

What is Cryptography?

• Methods for the protection of information and communications

BQQEBJIFDQJBAABIÅKABCRRFCKJGERKCBBCJÄLBCDSSGDLKHFSLDCCDKÖMCDETTHEMLIGTMEDDELANDE

(English: a secret message)

- Problems with cryptology
- The Future

Who needs cryptography?

- Earlier: only diplomats and the military
- Now: everybody!
- Reasons:
 - Electronic communication over insecure channels, e.g. the Internet
 - Traditional methods for authentication (signature, voice) does not work for data communications

History

Secret versus open research

- Cryptology used to be available only for government authorities (military, diplomats)
- Comprehensive open research started in the mid 70-ies
- The secret research is probably considerably bigger than open research
- "NSA is believed to be 10-15 years ahead of the open research"

Symmetrical systems Theoretical versus practical security

- Theoretical security
 - No problems with key management
 - The cryptanalyst has unlimited resources
- Practical security
 - Many limitations
 - The cryptanalyst also has limitations
 - The security is a function of the estimated possibilities of the cryptanalyst

Symmetrical systems Cryptanalysis

Assumption:

- the cryptanalyst knows everything about the system except the key.
- Different types of cryptanalysis attacks:
 - Ciphertext-only
 - The cryptanalyst only has encrypted text
 - Known-plaintext
 - The cryptanalyst has some plaintext-ciphertext pairs
 - Chosen-plaintext/Chosen-ciphertext
 - The cryptanalyst can make tests with selected plaintext and get the corresponding encrypted text

Symmetrical systems Cryptanalysis cont'd				
Ciphertext:	DJFKRIOPEPWPEPS			
Key 1:	ajfkjrisdfkjsdd			
Key 2:	jfjreieifkdjdjf			
PT 1:	attack at eight			
PT 2:	no attack today			

Symmetrical systems Diffusion — Confusion

- Diffusion
 - Changing one symbol in the plaintext affects many symbols in the ciphertext
 - Changing one symbol in the key affects many symbols in the ciphertext
- Confusion
 - The ciphertext must depend on the plaintext and the key in a complicated way so that the derivation of statistical relations is hard to do

Symmetrical systems Example of system: DES

- Data Encryption Standard
- Encrypts blocks of 64 bits, 56-bit key
- Developed by IBM and NSA, American standard since 1977
- NSAs involvement is discussed
 - Suspicion of back-doors has not been confirmed
 - Rather, NSA seems to have strengthened the algorithm
- Status: Algorithm is considered very strong, but the key is too short
- Development: Triple DES (3DES), 112 bits
- Since 2000: Advanced Encryption Standard (AES)

Symmetrical systems Product ciphers

• Product ciphers gives good diffusion and confusion

P is a permutation, possibly the same in every step. S_i are general, different, non-linear substitutions.

Symmetrical systems Key lengths

- Based on *computational complexity*
- Comparison for *exhaustive search*:

Key lengt	h	Possible keys	Time a	Time b	
40 bits	Asymm. K	$2^{40} \approx 1.1 \cdot 10^{12}$	1 week	(9 s)	
56 bits		$2^{56}\approx 7.2{\cdot}10^{16}$	1200 yrs	1 week	
100 bits	2048 bits	$2^{100}\approx 1.3{\cdot}10^{30}$	$2 \cdot 10^{16} \text{ yrs}$	$3 \cdot 10^{11} yrs$	
128 bits	3072 bits	$2^{128}\approx 3.4{\cdot}10^{38}$	6·10 ²⁴ yrs	9·10 ¹⁹ yrs	
(100 million combinations correspond to 27 bits)					

Asymmetrical systems Basic Principles

- One-way functions
 - y = f(x) easy to calculate, but finding x for a given y, so that y = f(x), i.e. x = f¹(y) is very hard (impossible in practice)
 - Example: Multiplication of two 100-character primes is easy, but finding the two primes for a given product is hard
- Trap-door one-way functions
 - $y = f_P(x)$ easy, but $x = f_P^{-1}(y)$ hard to calculate, unless you know the parameter P

Asymmetrical systems Characteristics

- No secure channel needed
- Communication between n units, requires 2n keys (cp symmetrical system: about ~n²)
- Authentication important
 - If a false public key is used, the intruder can read the message
 - The sender is unknown to me (since the public key is available to everybody)
 Solution: signatures

Asymmetrical systems Example of system: RSA

- RSA (Rivest, Shamir, Adleman) 1978
 - Uses a trap-door function that is based on the multiplication of big primes
 - Security depends on the development of 1) Algorithms for factoring
 - 2) Computers with high computational power
 - Most well-known and most commonly-used asymmetrical system

Key Management

- Protocols
 - Combinations of symmetrical and asymmetrical systems are used for key distribution
 - Hard to design good protocols
- Key escrow
 - Users are forced to deposit "main keys" so that authorities (police, customs etc) can interpret secret communications
 - Fiercely debated in the USA, to some extent also within the EU
 - Organisationally questionnable

Problems with Cryptography Block Cipher Modes

 In Electronic Codebook (ECB) mode, a message is split into blocks and each is encrypted separately.

(from Wikipedia)

Problems with cryptography

- Based on computational complexity, which is theoretically hard. Therefore it is easy to find a bad system that looks good. It is considerably harder to show that it really *is bad*.
- Requires profound knowledge to make good designs.
- Electronic commerce is based on the difficulty to factorize big numbers...
- Non-cryptological issues is the real problem!

The Future

- The Advanced Encryption Standard (AES) is replacing DES.
- New methods required to build robust applications
- The need for commercial IT-services is a driving force, e.g. Internet B2B and B2C applications
- Political decisions slow down progress(?)
- Quantum Cryptography