
Compiler construction 2012

Lecture 3

Arrays in JVM

JVM and optimization.

A first look at optimization: Peephole optimization.

Arrays

Array types are reference types

Variables are pointers

A local variable of an array type contains a pointer to the actual array. A
pointer has JVM size one word.

The actual array (including the length field) is stored in the heap.

Array objects must be explicitly created (of a given size). When such
objects are no longer referenced to, they will be garbage collected.

JVM instructions do all manipulation

All the bureaucracy of computing addresses for array access, checking
that indices are within bounds, etc is handled by the JVM through a
collection of instructions.

We only need to learn these.

Arrays

Declaring and creating arrays

Variable declaration
To declare an array variable as in

int[] a;

double[] b;

will not generate any Jasmin code.
But your compiler will need to give the variables numbers and store this
info in the state.

Creating an array

To create an array, as in

a = new int[20];

gives Jasmin code to the right (if a
has variable number 3)

Jasmin code
bipush 20

newarray int

astore_3

Of course, the net stack effect of
this sequence is nil.

Arrays

Loading, storing and indexing

Loading an array reference

Instructions

aload n where n is a constant
aload_n where n=0,1,2,3

push an array reference from a
local variable onto the operand
stack.
No type distinction between
different types of arrays.

Storing a reference

Analogous astore instructions
store (and pop) references from
top of stack.

Loading an array element

To push an array element onto the
stack:

push the array reference;

push the index;

execute
iaload (for int arrays) resp
daload (for double arrays).

Storing an array element

To store a value as an array
element:
push reference, index and value
and execute iastore/dastore.

Arrays

Array length and the foreach-loop
Array length

The instruction arraylength gives the length of an array. What should be
on the stack before execution?

The foreach-loop

This is the new construct

for (type var : expr)
stmt

where expr must have type type[].

javac translates this to the code
to the right.

Translated code
type[] a = expr;
int len = a.length;

for (int i=0; i<len; i++) {
var = a[i];

stmt
}
where a, len and i are
generated, unique variable
names.

You could build on this and translate further to while loop.

Arrays

An example

An example

Consider the following function in Javalette extended with
(one-dimensional) arrays and foreach loops.

int sum (int[] a) {

int res = 0;

for (int x : a)

res = res + x;

return res;

}

Generated Jasmin code could be as on the next slide.
(This is the code that javac produces for this function as a static

method in Java.)

Arrays

Jasmin code for the example

.method public static sum([I)I

.limit locals 6

.limit stack 3

iconst_0

istore_1

aload_0

astore_2

aload_2

arraylength

istore_3

iconst_0

istore 4

lab0:

iload 4

iload_3

if_icmpge lab1

aload_2

iload 4

iaload

istore 5

iload_1

iload 5

iadd

istore_1

iinc 4 1

goto lab0

lab1:

iload_1

ireturn

.end method

JVM and optimization

Optimization: a simple example

A Java class
public class A {

public static int f (int x) {

int r = 3;

int s = r + 5;

return s * x;

}

}

Questions
Why doesn’t javac produce
better code?

How would you do to generate
good code?

Code generated by javac

.method public static f(I)I

.limit locals 3

.limit stack 2

iconst_3

istore_1

iload_1

iconst_5

iadd

istore_2

iload_2

iload_0

imul

ireturn

.end method

JVM and optimization

Measuring Java execution time

public class Timing {

public static void main (String [] args) {

for (int n = 0; n < 100; n++) {

long start = System.nanoTime();

sum(300);

long stop = System.nanoTime();

System.out.println (n+": "+(stop-start)/1000);

}

}

public static int sum (int n) {

if (n <= 1) return 1;

else return n + sum (n-1);

}

}

JVM and optimization

Running class Timing on Java HotSpot VM, 1

Server VM

n

40

time time=6548

Comment
After 10000 method calls to sum using the interpreter, the VM decides to
invest in optimising compilation of method sum.
This reduces execution time of future calls of sum(300) by 90 %.

JVM and optimization

Running class Timing on Java HotSpot VM, 2

Client VM

n

40

time time=315

Comment
After 1500 method calls to sum using the interpreter, the VM decides to
invest in (a less optimising) compilation.
This gives same reduction of execution time.

JVM and optimization

JIT compilation

The 80/20 rule
80 % of the time is spent running 20 % of the code.
(Some say that the correct version is the 90/10 rule.)

Conclusion: Spend the cost of compilation on the hot code only.

javac

"Runtime""Compile time"

HotSpot VM Client compiler

 code
machineLIRHIRbytecodejava

end
Back

end
Front

JVM and optimization

Java HotSpot VM

Two versions
Java HotSpot VM uses JIT compilation and comes in two versions.

Server VM. Focuses on overall performance.
Default on server-class machines.

Client VM. Focuses on short startup time and small footprint. Default
on smaller machines.

Core VM
Same; only compilers (from bytecode to machine code) different.

Recently, major progress in making locking more efficient.

Garbage collection strategies, heap sizes, etc can be tuned.

A surprising (?) fact

Java HotSpot VM is written in C++.

JVM and optimization

Java HotSpot client compiler

General structure
Front end. From bytecode to HIR (High level Intermediate).

HIR is SSA-based, control-flow graph representation of bytecode.

Some code optimizations:

copy propagation.
common subexpression elimination.
constant folding.
inlining.

Method call optimization (static calls instead of dynamic).

Back end. From HIR to LIR, then to machine code.

Simple but good register allocation (after Easter).

Peephole optimization (in a few slides).

JVM and optimization

What are these optimizations?

Copy propagation
int x = y;

... x ...

... x ...

Replace uses of x by y (and
possibly remove x).

Constant folding
... 3 + 7 ...

... 5 * 8 ...

Compute constant expressions
during compilation.

Common subexpression
elimination
int x = a + b * c;

... a + b * c ...

Replace second occurrence of
expression by x.

Inlining

int getX() { return x; }

... getX() ...

Replace call by x, avoiding call
overhead.

Proper algorithms (and preconditions) discussed after Easter.

JVM and optimization

Challenges for Java JIT compilers

Long-running loops: Need to change from interpreted to compiled
code during execution.

These have different stack layout, so must change stack frame when
changing to compiled code.

Deoptimization: Class loading may invalidate compiling assumptions;
e.g. some method call cannot be determined statically. Need to go
back to interpretation.

Back to old stack representation; e.g. must add stack frames for
inlined methods.

JVM and optimization

Java HotSpot server compiler

Basic features
Adds many more optimizations (discussed after Easter).

Another, SSA-based intermediate representation.

Phases: parsing, machine-independent optimization, instruction selection,
code motion, register allocation, peephole optimization, code emission.

Further improvements

Start with interpretation.

When code deemed hot, perform client compilation.

When red hot, perform server compilation for cruising speed.

JVM and optimization

Garbage collection, general

The problem

Lifetime of heap objects
difficult to determine
(pointers, aliasing).

Not recycling unreachable
objects (memory leaks)
can lead to heap
exhaustion.

Recycling reachable
objects leads to program
errors.

Recycled heap space often
fragmented, leading to
slower allocation.

Towards a solution
Automate heap management:
garbage collector reclaims
unreachable objects.

Necessary first step: identify
reachable objects by following
pointers from program roots.

Many variations:
– stop-the-world vs.
concurrent.
– age-neutral vs.
generational.
– copying vs. free-list based.

JVM and optimization

Garbage collection for Java, 1

HotSpot collection

Heap divided into three generations:
Young generation. Newly created objects.
Old generation. Objects that have survived a number of collections are
promoted here.
Permanent generation. Internal, heap-allocated data strucures (not
collected).

Allocation uses separate allocation buffer per thread. Fast/slow paths.

Young generation. Three areas: Eden, where objects are created,
and two alternating survivor spaces.
Whenever Eden is filled, stop-and-copy collection from Eden and
active survivor space to other survivor space.

Old generation. Default is mark-and-sweep, stop-the-world collector.

JVM and optimization

Garbage collection for Java, 2

Current trends
Continued rapid progress.

Parallel collectors, for shorter pause times and more efficient use of
multiple processors, are becoming available.

Major conclusion

Garbage collectors in modern JVM:s manage memory more efficiently
than you can do it explicitly.

JVM and optimization

Some consequences for the Java programmer

Don’t use public instance variables; add set/get methods.

There is no runtime overhead; these calls are inlined.

Don’t make classes final for performance.

Client compiler will do this analysis for you.

Don’t try memory (de-)allocation yourself.

Allocation is inlined and fast; your deallocation will not be better than
GC.

Don’t use exception handling for control flow.

Exception objects expensive; but no cost of exception handling when
not used.

Optimization, intro

Preview of code optimization: A.f

Source code
public static int f (int x) {

int r = 3;

int s = r + 5;

return s * x;

}

Resulting code

.method public static f(I)I

.limit locals 1

.limit stack 2

iload_0

iconst_3

ishl

ireturn

.end method

Observations
r is initialized to 3 and never
assigned to. Hence we can
replace all uses by 3 and
remove r.

The expression 3 + 5 is
computed by the compiler.

s is also constant and can
be replaced by 8.

Multiplication by 8 is more
efficiently done as left shift 3
positions.

We need algorithms to do this,
not hand-waving!

Optimization, intro

A Jasmin example: fact

.method public static fact(I)I

.limit locals 3

.limit stack 3

iconst_1

istore_1

iconst_1

istore_2

Label0:

iload_1

iload_0

iconst_1

iadd

if_icmplt Label2

iconst_0

goto Label3

Label2:

iconst_1

Label3:

ifeq Label1

iload_2

iload_1

imul

istore_2

iinc 1 1

goto Label0

Label1:

iload_2

ireturn

.end method

Optimization, intro

The control flow graph

iconst_0

iconst_1
istore_1
iconst_1
istore_2

iload_1
iload_0
iconst_1
iadd
if_icmplt

ifeq

iload_2
iload_1
imul
istore_2
iinc 1 1

iload_2
ireturn

iconst_1

Comments
Code split into basic blocks.

Control flow visualised by
edges.

Optimization simpler within a
basic block.

Optimization, intro

Peephole optimization

A simple idea

Look at small sequences of instructions to find possibilities for
improvement.

Can be iterated (fixpoint iteration), since one optimization may open new
possibilities.

Use a suitable list type for your code (i.e. one that allows for fast deletion,
insertion and reordering).

Easiest with pattern matching in Haskell.

Example (Constant folding)
bipush 7

bipush 5

iadd

can be replaced by just bipush 12.

Optimization, intro

More peephole optimization examples

Strength reduction

Replace an “expensive” operation (left) by a cheaper one (right)

bipush 16 iconst_4

imul ishl

ldc2_w 2.0 dup2

dmul dadd

Algebraic simplification
iconst 0

iadd

iconst 0 pop

imul iconst_0

Optimization, intro

Further possibilities

Store/load elimination
Can the instruction pair

istore_0

iload_0

be removed?

Only if variable 0 not used later in
method.

How big must the peephole be in
order to give the best code in f to
the right?

Code generated by javac

.method public static f(I)I

.limit locals 3

.limit stack 2

iconst_3

istore_1

iload_1

iconst_5

iadd

istore_2

iload_2

iload_0

imul

ireturn

.end method

Optimization, intro

Unreachable code

Java disallows “unreachable code”
Unreachable (or dead) code, i.e. code that can never be executed, is
disallowed in Java.
However, to find all instances of dead code is an undecidable problem.
The languange specification defines a conservative approximation.

Peephole optimization can find some instances:

Code after a goto and before next label,

Code in a branch of an if or while statement with constant condition.

Also other jump-related optimizations, like jumping to the next instruction.

Optimization, intro

What next?

No more lectures on Submission A.

No lecture on Monday next week.

Lecture next Thursday starts with LLVM (target for Submission B).

After Easter: more LLVM, language extensions, code optimization.

