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Agenda
¢ Part 1: Sequencing Techniques
Next Generation DNA Sequencing ~ The history of DNA sequencing
. -S ing (first ti [
- Introduction anger sequencing (first generation sequencing)

— Next generation sequencing
¢ Massively parallel pyrosequencing
¢ Sequencing by synthesis
MVE360 - Bioinformatics, 2012 « Sequencing by ligation

— Data analysis

Erik Kristiansson, erik.kristiansson@chalmers.se e Next lecture: Applications

History of DNA sequencing History of DNA sequencing

e Structure of the DNA
discovered in 1953.

* First sequences in 1965.

+ Bacteriophage Phi X 174

* First sequenced genome. Done by Fred
Sanger.

¢ 11 genes, 5,386 bases
¢ Published 1977

¢+ Haemophilus influenzae
+ First sequenced free living organism

Nucleotide sequence of bacteriophage : iﬁgﬁsazzelségés million bases
D X174 DNA

F. Sanper, G. M. Air", B. G. Barrell, N. L. Brown®, A. R. Coulson, J. C. Fiddes,
C. A, Hutchison IT1, P, M. Slocombe: & M. Smith*

¢ Rapid DNA sequencing -
developed by Frederick Watson & Crick Fred Sanger
Sanger 1977.

History of DNA sequencing HGP — The Human Genome Project

¢+ Saccharomyces cerevisiae Initiated 1990 — finished 13
+ First sequenced eukaryote year later

+ Genome consists of 6000 genes and Lareest research project
12 million bases 8 proj

+ Published 1997 — the project took 7 — 200 research groups worldwide

years — Total cost was $3 billion
— | * Homo sapiens * Sequence still not 100%
; + The Human Genome Project complete
+ Genome consists of ~21.000 genes .
and 3.25 billion bases * The Holy Grail: $1000 genome!
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Sanger sequencing

In viva cloning and amplification
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Cycle sequencing
.. GACTAGATACGAGCGTGA. -5 flomplate)

¢ “First generation” sequencing
— Introduced 1977
— Cloning in bacteria

. . . . §-.. CTGAT 3 primar)
— Chain-termination combined : gg}gﬁ;
ith gel electrophoresis I_. Cramemr £
wi g p crmrr:mr.,,
AT

— Originally 80 bases fragments, = fomesse . cramcmacr 77,
today up to 1000 bases

Labeted SONTPs . CTGATETATGETCG #®
— High accuracy

Electropharsesis
{1 read/cagillary)

[

Sanger sequencing

Gel used for base-calling

Multiple sequencing machines
at the Sanger institute

Traditional (Sanger) sequencing

R
"‘% - '& mp ACGTCTACGT..

% - Next generation sequencing

0.4 5% - %*;% = “£%, = TGTCCAGTCG...
ia ” ‘o - % = 5%, = GGGCATTAGC..
o, o o it = [}, = ACTTCCCATG.,

‘h;‘_ - W -»-‘fg = CCAGTTACCC..
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Next generation DNA sequencing

* Introduced in 2005
¢ From serial to parallel — multiple fragments of
DNA sequenced simultaneously
¢ Many techniques on the market
— Massively parallel pyrosequencing (454)
— Sequencing by synthesis (Illumina)
— Sequencing by ligation (SOLiD)

illumina’ [ - Jeom. ,&1&

we ||y Helicos

454 sequencing

Massively parallel

pyrosequencing

Introduced 2005 by 454 Life @
Sciences/Roche =

Read length around 1000 | |

bases GS FLX Pyrosequencer

One sequencing run

— Generates 1,2 million reads,
500 million bases

454 icw_

— Takes four hours

454 sequencing
Y
(Y
= — 120
— )
Emubsity DNA Captuie Clonal angpification Break mucroreactors
beads and PCH reagens  ocours inside and ennch for DNA-
i water-in-oil MBCTOrEactons positive beads
A IOrEACIOnS

454 sequencing

* Nucleotides are flowed
sequentially (a)

* Asignal is generated for
each nucleotide
incorporation (b)

* A CCD camera is generating
an image after each flow (c)

¢ The signal strength is
proportional to the number
of incorporated nucleotides.

454 sequencing

-

TCAGGTTTTTTAACAATCAACTTTTTGCGATTAAARAGTGTAGATARCTGCATARATTARTAR
CATCACATTAGTCTGATCAGTGAATTTATCAATTTGTTCAATAATAGTTCCAAATG

1 B6-mer
S-mer
I 4-mer

J 3-mer

2=-mer

1-mer

i

ETEANCEHG
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454 sequencing

¢ Advantages ¢ Disadvantages

— Handles GC-rich
regions (fairly) well

— Low throughput
— Error rate at 1%
— Long reads — Homopolymeric regions

— Fast sequencing runs are problematic

lllumina sequencing

* Developed by Solexa (acquired
by lllumina)

¢ Sequencing by synthesis —
cyclic reverse termination

* HiSeq 2000

illumina

o — 3 billion reads, 35-100
5 o bases/read
3 454 FLX + .
g - — Up to 600 billion bases/run, 25
-‘:':; “ 454 FLX Titanium gigabases/day
2w .  Long sequencing times Hiseq 2000
anger
lllumina sequencing lllumina sequencing
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From Metzker, M. (2010). Sequencing Technologies - the next generation, Nature Reviews,
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» Around 100,000 high-resolution
images are analyzed during an
sequencing run (terabytes of data).

lllumina sequencing

e Advantages
— High throughput (max 600 gigabases/run)
— Low cost per base
* Disadvantages
— Error rate at 1% - only substitutions
— Problems with AT- and GC-rich regions

— Long sequencing times (dependent on the read
length)

a J =

SOLID sequencing

Life Technologies/ABI

¢ Amplification with emulsion PCR /&’%
¢ Sequencing by ligation technologies

e 5500xI

— 5 billion reads, 35-75 bases/read -

— Up to 300 billion bases/run, 30
gigabases/day

* Long sequencing times

Sequencing by ligation

Two-base encodin
nucheotide is infen

Indbase  sequence

From Metzker, M. (2010). Sequencing Technologies - the next generation, Nature Reviews,

Primer round 2

v shift

From Metzker, M. (2010). Sequencing Technologies - the next generation. Nature Reviews,

SOLID sequencing

¢ Advantages
— High throughput (max 300 gigabases/run)
— Low cost per base

— High accuracy when a reference genome is
available

¢ Disadvantages
— Few software working with “color space”
— Problems with AT- and GC-rich regions

— Long sequencing times (dependent on the read
length)
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Pacific Bioscience

* Real-time sequencing

Overview of NGS technologies

° Long fragments _ average |ength 1000 bases Technology Company Throughput Cost/base Read length
. Parallel 454 Life Sciences -
* High error rate (up to 10%) pyrosequencing /Roche 0-5Gb/day s 700 bases
T — llumina Solexa/lllumina 100 Gb/day  $0.000001  35-100 bases
sequencing
SOLID Life Technologies 100 Gb/day $0.000001 35-75 bases
HeliScope Helicos Biosciences 5 Gb/day $0.005 25-55 bases
PacBio RS Pacific Biosciences Unknown Unknown ~1000 bases
Tradmor!al 0.00005Gb/day 0.5% up to 1000
sequencing bases
e
; T I 454 illumina’ 9= ,&lﬁ
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Will 2012 be the year of the holy grail?
1 -
¢ Yes, according to Life Technologies
2 .01 - — lon Torrent Proton: Sequencing of a human
3 genome in 2 hours for less than $1000.
&
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Next generation sequencing Data analysis
¢ Unprecedented amount of data ¢ Large data volumes
» Computationally efficient methods needed — Optimized algorithms
* Lack of biostatisticians/bioinformaticians for - COmPUt.ationa’PV??aVV — high performance
o ~ - rnmnllhna an oaN\ciaonro
the future? TR @l BT
* Different algorithms for different read lengths
Spruce genome sequencing project * Different platforms have different error
Genome: 20 billion bases patterns
Collaboration between UU, KTH and SU. . . 3 )
Sequenced using lllumina and 454 ¢ Many classical bioinformatical tools are still
Supercomputers needed for the analysis useful

* Image analysis
* Base calling Preprocessing
* Removal of redudancy

* Filtering of bad quality reads

Preprocessing
* Proprietary software
* Special QC algorithms

¢ Quality assessment of NGS data is essential!

‘ — High error rate

. — Problematic regions
Low-level analysis

« High data volume S EE * Actions to increase quality
* Special NGS algorithms * De novo assembly — Removing bad sequencing runs
‘ — Filtering/trimming bad reads
— Removing redundant reads
High-level analysis * Bioinformatical analysis — Multiplexing: Reads without interpretable barcode
* Lower data volume « Statistics

* Classical tools * Biological interpretation * Low cost/base — possible to throw away more
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Balzer et al. (2010). Characteristics of 454 pyrosequencing data—enabling realistic simulation with flowsim Bioinformatics 26 (18)

Error patterns in 454 sequencing
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¢ Sequencing quality decreases with read length

¢ Homopolymeric errors are more likely for long
repeats

DNA alignment

CAAGACAAATCTTAGTTACGCTAATA TTT—-CTAGAGTCATATTA( GTGCGAACTGTGGGAAAATCGC
CAAGACAAATCTTAGTTACGCTAATTTTT--CTAGA§TCATATTAGAAAAA-GTGCEAACTGTGGGAAAATCGC

CAAGACAAATCTTAGTTACGCTAATTTTT--CTAGAGTCATATTAGAAA---GTGCGRACTGTGGGAAAATCGC

:‘1‘ TTTT :':k L 5
D A G It e atesd

Protein alignment

KTNLSYANHKSRVILEKSANCGKI
KTNLSYANESRVILEKVRTVGKS
KTNLSYANRSRVILE-SANCGKI

¢ Around 50% of all errors in 454 data are related to
homopolymers

* Substitutions should not be present in theory but
exist (they are rare).

Error patterns in lllumina sequencing

Based on 10 million reads from one sequencing run on a Genome Analyzer IIx.

Error patterns in lllumina sequencing

¢ High variability between runs!

Error patterns in lllumina sequencing

[P P———
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lllumina sequencing runs

Filtering of ~500 lllumina sequencing runs

Landlll

LT s,

Reads discarded (%)

* Image analysis
* Base calling

Preprocessing
* Proprietary software

*R | of
* Special QC algorithms emoval of redudancy

* Filtering of bad quality reads

\ 4

Low-level analysis
* High data volume
* Special NGS algorithms

¢ De novo assembly

* Bioinformatical analysis

High-level analysis
* Lower data volume
* Classical tools

* Statistics
* Biological interpretation

Read Mapping

Comparison of reads against a reference
genome

Traditional algorithm: Smith-Waterman (e.g.
BLAST)

Faster algorithms

— Hash tables of k-meres (e.g. SSAHA2)

— Burrows-Wheeler transform (e.g. bwa)

— Suffix-arrays (e.g. vmatch)

Complexity scales linear to the amount of data

Read Mapping

Smith-Waterman

BLAST
00 times faster than
Smith-Waterman

Computational Cost

Sensitivity

Read Mapping

Smith-Waterman

BLAST
100 times faster than
Smith-Waterman

Computational Cost

vmatch
100 times faster than BLAST

Sensitivity

Read Mapping

* Applications
— Genome/exome resequencing
* Genetically linked diseases
* Cancer research
* Infectious diseases
— Transcriptomics (RNA-seq)
 Large-scale gene expression analysis
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RNA-seq - RNAseq

Gene

De novo assembly

* Form the sequenced fragments into a
contiguous stretch of DNA

¢ Applications:
— Genome sequencing
— Transcriptome sequencing

* Naive algorithm
1. Compare all fragments with each other using pairwise
alignments.
2. ldentify the fragments with the best overlap - merge
3. Repeat

Genome assembly

Genome
— —_—
— TR —_— T TEr =
—_—_ e T, e —
Fragments — — g g
e TEEm T T —
by SRy L F = =l
— T " T p—
f— —
‘Assembly

—
Reconstructured genome — u

Genome assembly - challenges

* Computationally heavy
— Computational complexity: o(n?)
— Memory complexity: o(n?)

* Sequencing errors

* Repetitive regions

10
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Assembly of the spruce genome Summary — Next Generation Sequencing

« Large and complex genome * Next generation sequencing enables
sequencing of billions of DNA fragments

— 20 gigabases (6 times as big as the human genome) )
simultaneously

— Many repetitive regions
¢ Huge amount of sequence data are today

* Assembly statistics . g
generated in short time

— 1 terabases sequenced (mainly Illumina)

— 3 million contigs longer than 1000 bases — 30 % of ¢ Novel bioinformatical approaches are need to

the genome handle and analyze the produced data
— Assembly had to be done on a supercomputer with ¢ High applicability in many areas of biology and
1TB RAM. medicine
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