Algorithms for Machine Learning

Chiranjib Bhattacharyya

Dept of CSA, IISc chibha@chalmers.se

January 17, 2012

Introduction to classification

Bayes Classifier

Images of one person

Images of one person

Is he the same person?

Images of one person

Is he the same person? easy

Images of one person

Is he the same person?

Images of one person

Is he the same person? not so easy

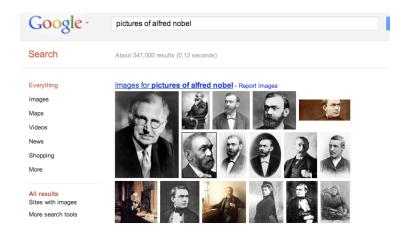
Images of one person

Is he the same person? not so easy

But who is he?

ALFRED NOBEL

Introduction to Classification



Lots of scope for improvement.

The classification problem setup

Alfred Nobel

Bertha Von Suttner

Objective

From these images create a function, classifier, which can automatically recognize images of Nobel and Suttner

- Step 1 Create representation from the Image, sometimes called a feature map.
- Step 2 From a training set and a feature map create a classifier
- Step 3 Evaluate the goodness of the classifier

We will be concerned about Step 2 and Step 3.

Let
$$(\mathbf{X}, Y) \sim P$$
 where P is a Distribution and
 $D_m = \{ (\mathbf{X}_i, Y_i) | i.i.d \mathbf{X}_i, Y_i \sim P, i = 1, ..., m \}$

is a random sample

Probability of misclassification

$$\boldsymbol{R}(f) = \boldsymbol{P}(f(\mathbf{X}) \neq \boldsymbol{Y})$$

- Suppose P(Y = y | X = x) was high then it is very likely that that x has the label y.
- Define η(x) = P(Y = 1|X = x), posterior probability computed from Bayes rule from Class-conditional densities P(X = x|Y = y)
- For 2 classes, $f^*(x) = \text{sign}(2\eta(x) 1)$ is the Bayes classifier.

Finding the best classifier

Objective should be to choose f such that

 $min_f R(f)$

Theorem

Let f be any other classifier and f^* be Bayes Classifier

 $R(f) \geq R(f^*)$

A very important result

Bayes Classifier has the least error rate. $R(f^*)$ is called the Bayes error-rate.

Review Maximum Likelihood estimation

Try to construct Bayes Classifier

Naive Bayes Classifier

- Assume that the features are independent
- works well for many problems, specially on text classification

Spam Emails

Search Results | Delete

Your Email Address Has Made You A Millionaire!!!
"The Awards Committee" <candexinfo@bellnet.ca></candexinfo@bellnet.ca>
Tue, September 9, 2008 8:11 am
winners@euromillions.org
Normal
View Full Header View Printable Version Download this as a file

You Have Been Selected As Winner Of A Cash Prize

Of One Million Euro (€1,000,000.00 EURO). For More

Information Contact Mr. Donald Wong, Email: donaldwong.anzbnk@live.com

Regards,

Ms. Roxanne Presley.

Spam Emails

Current Folder: INBOX

Compose Addresses Folders Options Search Help

Search Results | Delete

For

Subject: AWARD NOTIFICATION From: "UK NATIONAL LOTTERY" <info@winners.com> Date: Wed, March 25, 2009 6:32 pm Priority: Normal Options: View Full Header! View Printable Version | Download this as a file

P.O.Box 1010 Liverpool L70 1NL United Kingdom. Ref: XYL /26510460037/05 Batch: 24/00319/IPD Ticket Number : 56475600545188

AWARD NOTIFICATION

This is to inform you that you have been selected for a cash prize off1,500,000.00 pounds held on the 25th MARCH,2009 in London UK. The selection process was carried out through random selection Ourcomputerized email selection system(ess) from a database of over 250,000 email Addresses drawn from which you were selected.

You are to contact the fiduciary claims department by your personal information with e-mail Giving Below;

(UN NEWTONET TOWNERS OF STARS

Create a feature list where each feature is on/off. Denote the feature map $x = [f_1, ..., f_d]^\top$ $P(X = x | Y = y) = \prod_{i=1}^d P(F_i = f_i | Y = y)$

$$p_{1i} = P(F_i = 1 | Y = 1) p_{2i} = P(F_i = 1 | Y = 2)$$

Bayes Classifier: Output the class with the higher score

$$score_1(x) = \sum_i (f_i log p_{1i} + (1 - f_i) log (1 - p_{1i}))$$

similarly $score_2(x)$

Naive Bayes: Bernoulli

Source: Introduction to Information Retrieval. (Manning, Raghavan, Schutze)

13.3 The Bernoulli model

263

TRAINBERNOULLINB(\mathbb{C}, \mathbb{D}) 1 $V \leftarrow EXTRACTVOCABULARY(\mathbb{D})$ 2 $N \leftarrow COUNTDOCS(\mathbb{D})$ 3 for each $c \in \mathbb{C}$ 4 do $N_c \leftarrow \text{COUNTDOCSINCLASS}(\mathbb{D}, c)$ 5 $prior[c] \leftarrow N_c/N$ for each $t \in V$ 6 do $N_{ct} \leftarrow \text{COUNTDOCSINCLASSCONTAININGTERM}(\mathbb{D}, c, t)$ 8 $condprob[t][c] \leftarrow (N_{ct}+1)/(N_c+2)$ 9 return V. prior, cond prob APPLYBERNOULLINB($\mathbb{C}, V, vrior, condvrob, d$) 1 $V_d \leftarrow \text{EXTRACTTERMSFROMDOC}(V, d)$ 2 for each $c \in \mathbb{C}$ 3 do $score[c] \leftarrow \log prior[c]$ for each $t \in V$ 5 do if $t \in V_d$ 6 then $score[c] += \log cond prob[t][c]$ else score[c] += log(1 - condprob[t][c])8 return arg max_{cef} score[c]

▶ Figure 13.3 NB algorithm (Bernoulli model): Training and testing. The add-one smoothing in Line 8 (top) is in analogy to Equation (13.7) with B = 2.

Discriminant functions

Bayes Classifier

$$h(x) = \operatorname{sign}\left(\sum_{i=1}^d f_i \theta_i - b\right)$$

 $\theta_i = \log \frac{p_{1i}(1-p_{2i})}{(1-p_{1i})p_{2i}}$

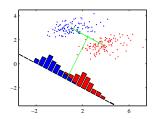
h(x) is sometimes called Discriminant functions

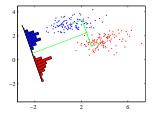
Let the class conditional distributions be $N(\mu_1, \Sigma)$ and $N(\mu_2, \Sigma)$. The Bayes classifier is given by

$$h(x) = \operatorname{sign}(w^{\top}x - b)$$

 $w = \Sigma^{-1}(\mu_1 - \mu_2)$

Source: Pattern Recognition and Machine Learning (Chris Bishop)





Let (μ_1, Σ_1) be the mean and covariance of class 1 and (μ_2, Σ_2) be the mean and covariance of class 2.

$$J(w) = max_w \frac{\left(w^\top (\mu_1 - \mu_2)\right)^2}{w^\top S w}$$

 $w = S^{-1}(\mu_1 - \mu_2) \ S = \Sigma_1 + \Sigma_2$