
Compiler construction 2012

Lecture 9

Code optimization

Control-flow graph and basic blocks

Data-flow analysis

Liveness analysis

General

Optimization: desired properties

Improve the code

Make execution faster.

Make execution consume less power.

Make program smaller.

These goals can be contradictory.

Don’t change semantics

Don’t change values returned.

Don’t change side effects.

Don’t change runtime errors(!).

Don’t change termination properties.

Often subtle points.

General

Full optimization is impossible

Full employment theorem for compiler writers

We cannot build a compiler that optimizes all programs fully for program
size.

Proof: The smallest non-terminating program without visible effects is
while (true) {}
A fully optimizing compiler would translate any non-terminating program to
this – and thus solve the halting problem.

Similar results for other optimization criteria.

General

Optimization at different stages

Where/when should we optimize?

We can optimize at different stages:

Source code.

Abstract syntax trees.

LLVM/JVM byte code or other IR.

Native code.

Except for source code, compilers do optimization at all these stages.



General

Inlining
Replace function call by body

Parameters need to be substituted by arguments.
Renaming of vars may be needed.

+ Function call overhead disappears.

+ Activation record disappears.

+ Memory traffic reduced.

+ New optimization opportunities.

- Code becomes bigger.

This is often done at AST level.

For imperative code (with statements and return),
rewrite to return a var and place the var at the call site.

In the rest of the lecture, we focus on three address code/native code
optimization.

General

Code optimization

Improvement opportunities

Naive syntax-directed translation often gives code that can be
“obviously” improved.

Compiler-generated code such as e.g. address calculations for array
elements even more so.

One improvement often opens for other improvements.

Consequences

If you know that subsequent optimizations will be done, do not try to
be clever in the first code generation step.

Never rule out an optimization as useless by thinking that “the
programmer would never write that” – the compiler itself might do so!

General

Three-address code

Pseudo-code
To discuss code optimization we employ a (vaguely defined) pseudo-IR
called three-address code which uses virtual registers but does not
require SSA form.

Instructions
x := y # z where x, y and z

are register names or literals
and # is an arithmetic operator.

goto L where L is a label.

if x # y then goto L

where # is a relational
operator.

x := y

return x

Example code
s := 0

i := 1

L1: if i > n goto L2

t := i * i

s := s + t

i := i + 1

goto L1

L2: return s

Control-flow graph

Control-flow graph

Code as graph

Each instruction is a node.

Edge from each node to its
possible successors.

Example code
s := 0

i := 1

L1: if i > n goto L2

t := i * i

s := s + t

i := i + 1

goto L1

L2: return s

Example as graph

L1: if i > n goto L2

L2: return s

 goto L1

i := i + 1

s := s + t

t := i * i

s := 0

i := 1



Control-flow graph

Static vs dynamic analysis

Dynamic analysis

If in some execution of the program . . .

Dynamic properties are in general undecidable.
Compare with the halting problem:
“P halts” vs “P reaches instruction I”.

Static analysis

If there is a path in the control-flow graph . . .

Basis for many forms of compiler analysis –
but in general we don’t know if that path will ever be taken during
execution.
Results are approximations – we must make sure to err on the correct side.

Control-flow graph

Dataflow analysis

A static analysis

General approach to code analysis.
Useful for many forms of intraprocedural optimization:

Common subexpression elimination,
Constant propagation,
Dead code elimination,
. . .

Within a basic block, simpler methods often suffice.

Liveness analysis

Example: Liveness of variables

Definitions and uses
An instruction x := y # z defines x and uses y and z.

Liveness
A variable v is live at a point P in the control-flow graph (CFG) if there is a
path from P to a use of v along which v is not defined.

Uses of liveness information
Register allocation: a non-live variable need not be kept in register.

Useless-store elimination: a non-live variable need not be stored to
memory.

Detecting uninitialized variables: a local variable that is live on
function entry.

Optimizing SSA form; non-live vars don’t need Φ-functions.

Liveness analysis

Liveness analysis: Concepts

Def sets
The def set def(n) of a node n is the set of variables that are defined in n
(a set with 0 or 1 elements).

Use sets
The use set use(n) of a node n is the set of variables that are used in n.

Live-out sets
The live-out set live-out(n) of a node n is the set of variables that are live
at an out-edge of n.

Live-in sets
The live-in set live-in(n) of a node n is the set of variables that are live at
an in-edge of n.



Liveness analysis

An example

1st example revisited

L1: if i > n goto L2

L2: return s

 goto L1

i := i + 1

s := s + t

t := i * i

s := 0

i := 1

Live-in sets

Instr # Set
1 { n }
2 { n, s}
3 {i, n, s}
4 {i, n, s }
5 {i, n, s, t}
6 {i, n, s}
7 {i, n, s}
8 { s }

How can these be computed?

Liveness analysis

The dataflow equations

For every node n, we have

live-out(n) = ∪s∈succs(n)live-in(s).

live-in(n) = use(n) ∪ (live-out(n)− def(n)).

where succs(n) denote the set of successor nodes to n.

Computation

Let live-in, def and use be arrays indexed by nodes.
foreach node n do live-in[n] = ∅
repeat

foreach node n do
out = ∪s∈succs(n)live-in[s]
live-in[n] = use[n] ∪ (out - def [n])

until no changes in iteration.

Liveness analysis

Solving the equations

Example revisited

Instr def use succs live-in
1 {s} {} {2} {}
2 {i} {} {3} {}
3 {} {i,n} {4,8} {}
4 {t} {i} {5} {}
5 {s} {s,t} {6} {}
6 {i} {i} {7} {}
7 {} {} {3} {}
8 {} {s} {} {}

Initialization done above.
live-in updated from top to bottom in each iteration (to be completed in
class).
But is there a better order?

Liveness analysis

Liveness: A backwards problem

Fixpoint iteration

We iterate until no live sets change during an iteration; we have
reached a fixpoint of the equations.

The number of iterations (and thus the amount of work) depends on
the order in which we use the equations within an iteration.

Since liveness info propagates from successors to predecessors in
the CFG, we should start with the last instruction and work
backwards.
(Since the program contains a loop, this is just a heuristic).



Liveness analysis

Another node order

Working from bottom to top, we get

Instr def use succs live-in0 live-in1 live-in2

1 {s} {} {2} {} {n} {n}
2 {i} {} {3} {} {n,s} {n,s}
3 {} {i,n} {4,8} {} {i,n,s} {i,n,s}
4 {t} {i} {5} {} {i,s} {i,n,s}
5 {s} {s,t} {6} {} {i,s,t} {i,n,s,t}
6 {i} {i} {7} {} {i} {i,n,s}
7 {} {} {3} {} {} {i,n,s}
8 {} {s} {} {} {s} {s}

Liveness analysis

Implementing data flow analysis
Data structures

Any standard data structure for graphs will work; one should arrange
for succs to be fast.

For sets of variables one may use bit arrays with one bit per variable.
Then union is bit-wise or, intersection bit-wise and and complement
bit-wise negation.

Termination
The live sets grow monotonically in each iteration, so the number of
iterations is bounded by V · N, where N is nr of nodes and V nr of
variables. In practice, for realistic code, the number of iterations is much
smaller.

Node ordering

A heuristically good order can be found by doing a depth-first search of the
CFG and reversing the node ordering.

Liveness analysis

Basic blocks

Motivations
Control-graph with instructions as nodes become big.

Between jumps, graph structure is trivial (straight-line code).

Definition
A basic block starts at a labelled instruction or after a conditional
jump. (First basic block starts at beginning of function).

A basic block ends at a (conditional) jump.

We ignore code where an unlabeled statement follows an unconditional
jump (such code is unreachable).

Liveness analysis

Example

Testing if n is prime

p := 0

B6

B5

B4

B3

B2

B1
i := 2
p := 1

if n < 2 goto B5

s := i * i
if s > n goto B6

r := n % i
if r == 0 goto B5

i := i + 1
goto B2

Notes
Edges correspond to
branches.

Jump destinations are now
blocks, not instructions.

We may insert empty blocks.

Analysis of control-flow
graphs often done on graph
with basic blocks as nodes.



Liveness analysis

Liveness analysis for CFG graphs of basic blocks

We can easily modify data flow analysis to work on control flow graphs of
basic blocks.

With knowledge of live-in and live-out for basic blocks it is easy to find the
set of live variables at each instruction.

How do the basic concepts need to be modified to apply to basic blocks?

Liveness analysis

Modified definitions for CFG of basic blocks

Def sets
The def set def(n) of a node n in a CFG is the set of variables that are
defined in an instruction in n.

Use sets
The use set use(n) of a node n is the set of variables that are used in an
instruction in n before a possible redefinition of the variable.

Live-out sets
The live-out set live-out(n) of a node n is the set of variables that are live
at an out-edge of n.

Live-in sets
The live-in set live-in(n) of a node n is the set of variables that are live at
an in-edge of n.

Liveness analysis

Another dataflow problem: dominators

Definition
In a CFG, node n dominates node m if every path from the start node to
m passes through n.
Particular case: we consider each node to dominate itself.

Concept has many uses in compilation.

Prime test CFG
B1

B6

B5B4

B3

B2

Questions
Write dataflow equations for
dominance.

How would you solve the
equations?

An example

An example of optimization in LLVM

int f () {

int i, j, k;

i = 8;

j = 1;

k = 1;

while (i != j) {

if (i==8)

k = 0;

else

i++;

i = i+k;

j++;

}

return i;

}

Comments
Human reader sees, with some
effort, that the C/Javalette function
f returns 8.

We follow how LLVM:s
optimizations will discover this
fact.



An example

Step 1: Naive translation to LLVM
define i32 @f() {

entry:

%i = alloca i32

%j = alloca i32

%k = alloca i32

store i32 8, i32* %i

store i32 1, i32* %j

store i32 1, i32* %k

br label %while.cond

while.cond:

%tmp = load i32* %i

%tmp1 = load i32* %j

%cmp = icmp ne i32 %tmp, %tmp1

br i1 %cmp, label %while.body,

label %while.end

while.body:

%tmp2 = load i32* %i

%cmp3 = icmp eq i32 %tmp2, 8

br i1 %cmp3, label %if.then,

label %if.else

if.then:

store i32 0, i32* %k

br label %if.end

if.else:

%tmp4 = load i32* %i

%inc = add i32 %tmp4, 1

store i32 %inc, i32* %i

br label %if.end

if.end:

%tmp5 = load i32* %i

%tmp6 = load i32* %k

%add = add i32 %tmp5, %tmp6

store i32 %add, i32* %i

%tmp7 = load i32* %j

%inc8 = add i32 %tmp7, 1

store i32 %inc8, i32* %j

br label %while.cond

while.end:

%tmp9 = load i32* %i

ret i32 %tmp9

}

An example

Step 2: Translating to SSA form (opt -mem2reg)

define i32 @f() {

entry:

br label %while.cond

while.cond:

%k.1 = phi i32 [ 1, %entry ],

[ %k.0, %if.end ]

%j.0 = phi i32 [ 1, %entry ],

[ %inc8, %if.end ]

%i.1 = phi i32 [ 8, %entry ],

[ %add, %if.end ]

%cmp = icmp ne i32 %i.1, %j.0

br i1 %cmp, label %while.body,

label %while.end

while.body:

%cmp3 = icmp eq i32 %i.1, 8

br i1 %cmp3, label %if.then,

label %if.else

if.then:

br label %if.end

if.else:

%inc = add i32 %i.1, 1

br label %if.end

if.end:

%k.0 = phi i32 [ 0, %if.then ],

[ %k.1, %if.else ]

%i.0 = phi i32 [ %i.1, %if.then ],

[ %inc, %if.else ]

%add = add i32 %i.0, %k.0

%inc8 = add i32 %j.0, 1

br label %while.cond

while.end:

ret i32 %i.1

}

An example

Step 3: Sparse Conditional Constant Propagation
(opt -sccp)

define i32 @f() {

entry:

br label %while.cond

while.cond:

%j.0 = phi i32 [ 1, %entry ],

[ %inc8, %if.end ]

%k.1 = phi i32 [ 1, %entry ],

[ 0, %if.end ]

%cmp = icmp ne i32 8, %j.0

br i1 %cmp, label %while.body,

label %while.end

while.body:

br i1 true, label %if.then,

label %if.else

if.then:

br label %if.end

if.else:

br label %if.end

if.end:

%inc8 = add i32 %j.0, 1

br label %while.cond

while.end:

ret i32 8

}

An example

Step 4: CFG Simplification (opt -simplifycfg)
define i32 @f() {

entry:

br label %while.cond

while.cond:

%j.0 = phi i32 [ 1, %entry ],

[ %inc8, %if.end ]

%k.1 = phi i32 [ 1, %entry ],

[ 0, %if.end ]

%cmp = icmp ne i32 8, %j.0

br i1 %cmp, label %if.end,

label %while.end

if.end:

%inc8 = add i32 %j.0, 1

br label %while.cond

while.end:

ret i32 8

}

Comments
If the function terminates, the
return value is 8.

opt has not yet detected that the
loop is certain to terminate.



An example

Step 5: Dead Loop Deletion (opt -loop-deletion)

define i32 @f() {

entry:

br label %while.end

while.end:

ret i32 8

}

One more -simplifycfg step
yields finally

define i32 @f() {

entry:

ret i32 8

}

For realistic code, dozens of passes are performed, some of them
repeatedly. Many heuristics are used to determine order.

Use opt -std-compile-opts for a default selection.

An example

What now?

Next Tuesday: Last lecture; more on optimization.

Book time for oral exam; see course web site.


