CHALMERS

Example: scheduling using EDF

Problem: Assume a system with tasks according to the figure below. The timing properties of the tasks are given in the table.

- a) Determine, by analyzing the processor demand, whether the tasks are schedulable or not using EDF.
- b) Determine, by using simulation, whether the tasks are schedulable or not using EDF.

CHALMERS

Example: scheduling using EDF

We define a table and examine every control point:

L	$N_1^L \cdot C_1$	$N_2^L \cdot C_2$	$N_3^L \cdot C_3$	$C_{p}(0,L)$	$C_p(0,L) \leq L$
3	$\left(\left\lfloor \frac{3-3}{4} \right\rfloor + 1 \right) \cdot 2 = 2$	$\left(\left\lfloor \frac{3-7}{8} \right\rfloor + 1\right) \cdot 2 = 0$	$\left(\left\lfloor \frac{3 - 12}{16} \right\rfloor + 1 \right) \cdot 3 = 0$	2	OK!
7	$\left(\left\lfloor \frac{7-3}{4} \right\rfloor + 1 \right) \cdot 2 = 4$	$\left(\left\lfloor \frac{7-7}{8} \right\rfloor + 1\right) \cdot 2 = 2$	$\left(\left\lfloor \frac{7-12}{16} \right\rfloor + 1\right) \cdot 3 = 0$	6	OK!
11	$\left(\left\lfloor \frac{11-3}{4} \right\rfloor + 1 \right) \cdot 2 = 6$	$\left(\left\lfloor \frac{11-7}{8} \right\rfloor + 1\right) \cdot 2 = 2$	$\left(\left\lfloor \frac{11-12}{16} \right\rfloor + 1\right) \cdot 3 = 0$	8	OK!
12	$\left(\left\lfloor \frac{12-3}{4} \right\rfloor + 1 \right) \cdot 2 = 6$	$\left(\left\lfloor \frac{12-7}{8} \right\rfloor + 1\right) \cdot 2 = 2$	$\left(\left\lfloor \frac{12-12}{16} \right\rfloor + 1\right) \cdot 3 = 3$	11	OK!
15	$\left(\left\lfloor \frac{15-3}{4} \right\rfloor + 1\right) \cdot 2 = 8$	$\left(\left\lfloor \frac{15-7}{8} \right\rfloor + 1\right) \cdot 2 = 4$	$\left(\left\lfloor \frac{15-12}{16} \right\rfloor + 1\right) \cdot 3 = 3$	15	OK!

CHALMERS

Example: scheduling using EDF

a) Determine the LCM for the tasks:

$$LCM\{T_1,T_2,T_3\} = LCM\{4,8,16\} = 16$$

Determine the control points K:

$$K_1 = \left\{ D_1^k \mid D_1^k = kT_1 + D_1, D_1^k \le 16, k = 0, 1, 2, 3 \right\} = \left\{ 3, 7, 11, 15 \right\}$$

$$K_2 = \left\{ D_2^k \mid D_2^k = kT_2 + D_2, D_2^k \le 16, k = 0, 1 \right\} = \left\{ 7, 15 \right\}$$

$$K_3 = \left\{ D_3^k \mid D_3^k = kT_3 + D_3, D_3^k \le 16, k = 0 \right\} = \left\{ 12 \right\}$$

The processor demand must be checked at the following time points:

$$K = K_1 \cup K_2 \cup K_3 = \{3,7,11,12,15\}$$

CHALMERS

Example: scheduling using EDF

b) Simulate the execution of the tasks:

The tasks meet their deadlines also in this case!

CHALMERS

Example: scheduling using EDF

Problem: Assume a system with tasks according to the figure below. The timing properties of the tasks are given in the table.

Three resources R_1 , R_2 and R_3 have three, one, and three units available, respectively.

The parameters H_{R1} , H_{R2} and H_{R3} represent the longest time a task may use the corresponding resource.

The parameters $\mu_{R1},\,\mu_{R2}$ and μ_{R3} represent the number of units a task requests from the corresponding resource.

Task	C,	D,	T _i	H _{R1}	H _{R2}	H _{R3}	μ_{R1}	μ_{R2}	μ_{R3}
$ au_1$	6	10	50	2	-	2	1	-	1
$ au_2$	7	17	50	1	2	2	2	1	3
$ au_3$	10	25	50	2	3	2	3	1	1

CHALMERS

Example: scheduling using EDF

a) Preemption levels of the tasks:

 $\pi_1 = H$ (τ_1 has the shortest relative deadline)

 $\pi_{-} = N$

 $\pi_3 = L$ (τ_3 has the longest relative deadline)

CHALMERS

Example: scheduling using EDF

Problem: (cont'd)

Task τ_1 first requests R₃ and then, while using R₃, requests R₁

Task τ_2 first requests R3 and then, while using R3, requests R2;

then, after releasing the two resources, τ_2 requests R₁

Task τ_3 first requests R₂ and then, while using R₂, requests R₁; then, after releasing the two resources, τ_3 requests R₃

Examine the schedulability of the tasks when the SRP (Stack Resource Policy) protocol is used.

- a) Derive the ceilings (dynamic and worst-case) of the resources.
- b) Derive the blocking factors for the tasks.
- c) Show whether the tasks are schedulable or not.

CHALMERS

Example: scheduling using EDF

Resource ceiling $C_{\nu}(a)$ as a function of available units a:

 $(C_n(0))$ is the worst-case ceiling used for calculating blocking factors)

	$C_R(3)$	$C_R(2)$	$C_R(1)$	$C_R(0)$
$R_{_{1}}$	0	$\begin{array}{c} L \\ au_1 \text{ uses} \\ au_3 \text{ may block} \end{array}$	Γ_{2} uses σ_{3} may block	H $ au_3$ uses $ au_1$ may block
R_2	-	-	0	$rac{M}{ au_3}$ uses $rac{ au_2}{ au_2}$ may block
R_3	0	M	\mathbf{M}	H $ au_2$ uses $ au_1$ may block

CHALMERS

Example: scheduling using EDF

 b) Observe that nested blocking is used by all tasks. This could lead to accumulated critical region blocking times in the final blocking factor.

$ au_{_1}$	$ au_{_2}$	$ au_{_3}$
$ \begin{array}{c cccc} Wair(R_3,1) & H \\ Wair(R_1,1) & H \\ \vdots & & & \\ Signal(R_1) & & H \\ Signal(R_3) & H \\ \end{array} $	$ \begin{aligned} \textit{Wait}(R_3, 3) & & \\ \textit{Wait}(R_2, 1) & & \\ & \vdots & & \\ \textit{Signal}(R_2) & & \\ \textit{M} & & \\ & \vdots & & \\ \textit{Signal}(R_3) & & \\ & \vdots & & \\ & \vdots & & \\ \textit{Wait}(R_1, 2) & & \\ & \vdots & & \\ \textit{Signal}(R_1) & & \\ & & \\ \end{aligned} $	$ \begin{aligned} \textit{Wait}(R_2, 1) & & \\ \textit{Wait}(R_1, 3) & & \\ \vdots & & \\ & \vdots & \\ \textit{Signal}(R_1) & & \\ & \\ \textit{Signal}(R_2) & & \\ & \vdots & \\ & \\ \textit{Wait}(R_3, 1) & & \\ & \vdots & \\ \textit{Signal}(R_3) & & \\ \end{aligned} $

CHALMERS

Example: scheduling using EDF

c) Determine the LCM for the tasks:

$$LCM\{T_1, T_2, T_3\} = LCM\{50, 50, 50\} = 50$$

Determine the control points K:

$$K_{1} = \left\{ D_{1}^{k} \mid D_{1}^{k} = kT_{1} + D_{1}, D_{1}^{k} \le 50, k = 0 \right\} = \left\{ 10 \right\}$$

$$K_{2} = \left\{ D_{2}^{k} \mid D_{2}^{k} = kT_{2} + D_{2}, D_{2}^{k} \le 50, k = 0 \right\} = \left\{ 17 \right\}$$

$$K_{3} = \left\{ D_{3}^{k} \mid D_{3}^{k} = kT_{3} + D_{3}, D_{3}^{k} \le 50, k = 0 \right\} = \left\{ 25 \right\}$$

The processor demand must be checked at the following time points:

$$K = K_1 \cup K_2 \cup K_3 = \{10,17,25\}$$

CHALMERS

Example: scheduling using EDF

Blocking factors for the tasks:

$$B_1 = \max\{1,4,2,2\} = 4 \\ \tau_2 \text{ uses } R_1 \\ \tau_2 \text{ uses } R_3 \text{ incl. nested use of } R_2 \\ T_3 \text{ uses } R_3 \text{ incl. nested use of } R_2 \\ T_3 \text{ uses } R_3 \text{ incl. nested use of } R_1 \\ T_3 \text{ uses } R_2 \text{ incl. nested use of } R_1 \\ T_3 \text{ uses } R_2 \text{ incl. nested use of } R_1 \\ T_3 \text{ uses } R_2 \text{ incl. nested use of } R_1 \\ T_3 \text{ uses } R_2 \text{ incl. nested use of } R_1 \\ T_3 \text{ uses } R_2 \text{ incl. nested use of } R_1 \\ T_3 \text{ uses } R_2 \text{ incl. nested use of } R_2 \\ T_3 \text{ uses } R_3 \text{ incl. nested use of } R_2 \\ T_3 \text{ uses } R_3 \text{ incl. nested use of } R_2 \\ T_3 \text{ uses } R_3 \text{ incl. nested use of } R_2 \\ T_3 \text{ uses } R_3 \text{ incl. nested use of } R_2 \\ T_3 \text{ uses } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ uses } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ uses } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ uses } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ uses } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ uses } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ uses } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ uses } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ uses } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ uses } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ uses } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ use } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ use } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ use } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ use } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ use } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ use } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ use } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ use } R_3 \text{ use } R_3 \text{ incl. nested use of } R_3 \\ T_4 \text{ use } R_3 \text{ use } R_3 \text{ use } R_3 \\ T_4 \text{ use } R_3 \text{$$

 $B_2 = 0$ τ_3 has lowest preemption level, and cannot be blocked

CHALMERS

Example: scheduling using EDF

Processor demand calculations for each task:

$$C_P^1 = \left(\left\lfloor \frac{L - D_1}{T_1} \right\rfloor + 1 \right) C_1 + \left(\left\lfloor \frac{L - D_1}{T_1} \right\rfloor + 1 \right) B_1$$

$$C_P^2 = \left(\left\lfloor \frac{L - D_1}{T_1} \right\rfloor + 1 \right) C_1 + \left(\left\lfloor \frac{L - D_2}{T_2} \right\rfloor + 1 \right) C_2 + \left(\left\lfloor \frac{L - D_2}{T_2} \right\rfloor + 1 \right) B_2$$

$$\begin{split} C_p^3 &= \left(\left\lfloor \frac{L - D_1}{T_1} \right\rfloor + 1 \right) C_1 + \left(\left\lfloor \frac{L - D_2}{T_2} \right\rfloor + 1 \right) C_2 + \left(\left\lfloor \frac{L - D_3}{T_3} \right\rfloor + 1 \right) C_3 + \left(\left\lfloor \frac{L - D_3}{T_3} \right\rfloor + 1 \right) B_3 = \\ &= \left\{ B_3 = 0 \right\} = \left(\left\lfloor \frac{L - D_1}{T_1} \right\rfloor + 1 \right) C_1 + \left(\left\lfloor \frac{L - D_2}{T_2} \right\rfloor + 1 \right) C_2 + \left(\left\lfloor \frac{L - D_3}{T_3} \right\rfloor + 1 \right) C_3 \end{split}$$

CH	CHALMERS							
Example: scheduling using EDF								
	We define a table and examine every control point: $C_p^2(0,17) > 17 \text{ (FAIL.)}$							
	L	$C_{_{P}}^{1}(0,L)$	$C_P^2(0,L)$	$C_p^3(0,L)$				
	10	$\left(\left\lfloor \frac{10 - 10}{50} \right\rfloor + 1 \right) 6 + \left(\left\lfloor \frac{10 - 10}{50} \right\rfloor + 1 \right) 4 =$ $= 6 + 4 = 10$	$\left(\left\lfloor \frac{10 - 10}{50} \right\rfloor + 1 \right) 6 + \left(\left\lfloor \frac{10 - 17}{50} \right\rfloor + 1 \right) 7 + \left(\left\lfloor \frac{10 - 17}{50} \right\rfloor + 1 \right) 5 = 6 + 0 + 0 = 6$	$\sqrt{\left(\left[\frac{10-10}{50}\right]+1\right)6+\left(\left[\frac{10-17}{50}\right]+1\right)7}+$ $+\left(\left[\frac{10-25}{50}\right]+1\right)10=6+0+0=6$				
	17	$\left(\left\lfloor \frac{17 - 10}{50} \right\rfloor + 1 \right) 6 + \left(\left\lfloor \frac{17 - 10}{50} \right\rfloor + 1 \right) 4 =$ $= 6 + 4 = 10$	$ \left(\left\lfloor \frac{17-10}{50} \right\rfloor + 1 \right) 6 + \left(\left\lfloor \frac{17-17}{50} \right\rfloor + 1 \right) 7 \right) $ $ + \left(\left\lfloor \frac{17-17}{50} \right\rfloor + 1 \right) 5 = 6 + 7 + 5 = 18 $	$\left(\left\lfloor \frac{17 - 10}{50} \right\rfloor + 1 \right) 6 + \left(\left\lfloor \frac{17 - 17}{50} \right\rfloor + 1 \right) 7 + $ $+ \left(\left\lfloor \frac{17 - 25}{50} \right\rfloor + 1 \right) 10 = 6 + 7 + 0 = 13$				
	25	$\left(\left\lfloor \frac{25 - 10}{50} \right\rfloor + 1 \right) 6 + \left(\left\lfloor \frac{25 - 10}{50} \right\rfloor + 1 \right) 4 =$ $= 6 + 4 = 10$	$\left(\left\lfloor \frac{25 - 10}{50} \right\rfloor + 1 \right) 6 + \left(\left\lfloor \frac{25 - 17}{50} \right\rfloor + 1 \right) 7 + $ $+ \left(\left\lfloor \frac{25 - 17}{50} \right\rfloor + 1 \right) 5 = 6 + 7 + 5 = 18$	$\left(\left\lfloor \frac{25 - 10}{50} \right\rfloor + 1 \right) 6 + \left(\left\lfloor \frac{25 - 17}{50} \right\rfloor + 1 \right) 7 + \left(\left\lfloor \frac{25 - 25}{50} \right\rfloor + 1 \right) 10 = 6 + 7 + 10 = 23$				