
1

Dahlberg/JohanssonLow level programming and Exception handling in Ada95

Low level programming and

Exception handling in Ada95

� Assignment 8 (from last exercise class)

� Big and Little Endian representation

� Assignments 27 and 28

� Exception handling, short presentation

� Assignments 23

E2-EDA222 1

Assignments 23

� Lab Related Issues

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Assignment 8

Three integer variables is shared by several tasks. Write an ADA package

Notice_Board containg read and write operations by concurrent tasks, for

these variables. The following type is declared:these variables. The following type is declared:

type var_num is range 1 .. 3;

The package shall include the following procedures:

procedure read (num : in var_num; value : out integer)

-- Returns value of variable denoted by ’var_num’.

-- Block the calling task if the variable

-- not have been previously assigned through ’write’.

procedure write (num : in var_num; value : in integer)

-- Assign ’value’ to variable denoted by ’var_num’.

2

-- Assign ’value’ to variable denoted by ’var_num’.

Write operations are mutual exclusive for a particular variable, i.e writing

one variable should not block operations on another variable. Hint: Create a

protected object for each variable).

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Step 1, the specification

package Notice_Board is

type Var_Num is range 1 .. 3;

procedure read(Num : in Var_Num; Value : out Integer);

procedure write(Num : in Var_Num; Value : in Integer);

end Notice_Board;

3

Goes to specification file, e.g. ”Notice_Board.ads”

Declarations are visible throughout the application

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Step 2,

declarations

package body Notice_Board is

protected type Protected_Int is

entry Read(Value : out Integer);

procedure Write(Value : in Integer);

Goes to declaration file, e.g. ”Notice_Board.adb”

Details the implementation, also contains locals i.e. visible inside but not

outside the package and ”privates”, i.e. unique copies for every object

instance.

procedure Write(Value : in Integer);

private

X : Integer := 0;

Written : Boolean := False;

end Protected_Int;

protected body Protected_Int is

-- implementation of entry ‘Read’ and local procedure ‘Write’ (protected)

end Protected_Int;

-- multiple instances of the protected object...

4

type Protected_Int_List is array (Var_Num) of Protected_Int;

Board_Variables : Protected_Int_List;

-- Exported (visible) procedures

procedure read(Num : in Var_Num; Value : out Integer) is

... –- implementation of procedure ‘Read’ globally visible

procedure write (Num : in Var_Num; Value : in Integer) is

... –- implementation of procedure ‘Write’ globally visible

end Notice_Board;

2

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Step 3, protected details

protected body Protected_Int is

entry Read(Value : out Integer) when Written is

begin

Value := X;

end;

procedure Write(Value : in Integer) is

begin

X := Value;

Written := True;

end;

end Protected_Int;

5

Note that ’Value’ is unique for every instance of the

Protected_Int object.

The choice of an entry for Read is motivated by the

required guard (Written).

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Step 4, globally visible procedure details

procedure Read(Num : in Var_Num; Value : out Integer) is

begin

Board_Variables(Num).Read(Value);

end;

procedure Write (Num : in Var_Num; Value : in Integer) is

begin

Board_Variables(Num).Write(Value);

end;

6

’Num’ indicates the actual instance of the protected object

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

package body Notice_Board is

protected type Protected_Int is

entry Read(Value : out Integer);

procedure Write(Value : in Integer);

private

X : Integer := 0;

Written : Boolean := False;

end Protected_Int;

package Notice_Board is

type Var_Num is range 1 .. 3;

procedure read(Num : in Var_Num; Value : out Integer);

procedure write(Num : in Var_Num; Value : in Integer);

end Notice_Board;

protected body Protected_Int is

entry Read(Value : out Integer) when Written is

begin

Value := X;

end;

procedure Write(Value : in Integer) is

begin

X := Value;

Written := True;

end;

end Protected_Int;

7

type Protected_Int_List is array (Var_Num) of Protected_Int;

Board_Variables : Protected_Int_List;

procedure read(Num : in Var_Num; Value : out Integer) is

begin

Board_Variables(Num).Read(Value);

end;

procedure write (Num : in Var_Num; Value : in Integer) is

begin

Board_Variables(Num).Write(Value);

end;

end Notice_Board;

Dahlberg/JohanssonIntroduction to Ada95, tasks and protected objects

Recommended home work...

Eloborate on the following assignments..

1-51-5

Will get you started and going with the IDE and

ada95 taking mechanisms.

6

Learn how to make a set of procedures ”generic”

simply by using types.

7

8

A simple exercise on protected objects.

10

Preparations for the laboratory assignments.

3

Dahlberg/Johansson

Big and Little Endian representation
� Endianness is the ordering used to represent some kind of data.

� Let a 8-bit register as follows:

Low level programming and Exception handling in Ada95

� Inside Memory how to represent the nibbles (4 bits): 2 ways

bit bit bit bit bit bit bit bit

7 6 5 4 3 2 1 0

bit bit bit bit bit bit bit bit Little Endian

E2-EDA222 9

bit bit bit bit bit bit bit bit

7 6 5 4 3 2 1 0

bit bit bit bit bit bit bit bit

7 6 5 4 3 2 1 0

Big Endian (ADA 95)

Little Endian

Dahlberg/JohanssonLow level programming and Exception handling in Ada95

Assignment 27
Assume the following declarations:

-- nybble.ads

with System.Storage_elements;

package NYBBLE is

type BYTE is range 0..255; -- Named type and min..max values

type HIGH_NIBBLE_TYPE is range 0..15; -- Named type and min..max valuestype HIGH_NIBBLE_TYPE is range 0..15; -- Named type and min..max values

type LOW_NIBBLE_TYPE is range 0..15; -- Named type and min..max values

type NIBBLES is

record

high_nibble: HIGH_NIBBLE_TYPE;

low_nibble : LOW_NIBBLE_TYPE;

end record;

for NIBBLES use

record

high_nibble at 0 range 0..3; -- means b7-b4 in big endian

low_nibble at 0 range 4..7; -- means b3-b0 in big endian

end record;

E2-EDA222 10

end record;

D_reg: BYTE;

for D_reg’address use constant System.address :=
System.Storage_elements.to_address(16#FFFFFF15#);

procedure wnibble (W : HIGH_NIBBLE_TYPE);

procedure wnibble (W : LOW_NIBBLE_TYPE);

end NYBBLE;

Dahlberg/JohanssonLow level programming and Exception handling in Ada95

Assignment 27, cont’d

We now want a “single” procedure wnibble(..) to write either
the high nybble or the low nybble of a byte to the register the high nybble or the low nybble of a byte to the register
located at FFFFFF15. Show how to do this using function
overloading and unchecked conversions.

E2-EDA222 11

Dahlberg/Johansson

Solution 27 (nybble.adb)
with unchecked_conversion;

package body NYBBLE is

function to_byte is new unchecked_conversion(LOW_NIBBLE_TYPE, BYTE);

function to_byte is new unchecked_conversion(HIGH_NIBBLE_TYPE, BYTE);

Low level programming and Exception handling in Ada95

function to_byte is new unchecked_conversion(HIGH_NIBBLE_TYPE, BYTE);

procedure wnibble (W : LOW_NIBBLE_TYPE) is

begin

D_reg := to_byte(W);

end;

procedure wnibble (W : HIGH_NIBBLE_TYPE) is

begin

D_reg := to_byte(W);

end;

end NYBBLE;

E2-EDA222 12

4

Dahlberg/JohanssonLow level programming and Exception handling in Ada95

Assignment 28

Assume two eight bit registers available at address FFFFFF03h and FFFFFFF05h in
memory space.

The first register, called DATA, holds a character supplied by an external device. The first register, called DATA, holds a character supplied by an external device.

The second register STATUS has a single read-only “sticky-bit” RxRdy

which is set (1) each time the data register is filled with a new value

the bit is reset (0) by the peripheral device when the data register is read.

Remaining bits in this registers are always read as 0.

Write a

E2-EDA222 13

Write a

procedure ReadRegister (valid : out BOOLEAN; data :out BYTE)

that either returns with “fresh” data (valid=TRUE) or “old” data (valid=FALSE).

Dahlberg/Johansson

Solution 28
type BYTE is range 0..255;

DATA, STATUS : BYTE;

for DATA’address use constant System.address := System.Storage_elements.to_address(16#FFFFFF03#);

for STATUS’address use constant System.address :=System.Storage_elements.to_address(16#FFFFFF05#);

Low level programming and Exception handling in Ada95

pragma Volatile(STATUS);

pragma Volatile(DATA);

procedure ReadRegister(valid : out BOOLEAN; data: out BYTE) is

begin

if STATUS /= 0

-- “fresh” data

valid := TRUE;

elseelse

valid := FALSE;

end if;

data = DATA;

end ReadRegister;

E2-EDA222 14

Pragma Volitile(variable_name) enables compiler to supress optimization

Dahlberg/JohanssonLow level programming and Exception handling in Ada95

Exception handling

procedure X is

beginbegin

-- your code goes here as usual

exception

when Some_Exception =>

Do_This;

end X;

E2-EDA222 15

Your program should be designed to handle even

the unlikely events.

Dahlberg/JohanssonLow level programming and Exception handling in Ada95

Some_Exception

Exceptions are either system defined or application

defined. Important system defined exceptions are:

� Constraint_Error - This will occur if something goes out of its assigned range.

� Numeric_Error - This will occur if something goes wrong with arithmetic such as

the attempt to divide by zero.

� Program_Error - This will occur if we attempt to violate an Ada control structure

such as dropping through the bottom of a function without a return.

� Storage_Error - This will occur if we run out of storage space through either

recursive calls or storage allocation calls.

E2-EDA222 16

recursive calls or storage allocation calls.

� Tasking_Error - This will occur when attempting to use some form of tasking in

violation of the rules.

5

Dahlberg/JohanssonLow level programming and Exception handling in Ada95

Some_Exception

While system defined exceptions are pre-declared,
your application defined exception has (of course)
to be declared:to be declared:

procedure X is

My_Own_Exception : exception;

begin

-- your code goes here as usual

exception

E2-EDA222 17

exception

when My_Own_Exception =>

Do_This;

end X;

Dahlberg/JohanssonLow level programming and Exception handling in Ada95

Raising exceptions
System defined exceptions are normally raised by the

run-time (or operating) system. For example:

procedure X is

...

begin

A := B/C; -- what if C = 0 ?

exception

when Numeric_Error =>

Do_This;

end

E2-EDA222 18

end X;

Execution is aborted when C = 0. Since there is an exception handler

’Do_This’ will immediatly be executed.

Dahlberg/JohanssonLow level programming and Exception handling in Ada95

Raising exceptions

While system defined exceptions are raised by the run-
time (or operating) system, any exception can be
raised by a program:raised by a program:

procedure X is

...

My_Own_Exception : exception;

begin

if C = 0

raise My_Own_Exception

A := B/C;

E2-EDA222 19

A := B/C;

exception

when My_Own_Exception =>

Do_This;

end X;

Dahlberg/JohanssonLow level programming and Exception handling in Ada95

Unhandled exceptions

Any exception, not handled within the scope it occured,

will be propagated to the next higher level.

procedure main is

...

Y;

end main;

procedure Y is

...

X;

end Y;

procedure X is

...

A:=B/C;

end X;

E2-EDA222 20

It will, if not handled by the application propagate to the system,

resulting in some confusing printout such as

’Unhandled exception, program terminated’.

end X;

6

Dahlberg/JohanssonLow level programming and Exception handling in Ada95

Unhandled exceptions
As a minimum requirement, your top level procedure

should handle any exception.

procedure main is

...

Y;

exception

when ...

end main;

E2-EDA222 21

Resulting in a (hopefully) less confusing printout.

Dahlberg/JohanssonLow level programming and Exception handling in Ada95

Simple exception handling
Exception handling is strictly application dependant. But at early

software development stages, a simple printout is sufficient

exception

when Error : E1 |E2 ... =>

Put ("The exception was ");

Put_Line (Exception_Name(Error));

E2-EDA222 22

Ada.Exceptions defines a data type called Exception_Occurrence and provides a function

called Exception_Name which produces the name of the exception as a string from an

Exception_Occurrence.

Dahlberg/JohanssonLow level programming and Exception handling in Ada95

Exceptions during elaboration
Exception handling can inhibit the execution of a procedure or a

function, consider the following example:

procedure Impossible is

VALUE : constant := 8;VALUE : constant := 8;

subtype LIMIT_RANGE is INTEGER range 14..33;

Funny : LIMIT_RANGE := VALUE;

begin

Put_Line(“You will never see this printout");

exception

when Constraint_Error =>

Put_Line("Constraint error occurred");

E2-EDA222 23

Put_Line("Constraint error occurred");

end Impossible ;

Dahlberg/JohanssonLow level programming and Exception handling in Ada95

Assignment 23.

Ada95 allows the application programmer to define any handling of

exceptional events. Give an example of how you, as the programmer

should handle the first instance of a particular exception, but would

propagate a second occurrence of the same exception.

E2-EDA222 24

7

Dahlberg/JohanssonLow level programming and Exception handling in Ada95

Assignment 23.

Proposed solution:

......

exception

when My_Recoverable_Exception =>

begin -- attempt recovery

Recover;

exception

when My_Recoverable_Exception =>

Abandon; -- recovery failed!

end;

E2-EDA222 25

end;

Dahlberg/Johansson

Lab Related Issues…

Low level programming and Exception handling in Ada95

• How many tracks?

• What are the shared tracks?

• Resource Handler and

Exceptions

E2-EDA222 26

Dahlberg/JohanssonLow level programming and Exception handling in Ada95

Recommended home work...

2121

Exception handling (provide diagnostics).

24,25,26

Type declarations and basic IO programming.

E2-EDA222 27

