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Part 2: Large-scale gene expression analysis
using microarrays and RNA-seq

MVE 360 — Bioinformatics, 2012

Erik Kristiansson, erik.kristiansson@chalmers.se

Agenda

e Large-scale mRNA quantification
— Identification of differentially expressed genes
— Techniques: microarray and RNA-seq

* De novo sequencing of mRNA
— |dentification of the sequence of genes
— Techniques: RNA-seq
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Large-scale gene expression analysis

¢ Measurements are done on a genome-wide,
i.e. for all genes in the genome

¢ Asingle experiment results in 10.000-100.000
data points

e Statistical and computational tools are
therefore essential for a proper analysis

¢ Large-scale gene expression analysis is mainly
used for explorative research.

The first gene expression microarray!
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Schena, M., Shalon, D., Davis, R. W, Brown, P. O. (1995). Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA
Microarray. Science 270, no. 5235, pp 467-470.

First commercial gene
expression microarray!

Genome-wide expression momlonng in
Saccharomyces cerevisiae
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Wodicka, L, Dong, H., Mittmann, M., Ho, MH., Lockhart, D. J. (1997). o monitoring in Nature
Biotechnology 15 pp. 1359-1367.




2012-02-23

RNA fragmants with flucrescent tags from sample to b tested

128 om

-

Actual size of GeneChip

o
N

Milligns of DNA strands bullt up In sach cell
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Hybridized DNA

A simple view of a
microarray experiment
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Image Analysis Background correction

+ Image analysis is then used to transfer the

information on image into quantitative data * Background correction is used to remove

spatial trends
* For each probe, a foreground and a P

background intensity is extracted

Images Quantitative data

Background correction

* The most common method is “subtract”

X=X,-X,

¢ Another common method is simply to skip
background correction and use

False positives

X=X
+ More complicated procedure include normexp, 0 500 1000 1500 2000
Kooperberg and Edwards. Selected genes
Treatment A Treatment B
- Array 1 Array 2 Array 3 Array 4 Array 5 Array 6
Data re prese ntation Gene1 1234 1223 1170 1278 1267 naz
Gene 2 9.30 9.71 9.44 7.65 7.45 7.50
Gene 3 11.45 11.19 11.11 10.58 10.34 10.21
¢ Gene expression data from microarrays are gemeq s o2 0w oz e o
transformed to |Ogarithmic scale Gene6  13.24 13.78 12.04 14.12 14.05 13.61

X,; = log, (Corrected probe intensity)
¢ The M-value is the average difference between

Treatment A Treatment B

Array1  Array2  Array 3 Array4  Array5  Array 6 treatments'
Gene 1 12.34 12.23 11.70 12.78 12.67 11.21
conez om0 o s sos e oo * M>0 : more mRNA from treatment A (red)
Gene 3 11.45 11.19 11.11 10.58 10.34 10.21 * M<O :more mRNA from treatment B ( )
Gene 4 12.45 0.12 0.78 0.12 1.05 0.67 )
genes T4l ear T ser. . eer T4 ¢ The M-value is called the log fold-change.
Gene 6 13.24 13.78 12.04 14.12 14.05 13.61

¢ The A-value is the average total intensity.

Quackenbush, J. 2002). Microarray data normalization and transformation. Nature Genetics 32 496-501.
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Normalization of microarray data

* Makes microarrays comparable - removes
systematic trends and technical artifacts

Statistical modeling of microarray data

+ Statistical models are used to describe
randomness

¢ Common assumption: normal distribution
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The t-statistic

* The t-statistic is defined as

T, - Mo

9 2
VS, /n
+ Advantages

+ Takes the variance of the genes into account.
¢ We can calculate p-values.
+ Disadvantages
+ Model assumptions? Are they correct?
¢ Unreliable when few replicates are present!

Moderation of the variance

* The t-statistic assumes a normal distribution

X5~ Normal(y:,agz), X;‘ ~ Normal(,u:‘,o—j).

* The parameters yg, u’and o;are unknown and
needs to be estimated

¢ It is hard to estimate o with few replicates!
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Moderation of the variance

¢ We can add prior information about &2 to make
the estimation more exact!
B
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¢ Assume that o7 ~T"*(a, 8) (inverse gamma)

¢ Empirical Bayes model: a and B are estimated
from the data.

The moderated t-statistic

* The moderated t-statistic is defined as

M
=
9 2
JS, (n-1)+24
Moderation factor

* Robust — works well with few replicates.

¢ Have n-1+2a degrees of freedom. Extra data
from the prior assumption!

Gene ranking
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Microarrays — how good are they?

e Early microarray studies resulted in a high error rate
¢ Recently, Kuo et al. evaluated the performance of 10
microarray platforms.

— Reference material consisting of mRNA from cortex and
retina in mouse.

— PCR results from 150 genes were used as a “golden
standard”. The expression from the different platforms
were compared against these genes.

General performance of microarrays

Wicriiely; isbhur ity e, sl
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Kuo W.P. et al. (2006). A seq

d comparison of p different
Nature Biotechnology 24 (7).
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Why is there a difference?

¢ We might be measuring the same gene, but are we measuring
the same piece of mMRNA?

Why is there a difference?

¢ Disadvantages of microarrays
— The properties of the probes is vital.

— Cross-hybridization. Off-target binding causes non-
trivial correlations in the data.

— Alternative splicing makes probe position
important.

— Many complicated steps. The performance
depends on the optimization of the protocol (e.g.
cDNA-synthesis, fragmentation, hybridization
temperature, washing, etc.) .

Gene expression analysis using RNA-seq

¢ RNA-seq is based on next generation DNA
sequencing
¢ Modern alternative to microarrays

[llumina and SOLiD are the most used
sequencing technologies in RNA-seq

=

Gene expression analysis using RNA-seq
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short sequence reads

Data from RNA-seq data

Data from RNA-seq comes as reads per gene

Xgi = Number of reads matching gene g

Treatment A Treatment B
Arrayl  Array2  Array 3 Array4  Array5  Array 6
Gene 1 66489 29192 18643 21721 84669 80540
Gene 2 11288 2899 1062 6130 9581 17251
Gene 3 44979 12906 14604 10378 85043 39478
Gene 4 7133 4772 1124 319 6863 7286
Gene 5 34282 14379 13748 x gi 6133 12648 7620
Gene 6 6531 7184 1962 651 1334 13125

Total 17070232 5913427 9103289~ 4735558 15326223 12020031
i

Normalization of RNA-seq data

¢ Normalization of RNA-seq data is necessary
¢ Naive: Calculate the relative abundance

¢ Not good! High-expressed genes will affect the
global expression level.




2012-02-23

5
1

0
1

loga(Liver/M,) - loga(Kidney/My)

-5
1

M

* Housekeeping genes
o) Unigue to a sample

T T T
-20 -15 -10

A= lUg;-HLiverfNL Kidney [Ny )

Normalization of RNA-seq data

¢ Robust scaling

— TTM — trimmed mean of M-values (Robinson &
Oshlack 2010)

— Robust scaling (Anders and Huber 2010)

_ . X
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Statistical analysis of RNA-seq data

¢ Data from RNA-seq is discrete

]

X, ~Poisson(4,) E(X,)=4, Var(X,)=4

Statistical analysis of RNA-seq data
¢ Data from RNA-seq is overdispersed

var(X,, )> E(X,)

¢ Data is there often modeled using a negative
binomial distribution

Xgi - NegBin(,ug!¢)
E(Xgi): Hy

V()= +

Statistical analysis of RNA-seq data

Negative Binomial
1 L 1 1 1 L

10° -

Poisson

variance:

RNA-seq — better than microarrays?

¢ In general yes!
— No probes!
— No cross-hybridization!
— Lower technical noise!
* However,
— Problems with GC/AT-rich regions

— A high sequencing depth is needed to accurately
quantify low-expressed genes

— Still a slightly higher cost
— The statistics is currently more complicated
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t'Hoen et al. 2008
Correlation is ~60%

Kidney: Array intensities vs sequencing counts Liver: Atray intensities vs sequencing counts
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Marioni et al. 2008
Correlation is ~70%

Large-scale gene expression analysis

¢ mRNA quantification
— Identification of differentially expressed genes
— Techniques: microarray and RNA-seq

¢ De novo sequencing of mMRNA
— Identification of the sequence of genes
— Techniques: RNA-seq
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¢ Up to 50% of the human genome is transcribed.
* 5%-10% of the human genome is believed to be
functional.

¢ < 2% of the human genome is coding and thus
translated to a protein.

Percent of DNA Not Coding far Protein
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Prokaryotes One-celled  Fungi/ Invertebrates Chordates Vertebrates  Humans
cukaryotes  Plants

The human genome

Other repeats

Transposable 8,0%

elements
44,8%

Heterochromatin
8,0%

Miscellaneous
unique sequences
11,6%

Protein coding
1,5%

Introns
26,0%
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How much data do we get?

Gene

Reads from sequencing
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¢ The reads are joined into contigs.
* Reads that can not joined with anything are called
singlets.

How much data do we get?

¢ The result from one run on a Genome Sequencer FLX
using Titanium chemistry

How much data do we get?

= Simple repeats

* 573" sequencing vectors = Bacterial contamination

1 2

4. Assembly 3. Masking
= Contig assembly using Masks/removes:
megablast and CAP3. - = Low-complexity regions

(Transposons, etc.)

= Contamination (rRNA,
etc

1.000.000 reads .
:
x 500 bases g "
§
500.000.000 bases ;
|
H
¢ The transcriptome of a higher eukaryote is up to
around 50 million bases Sl . . . . . . .
* We can, theoretically, cover a transcriptome 10 times o
Transcrlptome sequencing .
Sequence data processing
1. Pre-processing 2. Cleaning >E6LSDQWO2HPHGI
Removes: Removes: AL anGATCCATCACATCAGGCCAGGTAGGAGTCTCTTATATTAGGTATCAATACCTTCCGGGT
« Redundant 454-reads - « PolyA-tails GGATACCTTTGAGGCATAAGCTGGACAGGCACAGAACCTCGAGGCAGAACTTCCCGACTGCTTGAT
(ghost reads)

GTGTATCAAGGTCAATCAATCTGAAAATCAGCTGCCTAAGCACCAGTTC M mmm mama i nnonnTh

>E5R70VDO9FMUGM

SeneTARSTGTAGRE NCACACACAC
TRGINACTY or TETACTATAATAAATAAAGAAGA
AGAAGTAGTTAGTTAGTACTTAACGTTAACGGTACGGTACGTAGGTACGGTAACCGGTAACCGGTA
ACCCGGAACCGTACGGTACGGTCGGTACGGTACGGTACGGTACGTACGTAACCGTTAAAAACCGGT
TTAAAAAGGTAAAAAGGGTAAAAAGGGTTAAAACGGGTTAACGGGTAACGTAGTAGNA

>E6LSDQWO2GGDBU
TONCTINCAAATTTTAATTACACTTAAGGTGTATATTTTCTATGCAACCCATCAATTCAAGAGGTG
TAATGTGCTGATGACTATTTGTAATCGTTATACATTCTGACCCGAAGTCAGAAAGTATTTCTCTGT
CTGTGTGTTCACAGGCAGTGTGGTTGATTACATGAAATTCAGTACATTTGCAGTCTCGTTGCCCTT
CTCACCTGCCTTTCGTCATTACCGACGGTATTGAATTTCGTTTTCCCCGTTGGGGTTCTCCGGACA
AGGAG
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Sequences producing significant alignments: (bits) value

Ecoligenome

>Ecol igenome
Length = 4639675

Score = 519 bits (26 poct = e-148
Identities = 262/262 (100%)
i

Strand lus / Mi

Query: 8 caaattttaattacacttaaggtgtatattt

FEEELEEEEEEE e e e e e e e e e
caaattttaattacacttaaggtgtatattt

Shjct: 4566813

4566754

Query: 68

t tatacat: ttc 127
FECEERERREEE R e e e e e e e e
t tatacat tt

Sbjct: 4566753 C 4566694

Query: 128 tctgtctgtgtgtt tgattacatgaaattcagtacatttgcagtc 187

FEEEEEEEE R e e e e e e e e e e e e e e
Sbjct: 4566693 tctgtctgtgtgttcacaggcagtgtggttgattacatgaaattcagtacatttgeagte 4566634

Query: 188 tegttgecets ttcgtcati tgaatttcgttttccoeg 247
TERREEEEE R e e e e e e e e e e e e e e el

Shjct: 4566633 tcgttgcectt ttegteat attgaatttcgttttccccy 4566574

Query: 248 ttggggttcteeggacaaggag 269

FEREELEEERRnenn
Shjct: 4566573 ttggggttctccggacaaggag 4566552

Sequence cleaning

+ Contamination

* mRNA from other types of species

¢ rRNA or other unwanted types of RNA
+ Repetitive elements

+ polyA-tails

+ Simple Sequence Repeats (SSR)

¢ More complex repeats like SINEs, LINEs and transposons
+ Repetitive elements are typically located outside

coding regions

Sequence cleaning

+ RepeatMasker is a tool for

identification of repetitive elements

¢ ab initio prediction of repeats

¢ database matching 14000
+ Repbase Update is a database with

¢ Transposable elements

+ Simple Sequence Repeats

+ Pseudogenes

1997 2000 2003 2009

Assembly

Gene

Reads from sequencing

e

Assembled sequences

¢ Similarity threshold

+ Less strict setting results in longer contigs with more
errors

+ More strict setting results in shorter contigs with
fewer errors

The Gene Indices Clustering Tools

Reads Clusters

Contigs

A few existing projects and their results

Sequencing Assembly
Project System Reads Length  Algorithm Contigs Length
Barrel clover GS20 300,000 110 Custom 34,000 ?
Glanville fritillary butterfly GS20 600,000 110 Custom 48,000 197
Largemouth bass GSs20 550,000 105 Newbler 33,000 ?
630,000+ 105+
Eucalyptus GS20+FLX 400,000 210 Newbler 71,000 247
Coral larva FLX 630,000 233 Custom+ 44,000 440
Newbler
Flesh fly FLX 210,000 241 Custom+ 21,000 332
Newbler
Viviparous eelpout FLX 400,000 237 Custom 36,000 395
Bank vole FLX Titanium 1,000,000 305 Custom 64,000 481

10
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Annotation

¢ Functional similarity from sequence
similarity

+ Assign information to the assembled
transcripts
+ Gene description
+ Functional annotation (e.g. pathways)

GenBank UniProt ensembl

Case study: Sequencing of the
transcriptome of Zoarces viviparus

¢ The BALCOFISH project
+ No suitable model species
+ Zoarces viviparus (eelpout)
+ Stationary
+ Gives birth to live young
* Large-scale gene expression
assays in eelpout
+ Sequencing of the liver
transcriptome
+ Design of an eelpout microarray

- -

Assembly results and statistics

+ Massively parallel pyrosequencing
+ 400.000 reads with an average length of 237
bases
+ 90 million bases in total

Contigs Singlets Total
Number of sequences 36,110 17,347 53,457
Number of bases 14,250,156 4,050,061 18,300,217
Average length 395 233 342
Average coverage 3.46 1 2.67
Annotated 89.2% 87.3% 88.6%

Contig length

11
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¢ The correlation for the eelpout microarray was ~60%.

Kristiansson et al. 2009 Characterization of the Zoarces viviparus transcriptome using massively parallel pyrosequencing.

Depth and coverage Pyrosequencing Genbank
. 3 . . Gene Accession Length Accession Length
. The_ size of the stickleback transcriptome is ~30 Vitellogenin Z0VI0010766 1,826 AJ416326 1,229
million bases.
— Zona Pelucida 2 Z0V10014264 1,100
¢ The 18 million bases covers ~40% of the eelpout
transcriptome. Zona Pelucida 3 Z0VI0034606 989
¢ The eelpout sequencing is R Estrogen receptor 20V10044876 852 AY223902 3,256
deep 8 Metallothionein Z0VI0049137 363 X97270 312
* Mgtches "'8,000 g Heat-shock protein 70 ZOVI0038668 1,460
stickleback genes g Heat.shock brotein 90 S OVI0620082 038
. [ leat-shoci rotein
(15,000 genes in total). i B P
. “ ZOVI0005392
+ Few eelpout stickle back Cytochrome P4S0 14 1652
genes are represented by . Superoxide dismutase Z0VI0007529 747
SingIEtS- Glutathione peroxidase ZOVI0037346 1,208
Gene expression analysis using high-
throughput sequencing Conclusions

+ Massively parallel pyrosequencing
provides means for fast and cost-efficient
de novo transcriptome sequencing.

¢ One full run on a 454 sequencer is
enough to cover a substantial part of the
transcriptome from a higher eukaryote.

+ Bioinformatics competence and
computational resources are needed to
assemble the generated data into
transcripts.
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