
Compiler construction 2012

Lecture 7

x86 architecture

Calling conventions

Some x86 instructions
From LLVM to assembler

Instruction selection
Instruction scheduling
Register allocation

x86 architecture

x86: assembly for a real machine

First comparison with JVM

Not a stack machine; no direct correspondence to operand stacks.

Arithmetics etc is instead done with values in registers.

Much more limited support for function calls; you need to handle
return addresses, jumps, allocation of stack frames etc yourself.

Your code is assembled and run; no further optimization.

CISC architecture with few registers. Straightforward code will run
slowly.

x86 architecture

x86 assembler, a first example

Javalette (or C)
> more ex1.c

int f (int x, int y) {

int z = x + y;

return z;

}

>

This might be compiled to the
assembler code to the right.

NASM assembly code
segment .text

global f

f:

push dword ebp

mov ebp, esp

sub esp, 4

mov eax, [ebp+12]

add eax, [ebp+8]

mov [ebp-4], eax

mov eax, [ebp-4]

leave

ret

x86 architecture

Example explained

NASM code commented
segment .text ; code area

global f ; f has external scope

f: ; entry point for f

push dword ebp ; save caller’s fp

mov ebp, esp ; set our fp

sub esp, 4 ; allocate space for z

mov eax, [ebp+12] ; move y to eax

add eax, [ebp+8] ; add x to eax

mov [ebp-4], eax ; move eax to z

mov eax, [ebp-4] ; return value to eax

leave ; restore caller’s fp/sp

ret ; pop return addr, jump



x86 architecture

Intel x86 architectures

Long history

8086, 1978. First IBM PCs. 16 bit registers, real mode.

80286, 1982. AT, Windows. Protected mode.

80386, 1985. 32 bit registers, virtual memory.

80486, Pentium, Pentium II, III, IV. 1989 – 2003.
Math coprocessor, pipelining, caches, SSE . . .

Intel Core 2. 2006. Multi-core.

Core i3/i5/i7. 2009/10.

Backwards compatibility important; leading to a large set of opcodes.

Not only Intel offer x86 processors: also AMD is in the market.

x86 architecture

Which version should you target?

x86
When speaking of the x86 architecture, one generally means
register/instruction set for the 80386 (with floating-point ops).

You can compile code which would run on a 386
– or you may use SSE2 operations for a more recent version.

x86 architecture

x86 registers
General purpose registers (32-bits)

EAX, EBX, ECX, EDX, EBP, ESP, ESI, EDI.

Conventional use:
EBP and ESP for frame pointer and stack pointer.

Segment registers

Legacy from old segmented addressing architecture.
Can be ignored in Javalette compilers.

Floating-point registers

Eight 80–bit registers ST0 – ST7 organised as a stack.

Flag registers

Status registers with bits for results of comparisons, etc.
We discuss these later.

Calling convention

Data area for parameters and local variables

Runtime stack
Contiguous memory area.
Grows from high addresses
downwards.
AR layout illustrated.
EBP contains current base
pointer (= frame pointer).
ESP contains current stack
pointer.
Note: We need to store return
address (address of instruction to
jump to on return).

Illustration

Pn

Caller’s base pointer
High address

Stack 
growth

Return address
Caller’s base pointer

Local vars

Parameters

EBP

ESP

Local vars

Callee’s
AR

Caller’s 
AR

P1



Calling convention

Calling convention

Caller, before call
Push params (in reverse order).
Push return address.
Jump to callee entry.

Code pattern:
push dword paramn
...

push dword param1
call f

Caller, after call
Pop parameters.

Code pattern:
add esp parambytes

Callee, on entry

Push caller’s base pointer.
Update current base pointer.
Allocate space for locals.

Code pattern:
push dword ebp

mov ebp, esp

sub esp, localbytes

Callee, on exit
Restore base and stack pointer.
Pop return address and jump.

Code pattern:
leave

ret

Calling convention

Parameters, local variables and return values

Parameters
In the callee code, integer parameter 1 has address ebp+8,
parameter 2 ebp+12, etc.
Parameter values accessed with indirect addressing: [ebp+8], etc.
Double parameters require 8 bytes.

Here ebp+n means “(address stored in ebp) + n”.

Local variables
First local var is at address ebp-4, etc.
Local vars are conventionally addressed relative to ebp, not esp.
Again, refer to vars by indirect addressing: [ebp-4], etc.

Return values
Integer and boolean values are returned in eax, doubles in st0.

Calling convention

Register usage

Scratch registers (caller save)

EAX, ECX and EDX must be saved by caller before call, if used; can be
freely used by callee.

Callee save register

EBX, ESI, EDI, EBP, ESP.
For EBP and ESP, this is handled in the code patterns.

Note
What we have described is one common calling convention for 32-bit x86,
called cdecl.

Other conventions exist, but we omit them.

Calling convention

Assemblers for x86

Several alternatives
Several assemblers for x86 exist, with different syntax.

We will use NASM, the Netwide Assembler, which is available for
several platforms.

We also recommend Paul Carter’s book and examples. Follow link
from course web site.
Some syntax differences to the GNU assembler:

GNU uses %eax etc, as register names.
For two-argument instructions, the operands have opposite order(!).
Different syntax for indirect addressing.

If you use gcc -S ex.c, you will get GNU syntax.



Calling convention

Example: GNU syntax

First example, revisited
> gcc -c ex1.c

> objdump -d ex1.o

ex1.o: file format elf32-i386

Disassembly of section .text:

00000000 <f>:

0: 55 push %ebp

1: 89 e5 mov %esp,%ebp

3: 8b 45 0c mov 0xc(%ebp),%eax

6: 03 45 08 add 0x8(%ebp),%eax

9: c9 leave

a: c3 ret

>

Assembler

Integer arithmetic; two-adress code

Addition, subtraction and multiplication

add dest, src ; dest := dest + src
sub dest, src ; dest := dest - src
imul dest, src ; dest := dest · src

Operands can be values in registers or in memory; src also a literal.

Division – one-address code
idiv denom
(eax,edx) := ((edx:eax)/denom,(edx:eax)%denom)

The numerator is the 64-bit value edx:eax (no other choices).

Both div and mod are performed; results in eax resp. edx.

edx must be zeroed before division.
Trick: xor edx, edx.

Assembler

Example

javalette program

int main () {

printString "Input a number: ";

int n = readInt();

printInt (2*n);

return 0;

}

The above code could be translated as
follows (slightly optimized to fit on slide).

Code for main
push dword ebp

mov ebp, esp

push str1

call printString

add esp, 4

call readInt

imul eax, 2

push eax

call printInt

add esp, 4

mov eax, 0

leave

ret

Assembler

Example, continued

Complete file
extern printString, printInt

extern readInt

segment .data

str1 db "Input a number: "

segment .text

global main

main:

code from previous slide

Comments
IO functions are external;
we come back to that.

The .data segment
contains constants such
as str1.

The .text segment
contains code.

The global declaration
gives main external scope
(can be called from code
outside this file).



Assembler

Floating-point arithmetic in x86

Moving numbers (selection)

fld src pushes value in src on fp stack.
fild src pushes integer value in src on fp stack.
fstp dest stores top of fp stack in dest and pops.

src and dest can be fp register or memory reference.

Arithmetic (selection)

fadd src src added to ST0.
fadd to dest ST0 added to dest.
faddp dest ST0 added to dest, then pop.

Similar variants for fsub, fmul and fdiv.

Assembler

Floating-point arithmetic in SSE2

New registers

128-bit registers XMM0–XMM7 (later also XMM8–XMM15).
Each can hold two double precision floats or four single-precision floats.
SIMD operations for arithmetic.

Arithmetic instructions
Two-address code, ADDSD, MULSD, etc.
SSE2 fp code similar to integer arithmetic.

Assembler

Control flow

Integer comparisons

cmp v1 v2
v1-v2 is computed and bits in the
flag registers are set:
ZF is set iff value is zero.
OF is set iff result overflows.
SF is set iff result is negative.

Branch instructions (selection)

JZ lab branches if ZF is set.
JL lab branches if SF is set.
Similarly for the other relations
between v1 and v2.

fcomi src compares st0 and src
and sets flags; can be followed by
branching as above.

Assembler

One more example

Javalette (or C)

int sum(int n) {

int res = 0;

int i = 0;

while (i < n) {

res = res + i;

i++;

}

return res;

}

Naive assembler
sum: push dword ebp

mov ebp, esp

sub esp, 8

mov [ebp-4], 0

mov [ebp-8], 0

jmp L2

L3: mov eax, [ebp-8]

add [ebp-4], eax

inc [ebp-8]

L2: mov eax, [ebp-8]

cmp eax, [ebp+8]

jl L3

mov eax, [ebp-4]

leave

ret



Assembler

How to do an x86 backend
Starting point

Two alternatives:

From LLVM code (requires your basic backend to generate LLVM
code as a data structure, not directly as strings).
Will generate many local vars.

From AST’s generated by frontend (means a lot of code common with
LLVM backend).

Variables
In either case, your code will contain a lot of variables/virtual registers.
Possible approaches:

Treat these as local vars, storing to and fetching from stack at each
access. Gives really slow code.

Do (linear scan) register allocation. Much better; you will want to do
this if you choose do do this backend.

Assembler

Input and output
A simple proposal

Define printInt, readInt etc in C. Then link this file together with your
object files using gcc.

Alternative: Compile runtime.ll with llvm-as and llc to get
runtime.s; this can be given to gcc as below.

Linux building

To assemble a NASM file to file.o:
nasm -f elf file.asm

To link:
gcc file.o runtime.c

Result is executable a.out.

More info
Paul Carter’s book (link on course web site) gives more info.
His driver and input routines could possibly be used, but the above seems
better.

From LLVM to assembler

From LLVM to assembler

Several stages

Instruction selection.

Instruction scheduling.

SSA-based optimizations.

Register allocation.

Prolog/epilog code (AR management).

Late optimizations.

Code emission.

Target-independent generation

Also much of this is done in target-independent ways and using general
algorithms operating on target descriptions.

From LLVM to assembler

Native code generation, revisited

More complications

So far, we have ignored some important concerns in code generation:

The instruction set in real-world processors typically offer many
different ways to achieve the same effect. Thus, when translating an
IR program to native code we must do instruction selection, i.e.
choose between available alternatives.

Often an instruction sequence contain independent parts that can be
executed in arbitrary order. Different orders may take very different
time; thus the code generator must do instruction scheduling.

Both these task are complex and interact with register allocation.

In LLVM, these tasks are done by the native code generator llc and the
JIT compiler in lli.



From LLVM to assembler

Instruction selection

Further observations
Instruction selection for RISC machines generally simpler than for
CISC machines.

The number of translation possibilities grow (combinatorially) as one
considers larger chunks of IR code for translation.

Pattern matching

The IR code can be seen as a pattern matching problem: The native
instructions are seen as patterns; instruction selection is the problem to
cover the IR code by patterns.

Two approaches

Tree pattern matching. Think of IR code as tree.

Peephole matching. Think of IR code as sequence.

From LLVM to assembler

Tree pattern matching, an example

a[i] := x as tree IR code
(from Appel)

MOVE

CONST xFP

CONST 4TEMP i

CONST aFP

+

*MEM

++

MEMMEM

a and x local vars, i in register.
a is pointer to first array element.

Algorithm outline

Represent native instructions
as patterns, or tree fragments.

Tile the IR tree using these
patterns so that all nodes in
the tree are covered.

Output the sequence of
instructions corresponding to
the tiling.

Two variants
Greedy algorithm (top down).

Dynamic programming (bottom
up); based on cost estimates.

From LLVM to assembler

A simple instruction set

ADD ri ← rj + rk

MUL ri ← rj ∗ rk

SUB ri ← rj − rk

DIV ri ← rj/rk

ADDI ri ← rj + c
SUBI ri ← rj − c
LOAD ri ← M[rj + c]
STORE M[rj + c]← ri

MOVEM M[rj ]← M[ri ]

Notes
We consider only
arithmetic and memory
instructions (no jumps!).

Assume special register
r0, which is always 0.

Example done in class.

From LLVM to assembler

Identifying patterns (incomplete)
+

MUL

MOVEM

STORE

LOAD

ADDI 

ADD

MEMMEM

MOVE

MEM

MOVE

CONST

MEM

MOVE

CONST

+

MEM

MOVE

CONST

+

MEM

MOVE

MEMMEM

CONST

CONST

MEM

+

CONST

+

MEM

CONST

CONSTCONST

++

*



From LLVM to assembler

Peephole matching

Recall: peephole optimization

Code improvement by local simplification of the code within a small sliding
window of instructions.

Can be used for instruction selection
Often one further intermediate language between IR and native code;
peephole simplification done for that language.

Retargetable compilers

Instruction selection part of compiler generated from description of target
instruction set (code generator generators).

From LLVM to assembler

Instruction scheduling, background

Simple-minded, old-fashioned view of processor

Fetch an instruction, decode it, fetch operands, perform operation, store
result. Then fetch next operation, . . .

Modern processors

Several instructions under execution concurrently.

Memory system cause delays, with operations waiting for data.

Similar problems for results from arithmetic operations, that may take
several cycles.

Consequence
Important to understand data dependencies and order instructions
advantageously.

From LLVM to assembler

Instruction scheduling, example

Example (from Cooper)
w = w * 2 * x * y * z

Memory op takes 3 cycles, mult 2 cycles, add one cycle.
One instruction can be issued each cycle, if data available.

Schedule 1
r1 <- M [fp + @w]

r1 <- r1 + r1

r2 <- M [fp + @x]

r1 <- r1 * r2

r2 <- M [fp + @y]

r1 <- r1 * r2

r2 <- M [fp + @z]

r1 <- r1 * r2

M [fp + @w] <- r1

Schedule 2
r1 <- M [fp + @w]

r2 <- M [fp + @x]

r3 <- M [fp + @y]

r1 <- r1 + r1

r1 <- r1 * r2

r2 <- M [fp + @z]

r1 <- r1 * r3

r1 <- r1 * r2

M [fp + @w] <- r1

From LLVM to assembler

Instruction scheduling

Comments
Problem is NP-complete for realistic architectures.

Common technique is list scheduling: greedy algorithm for
scheduling a basic block.
Builds graph describing data dependencies between instructions and
schedules instructions from ready list of instructions with available
operands.

Interaction
Despite interaction between selection, scheduling and register allocation,
these are typically handled independently (and in this order).



From LLVM to assembler

Register allocation

An important code transformation

When translating an IR with (infinitely many) virtual registers to code for a
real machine, we must

assign virtual registers to physical registers.

write register values to memory (spill), at program points when the
number of live virtual registers exceeds the number of available
registers.

Register allocation is very important; good allocation can make a program
run an order of magnitude faster (or more) as compared to poor allocation.

From LLVM to assembler

The interference graph

Live sets and register usage

A variable is live at a point in the CFG, if it may be used in the remaining
code without previous assignment.

If two variables are live at the same point in the CFG, they must be in
different registers.

Conversely, two variables that are never live at the same time can share a
register.

Interfering variables

We say that variables x and y interfere if they are both live at some point.

The interference graph has variables as nodes and edges between
interfering variables.

From LLVM to assembler

An example

How many registers are needed?

a

fe

d

c

b
Answer: Two!
Use one register for a, c and d,
the other for b, e and f.

Reformulation
To assign K registers to variables
given an interference graph can
be seen as colouring the nodes of
the graph with K colours, with
adjacent nodes getting different
colours.

From LLVM to assembler

Register allocation by graph colouring

The algorithm (K colours available)
1 Find a node n with less than K edges. Remove n and its edges from

the graph and put on a stack.
2 Repeat with remaining graph until either

only K nodes remain or
all remaining nodes have at least K adjacent edges.

In the first case, give each remaining node a distinct colour and pop
nodes from the stack, inserting them back into the graph with their
edges and colouring them.

In the second case, we may need to spill a variable to memory.
Optimistic algorithm: Choose one variable and push on the stack.
Later, when popping the stack, we may be lucky and find that the
neighbours use at most K-1 colours.



From LLVM to assembler

Complexity

A hard problem

The problem to decide whether a graph can be K-coloured is NP-complete.

The simplify/select algorithm on the previous slide works well in practice;
its complexity is O(n2), where n is the number of virtual registers used.

When optimistic algorithm fails, memory store and fetch instructions must
be added and algorithm restarted.

Heuristics to choose variable to spill:

Little use+def within loop;

Interference with many variables.

From LLVM to assembler

Move instructions

An example
t := s

x := s + 1

y := t + 2

...

s and t interfere,
but if t is not later redefined, they
may share a register.

Coalescing

Move instructions t := s can
sometimes be removed and the
nodes s and t merged in the
interference graph.

Conditions:

No interference between s

and t for other reasons.

The graph must remain
colourable. Safe strategies
exist.

From LLVM to assembler

Linear scan register allocation

Compilation time vs code quality

Register allocation based on graph colouring produces good code, but
requires significant compilation time.
For e.g. JIT compiling, allocation time is a problem.
The Java HotSpot compiler uses a linear scan register allocator.

Much faster and in many cases only 10% slower code.

From LLVM to assembler

The linear scan algorithm

Preliminaries
Number all the instructions 1, 2, . . . in some way
(for now, think of numbering them from top to bottom).
(Other instruction orderings improves the algorithm; also here depth
first ordering is recommended.)

Do a simplified liveness analysis, assigning a live range to each
variable.
A live range is an interval of integers starting with the number of the
instruction where the variable is first defined and ending with the
number where it is last used.

Sort live ranges in order of increasing start points into list L.



From LLVM to assembler

The linear scan algorithm

The algorithm

Maintain a list, called active, of live ranges that have been assigned
registers. active is sorted by increasing end points and initially empty.
Traverse L and for each interval I:

Traverse active and remove intervals with end points before start point
of I.
If length of active is smaller than number of registers, add I to active;
otherwise spill either I or the last element of active.

In the latter case, the choice of interval to spill is usually to keep
interval with longest remaining range in active.

From LLVM to assembler

More algorithms

Still a hot topic

Register allocation is still an active research area, an indication of its
importance in practice.

Puzzle solving
Recent work by Pereira and
Palsberg views register
allocation as a puzzle solving
problem.

Board Kinds of Pieces

T
yp

e-
0

T
yp

e-
1

T
yp

e-
2

•••

0 K-1

•••

••• Y Y Y

X

Z

X

Z

X

Z

Y

X

Z

Y

X

Z

Y

X

Z

Figure 1. Three types of puzzles.

2. Puzzles
A puzzle consists of a board and a set of pieces. Pieces cannot
overlap on the board, and a subset of the pieces are already placed
on the board. The challenge is to fit the remaining pieces on the
board.

We will now explain how to map a register file to a puzzle board
and how to map program variables to puzzle pieces. Every resulting
puzzle will be of one of the three types illustrated in Figure 1 or a
hybrid.

2.1 From Register File to Puzzle Board
The bank of registers in the target architecture determines the shape
of the puzzle board. Every puzzle board has a number of separate
areas, where each area is divided into two rows of squares. We
will explain in Section 2.2 why an area has exactly two rows. The
register file may support aliasing, which determines the number of
columns in each area, the valid shapes of the pieces, and the rules
for placing the pieces on the board. We distinguish three types of
puzzles: type-0, type-1 and type-2, where each area of a type-n
puzzle has 2n columns.

Type-0 puzzles. The bank of registers used in PowerPC and the
bank of integer registers used in ARM are simple cases because
they do not support register aliasing. Figure 2(a) shows the puz-
zle board for PowerPC. Every area has just one column that corre-
sponds to one of the 32 registers. Both PowerPC and ARM give a
type-0 puzzle for which the pieces are of the three kinds shown in
Figure 1. We can place an X-piece on any square in the upper row,
we can place a Z-piece on any square in the lower row, and we can
place a Y-piece on any column. It is straightforward to see that we
can solve a type-0 puzzle in linear time in the number of areas by
first placing all the Y-pieces on the board and then placing all the
X-pieces and Z-pieces on the board.

Type-1 puzzles. Figure 2(b) shows the puzzle board for the
floating point registers used in the ARM architecture. This register
bank has 32 single precision registers that can be combined into 16
pairs of double precision registers. Thus, every area of this puzzle
board has two columns, which correspond to the two registers that
can be paired. For example, the 32-bit registers S0 and S1 are in
the same area because they can be combined into the 64-bit register
D0. Similarly, because S1 and S2 cannot be combined into a double
register, they denote columns in different areas. ARM gives a type-
1 puzzle for which the pieces are of the six kinds shown in Figure 1.
We define the size of a piece as the number of squares that it
occupies on the board. We can place a size-1 X-piece on any square
in the upper row, a size-2 X-piece on the two upper squares of any
area, a size-1 Z-piece on any square in the lower row, a size-2 Z-
piece on the two lower squares of any area, a size-2 Y-piece on any

Figure 2. Examples of register banks mapped into puzzle boards.

column, and a size-4 Y-piece on any area. Section 3 explains how
to solve a type-1 puzzle in linear time in the number of areas.

Type-2 puzzles. SPARC V8 [27, pp 33] supports two levels
of register aliasing: first, two 32-bit floating-point registers can
be combined to hold a single 64-bit value; then, two of these 64-
bit registers can be combined yet again to hold a 128-bit value.
Figure 2(c) shows the puzzle board for the floating point registers
of SPARC V8. Every area has four columns corresponding to four
registers that can be combined. This architecture gives a type-2
puzzle for which the pieces are of the nine kinds shown in Figure 1.
The rules for placing the pieces on the board are a straightforward
extension of the rules for type-1 puzzles. Importantly, we can place
a size-2 X-piece on either the first two squares in the upper row
of an area, or on the last two squares in the upper row of an area.
A similar rule applies to size-2 Z-pieces. Solving type-2 puzzles
remains an open problem.

Hybrid puzzles. The x86 gives a hybrid of type-0 and type-
1 puzzles. Figure 3 shows the integer-register file of the x86, and
Figure 2(d) shows the corresponding puzzle board. The registers
AX, BX, CX, DX give a type-1 puzzle, while the registers EBP, ESI,
EDI, ESP give a type-0 puzzle. We treat the EAX, EBX, ECX, EDX
registers as special cases of the AX, BX, CX, DX registers; values in
EAX, EBX, ECX, EDX take up to 32 bits rather than 16 bits. Notice that
x86 does not give a type-2 puzzle because even though we can fit
four 8-bit values into a 32-bit register, x86 does not provide register
names for the upper 16-bit portion of that register. For a hybrid of
type-1 and type-0 puzzles, we first solve the type-0 puzzles and
then the type-1 puzzles.

The floating point registers of SPARC V9 [45, pp 36-40] give
a hybrid of a type-2 and a type-1 puzzle because half the registers
can be combined into quad precision registers.

Chordal graphs

Hack, Grund and Goos exploit the fact that the interference graph is
chordal to get an O(n2) optimal algorithm.
Care is needed when destructing SSA form.

From LLVM to assembler

Summing up

What’s needed?
To claim credits for a x86 backend, straightforward code generation is
enough. Consider register allocation.

But we require correct code and runnable programs; “almost done” does
not give credit.

Next time
Guest lecture by Josef Svenningsson on compiling techniques for
Feldspar, a Haskell-based DSL for signal processing, targetting highly
optimized C code for DSP processors.


