects

- ▶ JAVA expressions may contain assignment operator with side effect
- ▶ JAVA expressions can be complex, nested, have method calls
- ► FOL terms have no side effect on the state

Example (Complex expression with side effects in Java)

```
int i = 0; if ((i=2)>= 2)i++; value of i?
```

Complex Expressions Cont'd

Decomposition of complex terms by symbolic execution

Follow the rules laid down in JAVA Language Specification

Local code transformations

Temporary variables store result of evaluating subexpression

$$\label{eq:feval} \begin{aligned} & \frac{\Gamma \Longrightarrow \langle \mathbf{boolean} \ \mathbf{v0}; \ \mathbf{v0} \ = \ \mathbf{b}; \ \ \mathbf{if} \ \ (\mathbf{v0}) \ \ \mathbf{p}; \ \ \omega \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle \mathbf{if} \ \ (\mathbf{b}) \ \ \mathbf{p}; \ \ \omega \rangle \phi, \Delta} \end{aligned} \quad \text{b complex} \end{aligned}$$

Guards of conditionals/loops always evaluated (hence: side effect-free) before conditional/unwind rules applied

SEFM: Java DL CHALMERS/GU 131010 33 / 43

Java Features in Dynamic Logic: Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

$$\langle \pi \text{ try } \{p\} \text{ catch(e) } \{q\} \text{ finally } \{r\} \omega \rangle \phi$$

Rules ignore inactive prefix, work on active statement, leave postfix

SEFM: Java DL CHALMERS/GU 131010 34 / 43

Java Features in Dynamic Logic: **Abrupt Termination**

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

$$\langle \pi \text{ try } \{p\} \text{ catch(e) } \{q\} \text{ finally } \{r\} \omega \rangle \phi$$

Rules ignore inactive prefix, work on active statement, leave postfix

Rule tryThrow matches try-catch in pre-/postfix and active throw

$$\Rightarrow \not \langle \texttt{r if (e instance of T) \{try\{x=e\,;q\} finally \{r\}\} else\{r\,;throw\,e\,;\}}\,\omega\,\,\rangle\phi$$

$$\Rightarrow \langle \pi \text{ try } \{ \text{throw e; p} \} \text{ catch}(T x) \{ q \} \text{ finally } \{ r \} \omega \rangle \phi$$

CHALMERS/GU 131010 34 / 43

Java Features in Dynamic Logic: Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

$$\langle \pi \text{ try } \{p\} \text{ catch(e) } \{q\} \text{ finally } \{r\} \omega \rangle \phi$$

Rules ignore inactive prefix, work on active statement, leave postfix

Rule tryThrow matches try-catch in pre-/postfix and active throw

$$\Rightarrow \langle \pi \text{ if (e instanceof T) } \{ \text{try} \{ x = e; q \} \text{ finally } \{ r \} \} \text{ else} \{ r; \text{throw e}; \} \omega \rangle \phi$$

$$\Rightarrow \langle \pi \text{ try {throw e; p} } \operatorname{catch}(T x) \{q\} \text{ finally } \{r\} \omega \rangle \phi$$

Demo: exceptions/try-catch.key, try-catch-dispatch.key, try-catch-finally.key

Java Features in Dynamic Logic: Aliasing

Demo

aliasing/attributeAlias1.key

Java Features in Dynamic Logic: Aliasing

Demo

aliasing/attributeAlias1.key

Reference Aliasing

Naive alias resolution causes proof split (on o = u) at each access

$$\Rightarrow$$
 o.age $\doteq 1$ \rightarrow \langle u.age = 2; \rangle o.age \doteq u.age

SEFM: Java DL CHALMERS/GU 131010 35 / 43

Java Features in Dynamic Logic: Method Calls

Method Call with actual parameters arg_0, \ldots, arg_n

```
\{arg_0 := t_0 \mid\mid \cdots \mid\mid arg_n := t_n \mid\mid c := t_c\} \langle c.m(arg_0, \ldots, arg_n); \rangle \phi
```

where m declared as void $m(\tau_0 p_0, \ldots, \tau_n p_n)$

Actions of rule methodCall

- for each formal parameter p_i of m: declare and initialize new local variable τ_i p#i = arg_i;
- ▶ look up implementation class *C* of m and split proof if implementation cannot be uniquely determined
- ► create concrete method invocation c.m(p#0,...,p#n)@C

SEFM: Java DL CHALMERS/GU 131010 36 / 43

Method Calls Cont'd

Method Body Expand

- 1. Execute code that binds actual to formal parameters τ_i p#i = arg;
- 2. Call rule methodBodyExpand

SEFM: Java DL CHALMERS/GU 131010 37 / 43

Method Calls Cont'd

Method Body Expand

- 1. Execute code that binds actual to formal parameters τ_i p#i = arg;
- 2. Call rule methodBodyExpand

Demo

methods/ instanceMethodInlineSimple.key

SEFM: Java DL CHALMERS/GU 131010 37 / 43

Localisation of Fields and Method Implementation

JAVA has complex rules for localisation of fields and method implementations

- ► Polymorphism
- ► Late binding
- Scoping (class vs. instance)
- Context (static vs. runtime)
- Visibility (private, protected, public)

Proof split into cases when implementation not statically determined

Null pointer exceptions

There are no "exceptions" in FOL: ${\mathcal I}$ total on FSym

Need to model possibility that o $\doteq \mathbf{null}$ in o.a

► KeY branches over o!= null upon each field access

Object initialization

JAVA has complex rules for object initialization

- ► Chain of constructor calls until Object
- Implicit calls to super()
- Visbility issues
- ▶ Initialization sequence

Coding of initialization rules in methods <createObject>(), <init>(),... which are then symbolically executed

SEFM: Java DL CHALMERS/GU 131010 40 / 43

Formal specification of Java API

How to perform symbolic execution when JAVA API method is called?

- 1. API method has reference implementation in $\rm JAVA$ Call method and execute symbolically
 - Problem Reference implementation not always availableProblem Breaks modularity
- 2. Use JML contract of API method:
 - 2.1 Show that requires clause is satisfied
 - 2.2 Obtain postcondition from ensures clause
 - 2.3 Delete updates with modifiable locations from symbolic state

SEFM: Java DL CHALMERS/GU 131010 41 / 43

Formal specification of Java API

How to perform symbolic execution when JAVA API method is called?

- 1. API method has reference implementation in $\rm JAVA$ Call method and execute symbolically
 - **Problem** Reference implementation not always available **Problem** Breaks modularity
- 2. Use JML contract of API method:
 - 2.1 Show that requires clause is satisfied
 - 2.2 Obtain postcondition from ensures clause
 - 2.3 Delete updates with modifiable locations from symbolic state

Java Card API in JML or DL

DL version available in KeY, JML work in progress See W. Mostowski

http://limerick.cost-ic0701.org/home/verifying-java-card-programs-with-key

Summary

- Most JAVA features covered in KeY
- Several of remaining features available in experimental version
 - Simplified multi-threaded JMM
 - Floats
- Degree of automation for loop-free programs is very high
- Proving loops requires user to provide invariant
 - Automatic invariant generation sometimes possible
- Symbolic execution paradigm lets you use KeY w/o understanding details of logic

Literature for this Lecture

Essential

- **KeY Book** Verification of Object-Oriented Software (see course web page), Chapter 10: Using KeY
- **KeY Book** Verification of Object-Oriented Software (see course web page), Chapter 3: Dynamic Logic, Sections 3.1, 3.2, 3.4, 3.5, 3.6.1, 3.6.2, 3.6.3, 3.6.4, 3.6.5, 3.6.7