

Dependability and Security Metrics and Evaluation

Presented by

Erland Jonsson Department of Computer Engineering CHALMERS UNIVERSITY OF TECHNOLOGY

> CHALMERS Department of ComputerScience and Engineering

Quotations:

- "Modelling is fundamental to measurement; without an empirical model or describing observations, measurement is not possible" (A. Kaposi 1991)
- "The history of science has been, in good part, the story of quantification of initially qualitative concepts" (Bunge 1967)

WHY MODELLING? - WHY METRICS?

of Computer Science and Engineering, CHALMERS UNIVERSITY OF TECH

Quotations:

- "....if you can measure what you are speaking about and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge of it is at best meagre and unsatisfactory." (Lord Kelvin)
- "It is good engineering practice to be able to verify claimed performance" (Jonsson 2010)

SECURITY POLICY and SECURITY PLAN

- A security policy states:
- the organization's goals regarding security, i.e., which assets must be protected against which threats
- where the *responsibility* for security lies
- the organization's commitment (e.g., money, personnel)
- Make a **security plan!** It defines how the company addresses its security needs. It covers the following items: - security policy (~ definition of the goal)
- current state
- recommendations (~ how goals can be accomplished)
- accountability (who is responsible for carrying out the plan)
- time schedule
- continuing attention (specifies periodic reviews)

CERTIFICATION ACCORDING TO A SECURITY STANDARD

- $\ensuremath{\textbf{Evaluation}}$ is assessing whether a product has the $\ensuremath{\textit{security properties}}$ claimed for it
- Certification is the formal assessment of the result of an evaluation.
- Accreditation is deciding that a (certified) product may be used in a given application
- Certification is made wrt to some established standard, such as the CC ("Common Criteria").

• The goal of the certification:

- assess the trust of the system's correctness. (How secure is it?)
- assess the quality of the evaluation. (How do we know?)

Document it!!

METHODS FOR CERTIFICATION

There are (at least) three fundamentally different methods of certification.

1. Penetration analysis:

A "Tiger Teams", i.e. a group of very skilled specialists tries to "crack" the system to find "all" vulnerabilities.

2. Informal validation:

Testing and checking the system. Includes e.g.:

- requirements checking
- design and code reviews
- software module and system testing

3. Formal verification:

The operating system is reduced to a mathematical "theorem", which is proven.

partment of Computer Science and Engineering, CHALMERS UNIVERSITY OF TECHNOLOG

EVALUATION STANDARDS

Earlier evaluation criteria:

- TCSEC (Trusted Computer Security Evaluation Criteria)
- ITSEC (Information Technology Security Evaluation Criteria)
- FC (Federal Criteria)
- · Canadian, Japanese, etc

Evaluation criteria on the module level:

- In some cases we need to evaluate a specific security module. The FIPS 140-2 is an evaluation standard for cryptographic modules.
- It provides four increasing, qualitative security levels.

ent of Computer Science and Engineering, CHALMERS UNIVERSITY OF TECHNOLOG

COMMON CRITERIA

- The Common Criteria¹ (CC) is aimed to be common to all countries. It defines a security evaluation methodology.
- It became the "official" evaluation standard in the USA in 1998. (TCSEC was discontinued in 2000.)

Central terms:

- Target of Evaluation (TOE):
- An IT product or system and its associated administrator and user guidance documentation that is the subject of an evaluation.
- Evaluation Assurance Level (EAL): A package consisting of assurance components that represent a point in the predefined assurance scale

partment of Computer Science and Engineering, CHALMERS UNIVERSITY OF TECHNO

COMMON CRITERIA

- Central terms (cont'd):
 - Protection Profile (PP):
 - An implementation-independent set of security requirements for a category of TOEs
 - Security Target (ST): A set of security requirements and specifications to be used as the basis for evaluation of an identified TOE.
 - Security Functional Requirements (SFR): The translation of the security objectives for the TOE.
 - TOE Security Function (TSF): A set consisting of all hardware, software and firmware of the TOE that must be relied upon for the correct enforcement of the SFR. (cp Trusted Computing Base)

BEHAVIOURAL METRIC
Behavioural metrics are well-known (except for confidentiaity):
 A behavioural metric describes to what extent the system delivers its service to its User(s) or denies service to its Non-user(s).
Thus, reliability, safety and confidentiality could be covered by the same (vectorized) metric using Markov modelling
Department of Computer Science and Engineering, CHALMERS UNIVERSITY OF TECHNOLOGY

CONCLUSIONS (general):

- The areas of Dependability and Security have traditionally evolved separately and there is a lack of coordination between them regarding concepts, terms, tools etc
- Dependability and Security reflect two different approaches to the same fundamental research area
- Dependability and Security must be integrated into one common context in order for us to be able to properly address the problems involved

CHALMERS Department of ComputerScience and Engineering

CONCLUSIONS (specific):

- We have suggested an *integrated system model* for Dependability and Security, describing the system in terms of *correctness* as well as *protective* and *behavioural characteristics*
- Dependability and Security metrics can be defined in accordance
- Protection methods and mechanisms have been related to the system model
- Intrusion detection is a mechanisms that introduces the "product-in-a-process" concept for the system

CHALMERS Department of ComputerScie and Engineering