
2/8/2012

1

Computer Security(EDA263 / DIT 641)

Lecture 3: Passwords

Erland Jonsson

Department of Computer Science and Engineering

Chalmers University of Technology

Sweden

Bad passwords

• Names (own, wife, child, dog, colleague, car, mistress,
etc)

• Numbers that can be related to you (telephone-, car-,
birth) or “well-known” numbers, such as e, p, Planck’s
constant,....

• Based on any other info that can easily be related to you

• “Popwords” (wizard, gandalf, guatama,...)

• word in dictionary or encyclopedia (Swedish, English,
Japanese,...)

• special patters (qwertyui,...)

• none of the above backwards!

• none of the above slightly modified! (i.e. +number, with
one big letter, etc)

2/8/2012

2

Good passwords (or at least better!):

1) with small and capital characters

2) with numbers and special characters

3) with at least 8 characters (for UNIX)

4) could be typed easily

• 1)-3) to avoid exhaustive search

• 4) to avoid shoulder surfing

• preferably: random,
but: hard to memorize in that case

Password Rules

• never reveal your password to anyone!
• do not write it down (in any interpretable way)!
• change it regularly (or at least every now and
then...)!

• could be typed fast!
memorizing rules:
• first characters of words in a sentence (Ex.
“tiaWcics”)

• combine two small words + extra character:
(Ex. “end(pagE”)

• the way to work/auntie Ann/... (Ex. GOPAJOle)

2/8/2012

3

Password Attacks
There are three different ways to attack a password:

FIND / GUESS / CRACK
• Find: find note, eavesdrop, keyboard snooping,

shoulder surfing, asking for it(!)

• Guess: try “probable” cases, “Joe accounts”

• Crack: exhaustive search, dictionnary attacks

• Example: the UNIX salt feature:

- prevents 2 users with the same passwords from
knowing it

- makes exhaustive search for multiple password
computationally more expensive

Introducing a new password

2/8/2012

4

Verifying a password

UNIX implementation

original scheme
– 8 character password form 56-bit key

– 12-bit salt used to modify DES encryption into a
one-way hash function

– 0 value repeatedly encrypted 25 times

– output translated to 11 character sequence

• now regarded as woefully insecure
– e.g. supercomputer, 50 million tests, 80 min

• sometimes still used for compatibility

2/8/2012

5

Improved implementation

• have other, stronger, hash/salt variants

• many systems now use MD5

– with 48-bit salt

– password length is unlimited

– is hashed with 1000 times inner loop

– produces 128-bit hash

• OpenBSD uses Blowfish block cipher based hash
algorithm called Bcrypt

– uses 128-bit salt to create 192-bit hash value

One-time passwords

A one-time password is a password that is valid
only once

• Thus, it is resistant to eavesdropping and wire-tapping.

• One-time passwords can be implemented using special
password generators (time-dependent passwords, dynamic
password generation) or simply as a list of passwords.

• A special type of one-time passwords are those generated by a
challenge-response system.

• In this case the system generates a challenge (seed, nonce),
which is different each time and the user calculates a response
(=the password) using the challenge. Thus, the password will
change every time and can not be re-used.

• In this case, the secret is the function that translates the
challenge to the response (or: see book Fig 3.11)

2/8/2012

6

Password guessing/cracking
(Bruce Schneier)

Password RecoveryToolkit (PRTK) from Access Data
Password security depends on:

1) if you can slow down the password testing
(in the SW)
2) the order of guessing by the program

Guesses 350000 passwords/s (Microsoft OpSys)
A typical password consists of a root + appendage
Appendage is a suffix (90%) or prefix (10%)
PRTK guessing procedure:

1) dictionary of 1000 pws (e.g. letmein, 123456, etc)
2) adds 100 common suffixes (e.g 1, 4u, 69, etc)

=> 24 % of all passwords!

Password guessing/cracking cnt’d
(Bruce Schneier)

 Exhaustive search of all 4 character strings:
1) all lowercase, 2) initial uppercase, 3) uppercase

 All with common substitutions (@ for a, 1 for l, etc)
 Collects personal info plus other passwords, which

greatly reduces search time
Conclusion: Good passwords are those not found by PRTK
 Forensic Toolkit: scans hard disc for printable strings

to create a dictionary => 50 % of passwords
 Windows opsys leaves data (residues) all over the

place. May be permanently stored on the hard disc!
 Thus, use opsys insecurity instead of guessing

