Next Generation DNA Sequencing - Introduction

MVE360 - Bioinformatics, 2012

Erik Kristiansson, erik.kristiansson@chalmers.se

Agenda

- Part 1: Sequencing Techniques
 - The history of DNA sequencing
 - Sanger sequencing (first generation sequencing)
 - Next generation sequencing
 - Massively parallel pyrosequencing
 - Sequencing by synthesis
 - · Sequencing by ligation
 - Data analysis
- Next lecture: Applications

History of DNA sequencing

- Structure of the DNA discovered in 1953.
- First sequences in 1965.
- Rapid DNA sequencing developed by Frederick Sanger 1977.

Watson & Crick

Fred Sange

Nucleotide sequence of bacteriophage Φ X174 DNA

F. Sanger, G. M. Air*, B. G. Barrell, N. L. Brown*, A. R. Coulson, J. C. Fiddes, C. A. Hutchison III¹, P. M. Slocombe[§] & M. Smith*

History of DNA sequencing

- Bacteriophage Phi X 174
 - First sequenced genome. Done by Fred Sanger.
 - 11 genes, 5,386 bases
 - Published 1977

Haemophilus influenzae

- First sequenced free living organism
- 1800 genes, 1.8 million bases
- Published 1995

History of DNA sequencing

Saccharomyces cerevisiae

- First sequenced eukaryote
- Genome consists of 6000 genes and 12 million bases
- Published 1997 the project took 7 years

Homo sapiens

- The Human Genome Project
- Genome consists of ~21.000 genes and 3.25 billion bases

HGP – The Human Genome Project

- Initiated 1990 finished 13 year later
- Largest research project
 - 200 research groups worldwide
 - Total cost was \$3 billion
- Sequence still not 100% complete
- The Holy Grail: \$1000 genome!

Next generation DNA sequencing

- Introduced in 2005
- From serial to parallel multiple fragments of DNA sequenced simultaneously
- Many techniques on the market
 - Massively parallel pyrosequencing (454)
 - Sequencing by synthesis (Illumina)
 - Sequencing by ligation (SOLiD)

454 sequencing

- · Massively parallel pyrosequencing
- Introduced 2005 by 454 Life Sciences/Roche
- Read length around 1000 bases
- One sequencing run
 - Generates 1,2 million reads, 500 million bases
 - Takes four hours

454 sequencing

- Nucleotides are flowed sequentially (a)
- A signal is generated for each nucleotide incorporation (b)
- A CCD camera is generating an image after each flow (c)
- The signal strength is proportional to the number of incorporated nucleotides.

454 sequencing Disadvantages Handles GC-rich regions (fairly) well Long reads Fast sequencing runs - Homopolymeric regions are problematic - Homopolymeric regions are problematic

Developed by Solexa (acquired by Illumina) Sequencing by synthesis – cyclic reverse termination HiSeq 2000 3 billion reads, 35-100 bases/read Up to 600 billion bases/run, 25 gigabases/day Long sequencing times

Pseudo-colored image

• Around 100,000 high-resolution images are analyzed during an sequencing run (terabytes of data).

Illumina sequencing

- Advantages
 - High throughput (max 600 gigabases/run)
 - Low cost per base
- Disadvantages
 - Error rate at 1% only substitutions
 - Problems with AT- and GC-rich regions
 - Long sequencing times (dependent on the read length)

SOLiD sequencing

- Life Technologies/ABI
- Life Technologies Amplification with emulsion PCR
- 5500xl
 - 5 billion reads, 35-75 bases/read
 - Up to 300 billion bases/run, 30 gigabases/day
- Long sequencing times

SOLiD sequencing

- Advantages
 - High throughput (max 300 gigabases/run)
 - Low cost per base
 - High accuracy when a reference genome is available
- Disadvantages
 - Few software working with "color space"
 - Problems with AT- and GC-rich regions
 - Long sequencing times (dependent on the read length)

Will 2012 be the year of the holy grail?

- Yes, according to Life Technologies
 - Ion Torrent Proton: Sequencing of a human genome in 2 hours for less than \$1000.

Next generation sequencing

- Unprecedented amount of data
- Computationally efficient methods needed
- Lack of biostatisticians/bioinformaticians for the future?

Spruce genome sequencing project

Genome: 20 billion bases Collaboration between UU, KTH and SU. Sequenced using Illumina and 454 Supercomputers needed for the analysis

Data analysis

- Large data volumes
 - Optimized algorithms
 - Computationally heavy high performance computing and eScience
- Different algorithms for different read lengths
- Different platforms have different error patterns
- Many classical bioinformatical tools are still useful

Preprocessing

- Quality assessment of NGS data is essential!
 - High error rate
 - Problematic regions
- Actions to increase quality
 - Removing bad sequencing runs
 - Filtering/trimming bad reads
 - Removing redundant reads
 - Multiplexing: Reads without interpretable barcode
- Low cost/base possible to throw away more

Read Mapping

- Comparison of reads against a reference genome
- Traditional algorithm: Smith-Waterman (e.g. BLAST)
- Faster algorithms
 - Hash tables of k-meres (e.g. SSAHA2)
 - Burrows-Wheeler transform (e.g. bwa)
 - Suffix-arrays (e.g. vmatch)
- Complexity scales linear to the amount of data

Read Mapping

- Applications
 - Genome/exome resequencing
 - Genetically linked diseases
 - Cancer research
 - Infectious diseases
 - Transcriptomics (RNA-seq)
 - Large-scale gene expression analysis

De novo assembly

- Form the sequenced fragments into a contiguous stretch of DNA
- Applications:
 - Genome sequencing
 - Transcriptome sequencing
- Naïve algorithm
 - 1. Compare all fragments with each other using pairwise alignments.
 - 2. Identify the fragments with the best overlap merge
 - Repeat

Genome assembly - challenges

- Computationally heavy
 - Computational complexity: o(n²)
 - Memory complexity: o(n²)
- Sequencing errors
- Repetitive regions

Assembly of the spruce genome

- Large and complex genome
 - 20 gigabases (6 times as big as the human genome)
 - Many repetitive regions
- Assembly statistics
 - 1 terabases sequenced (mainly Illumina)
 - 3 million contigs longer than 1000 bases 30 % of the genome
 - Assembly had to be done on a supercomputer with 1 TB RAM.

Summary – Next Generation Sequencing

- Next generation sequencing enables sequencing of billions of DNA fragments simultaneously
- Huge amount of sequence data are today generated in short time
- Novel bioinformatical approaches are need to handle and analyze the produced data
- High applicability in many areas of biology and medicine