
Compiler construction 2012

Lecture 2

Code generation 1: Generating Jasmin code

JVM and Java bytecode

Jasmin

Naive code generation

JVM and Java bytecode

Memory at runtime (general, not JVM-specific)

int main () {

int c = 7;

List lst = ...

q(3);

...

}

void q(int x) {

int a = 1;

p(2*x);

...

}

void p(int y) {

int b = 5;

...

}

Before return from p

stack frame for p
b5

a1

c7

x3

6 y

lst
Call

stack

Heap

stack frame for main

stack frame for q

JVM and Java bytecode

The Java Virtual Machine

Data types

Primitive types, including integer and floating-point types of various
sizes and the boolean type.
The support for boolean is very limited; Java (and Javalette) boolean
expressions are compiled to int values.
Javalette needs only int and double.

Reference types, used for references to objects; not needed by basic
Javalette (but by the array extension).

Data areas
Local variables and parameters are stored on the JVM stack (since
Javalette is single-threaded there is only one stack).

Objects (including Java arrays) are stored in the heap. The heap is
not used by basic Javalette.

JVM and Java bytecode

JVM stacks

Frames
A JVM stack consists of frames. A new stack frame is allocated for
each method invocation.
Different JVM invocation instructions:

invokestatic for static methods; use this for Javalette functions.
invokevirtual for instance methods; not needed for Javalette.
invokespecial for special cases, e.g. initialization. Use in class file
header.

JVM handles bureaucracy of method invocation:
Allocating and deallocating frames.
making parameters available to invoked method.
making return value available to invoking method.

JVM and Java bytecode

The structure of a frame

Local variables array

An array of words containing parameters and local variables.

An int value requires one word, a double value two words.

Parameters occupy the first part of the array,
followed by locally declared variables.

All variables are referred to using their index in this array.

The size of the array is specified in the class file.

Operand stack

A stack of words for temporary storage. Many JVM operations manipulate
this stack.

Also here, of course, double’s require two words.

Results from method invocations are left on top of stack.

Maximal size of stack is specified in the class file.

JVM and Java bytecode

A simple example, 1

Example (public omitted)

class A {

static void main(String[] args){

int r = f(3,5);

System.out.println(r);

}

static int f (int x, int y){

int r = x+y+2;

return r;

}

}

JVM Stack
Snapshot: in main,
before invokestatic f:

args

 5

 3

 r

JVM and Java bytecode

A simple example, 2

Example (public omitted)

class A {

static void main(String[] args){

int r = f(3,5);

System.out.println(r);

}

static int f (int x, int y){

int r = x+y+2;

return r;

}

}

JVM Stack
Snapshot: in f,
before first instruction

args

 y 5

 x 3

 r

 r

JVM and Java bytecode

A simple example, 3

Example (public omitted)

class A {

static void main(String[] args){

int r = f(3,5);

System.out.println(r);

}

static int f (int x, int y){

int r = x+y+2;

return r;

}

}

JVM Stack
Snapshot: in f,
before return:

10

 y 5

 x 3

 r

 r

args

JVM and Java bytecode

A simple example, 4

Example (public omitted)

class A {

static void main(String[] args){

int r = f(3,5);

System.out.println(r);

}

static int f (int x, int y){

int r = x+y+2;

return r;

}

}

JVM Stack
Snapshot: in f,
after invokestatic f:

 r

10

args

JVM and Java bytecode

A simple example, 5

Example (public omitted)

class A {

static void main(String[] args){

int r = f(3,5);

System.out.println(r);

}

static int f (int x, int y){

int r = x+y+2;

return r;

}

}

JVM Stack
Snapshot: in main,
before invoking println:

10

10 r

args

JVM and Java bytecode

Java bytecode

General properties

Instructions to
push values on the operand stack,
store stack top in a variable,
do arithmetic on operands on the operand stack,
jump (conditionally) to other instructions,
invoke and return from methods,
. . .

One byte opcodes; ca 250 different instructions.

Instructions may have arguments: (small) constants, indices to pool of
(bigger) constants, local variable indices.

Compact format, suitable for mobile code.

Binary format, no official assembly form.

Jasmin

Jasmin assembler

Download it! (Link on course web site)

Unzipped directory contains jasmin.jar .
To assemble Jasmin file myfile.j containing Jasmin assembler code, you
run

> java -jar jasmin.jar myfile.j

This produces myfile.class, which can be run by java interpreter.
Note that classpath must be set so jasmin.jar is found.
Option -d path writes the class file in directory path

Disassembling
> javap -c myfile

prints an assembler version of myfile.class on stdout in (almost) Jasmin
syntax.

Jasmin

Jasmin instructions 1
Arithmetic
Push integer/string constant c: ldc c
Push double constant c: ldc2 w c
Perform binary operation on integers: iadd isub imul idiv irem iand

ior

Perform binary operation on doubles: dadd dsub dmul ddiv

Booleans are treated as integers: false = 0, true = 1.

Typed operations

Different operations depending on type: e.g. iadd and dadd.

Also load/store operations are typed.

Consequence: You will need to know for all subexpressions which type
they have.

You compute this during type-checking; we now see the benefit of saving
this information.

Jasmin

Pushing values on the stack

Integer constants

Small values: iconst 1 pushes integer 1.
Similarly for -1, 0, 2, 3, 4, 5.

A little bigger: bipush n pushes n, for −128 ≤ n ≤ 127.

Even bigger: sipush n pushes n, for −32768 ≤ n ≤ 32767.

Arbitrary: ldc n pushes n.
Value of n stored in constant pool, index in the instruction.
jasmin handles constant pool; you can write constants.

To consider
You will need a datatype of instructions (in Haskell) or a class hierarchy (in
Java/C++).
But will you need all four forms (10 opcodes) of push instructions?

Similar considerations for loading/storing local variables.

Jasmin

Jasmin instructions 2

Loading local variable to stack

Load (push) integer variable n: iload n.
If n = 0,1,2,3, there are one-byte variants iload 0, etc.
Load (push) double variable n: dload n.
If n = 0,1,2,3, there are one-byte variants dload 0, etc.

Storing stack top to local variable

Store (and pop) integer variable n: istore n.
If n = 0,1,2,3, there are one-byte variants istore 0, etc.
Store (and pop) double variable n: dstore n.
If n = 0,1,2,3, there are one-byte variants dstore 0, etc.

Increment of a variable can be done without loading and storing:
iinc 1 17 increases varable nr 1 with 17.

Jasmin

Jasmin instructions 3

Labels
The label L itself is an instruction: L:
Make sure that all labels in a function are distinct!
In the JVM bytecode, code is stored in an array of bytes and the label is
just the index.

Jumps

Jump (unconditionally) to a label: goto L

Jump if comparison holds between the topmost two integers on stack:
if icmpeq L, if icmplt L, etc

Jump if comparison holds between the topmost integer and zero:
ifeq L, iflt L, etc.

For doubles, the situation is different: dcmpl, dcmpg compare the two
doubles and returns an integer -1, 0, or 1.

Naive code generation

Generating code for expressions

The problem

Input: A type-annotated AST for an expression.

Output: A sequence of Jasmin instructions with net effect to push value of
expr on the stack.

The solution: Syntax-directed translation

Constants: Push on stack.

Arithmetic expressions: Generate (recursively) and concatenate code
for left and right operand; last instruction is arithmetic instruction.

Function call: Generate and concatenate code for all arguments; last
instruction is suitable invoke instruction.

Variables: Load variable, using its number.
But how do you know this number?

Naive code generation

Additional input: The code generator’s state.

The problem

As we saw on the previous slide, the AST is not enough;
we need to know the index (address) of each variable.
These will be computed by the compiler itself, when generating code for
variable declarations.

More generally: Needed state information

Variable number/index for each local variable (incl parameters).

Type for each function.

Index to use for next variable declaration.

Number to use for next label.

Current stack depth.

Maximal stack depth.

Code emitted so far.

Naive code generation

A better way to present translation
Compilation schemes

Pseudocode notation, similar to Haskell, using monadic ops.

Example

Defining codeGenExp :: Exp -> Result (),
by pattern matching on the abstract syntax
(presented here in concrete syntax)

codeGenExp(exp1 + exp2 : int) =

codeGenExp exp1

codeGenExp exp2

putCode [iadd] -- add to code

incStack (-1) -- decrease current depth

-- other cases similar

Quiz
Where do you insert calls to incStack?

Naive code generation

Define a suitable type for the state

In Java/C++
Define a class with methods for accessing and updating the various state
components; don’t use public instance variables!
Make use of suitable collection classes.

In Haskell
Use a state monad; also here, define suitable monadic functions for
accessing and updating the state.

With suitable abstractions you will be able to modify your code easily if
your early decisions need to be changed.

Naive code generation

Generating code for statements

Again: syntax-directed translation

Assignment: Generate code for RHS; store in variable (state gives
index).

Declaration: Get next variable index from state and update state with
variable/index.

Return: Generate code for expression; emit return instruction.

Block: concatenate code from statements.

. . .

Some difficulties
How does block structured scope affect translation?

How to handle control structures that lead to jumps (if and while)?

Naive code generation

What about block structure?
Result of preceding slide

Each local variable in a method gets its own index.

Example

Example code

int f (int x) {

int a, b;

...

{int a, c;

...

}

...

{int x, y;

...

}

...

}

Questions
How big must the local vars
array be?

How can we avoid making it
bigger?

Naive code generation

Boolean expressions

Booleans as integers

Booleans are treated as integers, translating false to 0, true to 1.

There are no JVM operations corresponding to the relational operators; we
need to use jumps.

codeGenExp(exp1 > (exp2 : int)) =

codeGenExp exp1

codeGenExp exp2

lab1, lab2 <- getLabel -- get fresh labels

putCode[if_cmpgt lab1,

iconst_0, goto lab2,

label lab1,

iconst_1,

label lab2]

Naive code generation

Naive handling of while statemens

while scheme
codeGenStm (while (exp) stm) =

lab1, lab2 <- getLabel

putCode[label lab1]

codeGenExp exp -- push value of exp

putCode[ifeq lab2] -- if false, fall through

incStack (-1) -- the test popped exp

codeGenStm stm

putCode[goto lab1, -- test again

label lab2] -- label for next stmt

Check stack effect!

Naive code generation

An example: while (i > 6) i-- ;

Generated code
(assume i is var #1)
lab1:

iload 1

bipush 6

if icmpgt lab3

iconst 0

goto lab4

lab3:

iconst 1

lab4:

ifeq lab2

iinc 1 (-1)

goto lab1

lab2:

Better code
lab1:

iload 1

bipush 6

if_icmple lab2

iinc 1 (-1)

goto lab1

lab2:

The problem

The good code is not
compositional, i.e. not built by
combining code from the immediate
subtrees.

Naive code generation

Example, continued

Recall source code
while (i > 6)

i--;

Even better code
goto lab2

lab1:

iinc 1 (-1)

lab2:

iload 1

bipush 6

if_icmpgt lab1

Comments
Saves one JVM instruction per
loop round
You can get (almost) this code
compositionally by

changing while scheme (for
you to do!) and
changing treatment of
Boolean expressions
(next slide)

Note: Naive codegen is enough to
pass, but better code not so difficult.

Naive code generation

Boolean expressions revisited

Used in two different ways

As test expressions in control structures (while, if).

As right hand sides in assignments to boolean variables or actual
(boolean) parameters in function calls.

Do code generation differently in these two cases!

Test expression

Define a scheme that takes as
arguments

the test expression and

two labels to jump to when
value is true and false,
respectively.

Called from while and if schemes.

To compute Boolean value

Generate code as we indicated
before, treating Booleans as
integers.
Called from assignment and function
call schemes.

May use scheme to the left when
code with jumps needed (&& and ||).

Naive code generation

Translating function definitions

fundef scheme
codeGenDef (typ f (params) stms) =

forAll params (ty x): addVar ty x

forAll stms: codeGenStm

mx <- getMaxStack

locs <- getLocals

nm = jvmName f typ params

code <- getCode

-- now we can build and return the Jasmin abstract syntax

-- for the function using these four values

Naive code generation

Return checks and code generation

Return check
Recall (from project spec) that this
is valid Javalette:

int f() {

if (true)

return 0;

else

{};

}

Your return checker must accept
this code.

Code generation

You may not generate code for f
that contains a jump to the empty
else branch (even if that branch is
never taken).

Such code would be rejected by
the JVM code verifier.

Conclusion: also code generation
must handle literals true and
false as test expressions in if

and while specially.

Naive code generation

Unreachable code

A simple example

This is also valid Javalette:

int g(int x) {

while (false)

x++;

return x;

}

It is, however, illegal as Java code;
the statement x++; is obviously
unreachable. Such control
structure is not allowed.

javac will reject the function.

Code generation

Even if you would generate code
with jumps (don’t!), it would pose
no problems; JVM can run the
generated code.

Another Java example

This, surprisingly, is valid Java:

int g(int x) {

if (false)

x++;

return x;

}

Reason: common pattern in
conditional compilation . . .

Naive code generation

Predefined methods: output

Using Java library methods

All the print functions call System.out.println.
In Jasmin, println gets out as a first argument:

getstatic java/lang/System/out Ljava/io/PrintStream;

bipush 77

invokevirtual java/io/PrintStream/println(I)V

The first instruction pushes a reference to out on the stack.
Then we push the value we want to print.
Then println is invoked and gets these two arguments.

Naive code generation

Predefined methods: input

Input in Javalette vs. Java

To read e.g. an integer in Javalette is simple:

int main () {

printInt (7 * readInt ()) ;

}

In Java, a bit more is needed:

import java.util.* ;

class Read {

public static void main (String [] args) {

Scanner in = new Scanner(System.in);

System.out.println(7 * in.nextInt());

}

}

Naive code generation

Avoiding trivial problems

The Runtime class
Instead of generating lots of instructions, you can define all predefined
methods in a Runtime class. Just write it in Java and compile into a
.class file!

Make sure you only create one Scanner object per program run (use a
static object).

Calls to printInt must generate code as calls to Runtime.printInt .

Naive code generation

Hints for Jasmin code generation

Use Java tools to see what javac does

Write Javalette code as static methods in Java.

Compile with javac and disassemble using javap -c; study the
results.

Make it simple

Start with simple code generation. We will accept also naive code.

Look at code produced by javac; it is often straightforward!

When your compiler runs, you may try to optimize if there is time.

Next time
First extension: Arrays in JVM.

JVM runtimes: JIT compilation, memory management.

