Bioinformatics (MVE360)

Course Organiser: Graham Kemp

http://lwww.cse.chalmers.se/edulyear/2012/course/MVE360/

Assessment

* Grades will be determined by a written exam at the end of the course.

* Butin order to pass the course you must also submit solutions to
specified exercises.

Graham Kemp, Chalmers University of Technology

Content

The course covers basic methods used in sequence analysis such as
pairwise and multiple alignment, searching databases for sequence
similarity, profiles, pattern matching, hidden Markov models, RNA
bioinformatics, gene prediction methods and principles for molecular

phylogeny.

The course includes modern high-throughput sequencing techniques and
their applications, as well as molecular biology databases and different
systems to query such databases.

The course considers theoretical principles as well as how existing
programs are being used by bioinformaticians.

Graham Kemp, Chalmers University of Technology

Learning outcome/goals

* understand the use of bioinformatics in addressing a range of biological questions

* describe how bioinformatics methods can be used to relate sequence, structure and
function

® discuss the technologies for modern high-throughput DNA sequencing and their
applications

* use and understand some central bioinformatics data and information resources

* know principles and algorithms of pairwise and multiple alignments, and sequence
database searching

® perform pattern matching in biomolecular sequences

* describe how evolutionary relationships can be inferred from sequences
(phylogenetics)

¢ understand the most important principles in gene prediction methods

® know basic principles of hidden Markov models and their application in sequence
analysis

® understand and implement solutions to basic bioinformatics problems

Graham Kemp, Chalmers University of Technology

Personnel

Graham Kemp
e General interests in bioinformatics
* Structural bioinformatics (another course, TDA506)

Marina Axelson-Fisk
¢ Hidden Markov Models (HMMs)
* Biological sequence analysis
¢ Cross-species gene finding

Erik Kristiansson
* Microarray gene expression
* Large-scale sequence analysis
* Metagenomics

Graham Kemp, Chalmers University of Technology

Sequence alignment
Comparison of macromolecular sequences.

Nucleic acids (DNA, RNA) or proteins.

Assignment of nucleotide-nucleotide or residue-residue correspondences.

Suggest evolutionary, structural and functional relationships.
Rigorous algorithms for global and local alignment.

Heuristic algorithms for practical database searching.

Graham Kemp, Chalmers University of Technology

Dotplots
A pictorial representation of the similarity between two sequences.

Compare a sequence with itself:
Repeats
Palindromic sequences

Compare two sequences:
Any path from upper left to lower right represents an alignment.

Horizontal or vertical moves correspond to gaps in one of the
sequences.

Path with highest score corresponds to an optimal alignment.

Graham Kemp, Chalmers University of Technology

Measures of sequence similarity

Hamming distance:
Number of positions with mismatching characters.
Defined for two strings of equal length.

agtc
cgta

Levenshtein distance:

Minimum number of edit operations (delete, insert, change a single
character) needed to change one sequence into another.

agtcc
cgctca

Graham Kemp, Chalmers University of Technology

Dotplots

AGCTAGGA AGCTAGC

OOO>Xr»H0>»0
L)
[)
[)
>OO>rPAHA>0O00>
[]

Graham Kemp, Chalmers University of Technology

How many paths?

Start

Graham Kemp, Chalmers University of Technology

Pairwise global alignment (Needleman-Wunsch algorithm)

Rigorous algorithms use dynamic programming to find an optimal
alignment.

* match score
* mismatch score
* gap penalty

F(-1,7 -1+ s(xy))
F@,j) =maxF(-1,j)-d

Do we have to enumerate all paths?

<KL
002“

Start

Graham Kemp, Chalmers University of Technology

LR, j-1)-d
T -1
Graham Kemp, Chalmers University of Technology
Dynamic programming
F(-1,j-1) | F(-1.))
*s(xi.y)) _d\ / \|I
3 A N Y
FGj-1) | e
== F(J) —

Graham Kemp, Chalmers University of Technology

Score matrix

O >
ke
O ®
1]
O >

>0 0 4 >
OO0 0|0

Graham Kemp, Chalmers University of Technology

Percent identity

Having obtained an alignment, it is common to quantify the similarity
between a pair of sequences by stating the percent identity.

Count the number of alignment positions with matching characters and
divide by ... what?

* the length of the shortest sequence?

* the length of the alignment?

* the average length of the sequences?

e the number of non-gap positions?

¢ the number of equivalenced positions excluding overhangs?

Sequences are either homologous (i.e. they share a common evolutionary
ancestor) or they are not.

The phrase “percent homology” is meaningless!

Graham Kemp, Chalmers University of Technology

How many ways can “AT” be aligned with “CG”?

C

G

[

Two diagonal moves: | AT

O
A
O

CG

o One diagonal move:
AT- TA-T
C-G | CG-
AT- | -AT
-CG | CG-
A-T | -AT
-CG | C-G

No diagonal moves:
AT— [A-T- | A—T
--CG | -C-G | -CG-
—=AT | -A-T | -AT-
CG—-| C-G- | C—G

Graham Kemp, Chalmers University of Technology

Pairwise local alignment (Smith-Waterman algorithm)
Local similarities may be masked by long unrelated regions.
A minor modification to the global alignment algorithm.

* [f the score for a subalignment becomes negative, set the score to

zero.
®
Loy D:(l _l,j —1)+S(Xi’yj)
F@,j)= maxaz(i “1j)-d
oF@G,j-1)-d
* Trace back from the position in the score matrix with the highest
value.

e Stop at cell where score is zero.

Graham Kemp, Chalmers University of Technology

“Scripting: Higher Level Programming for the 21st Century”
(John Ousterhout)

http://www.tcl.tk/doc/scripting.html
For the last fifteen years a fundamental change has been occurring in the

way people write computer programs. The change is a transition from
system programming languages such as C or C++ to scripting languages

such as Perl or Tcl. Although many people are participating in the change,

few people realize that it is occurring and even fewer people know why it
is happening. This article is an opinion piece that explains why scripting
languages will handle many of the programming tasks of the next century
better than system programming languages.

Scripting languages are designed for different tasks than system
programming languages, and this leads to fundamental differences in the
languages.

Graham Kemp, Chalmers University of Technology

“Scripting: Higher Level Programming for the 21st Century”
(John Qusterhout)

In deciding whether to use a scripting language or a system programming
language for a particular task, consider the following questions:

* Is the application’s main task to connect together pre-existing
components?

* Will the application manipulate a variety of different kinds of things?

* Does the application include a graphical user interface?

* Does the application do a lot of string manipulation?

* Will the application’s functions evolve rapidly over time?

* Does the application need to be extensible?

"Yes" answers to these questions suggest that a scripting language will
work well for the application.

Graham Kemp, Chalmers University of Technology

“Scripting: Higher Level Programming for the 21st Century”
(John Ousterhout)

1000

Secipting

Visnal Basic

5
E 100 —
= TelPecl
2
2
S
& Tava
- CH
4 Assemnbly Systein Programuning
None Strong

Degree of Typing

Yigure 1. A comparison of varions programming langnages based on their level (higher
level langnages extcnte more machine [nstructions for cach langnage stattment) and their
degree of typing. System progamming Languages lilee C tend to be strongly ryped and
medinm Level (5-10 instroctl cripting langnages like Tel tend to be
wealdly typed and very high level (100- 1000 msrmcuons/sram—ncm)

Graham Kemp, Chalmers University of Technology

“Scripting: Higher Level Programming for the 21st Century”
(John Qusterhout)

"Yes" answers to the following questions suggest that an application is
better suited to a system programming language:

* Does the application implement complex algorithms or data
structures?

* Does the application manipulate large datasets (e.g. all the pixels in
an image) so that execution speed is critical?

* Are the application’s functions well-defined and changing slowly?

Scripting and system programming are symbiotic. Used together, they
produce programming environments of exceptional power: system
programming languages are used to create exciting components which
can then be assembled using scripting languages.

Graham Kemp, Chalmers University of Technology

