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Low level programming and 

Exception handling in Ada95

� Assignment 8 (from last exercise class)

� Big and Little Endian representation

� Assignments 27 and 28

� Exception handling, short presentation

� Assignments 23
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Assignments 23

� Lab Related Issues
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Assignment 8

Three integer variables is shared by several tasks. Write an ADA package 

Notice_Board containg read and write operations by concurrent tasks, for 

these variables. The following type is declared:these variables. The following type is declared:

type var_num is range 1 .. 3;

The package shall include the following procedures: 

procedure read (num : in var_num; value : out integer)

-- Returns value of variable denoted by ’var_num’.

-- Block the calling task if the variable

-- not have been previously assigned through ’write’.

procedure write (num : in var_num; value : in integer)

-- Assign ’value’ to variable denoted by ’var_num’.
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-- Assign ’value’ to variable denoted by ’var_num’.

Write operations are mutual exclusive for a particular variable, i.e writing 

one variable should not block operations on another variable. Hint: Create a 

protected object for each variable). 
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Step 1, the specification

package Notice_Board is

type Var_Num is range 1 .. 3;

procedure read( Num : in Var_Num; Value : out Integer);

procedure write( Num : in Var_Num; Value : in Integer);

end Notice_Board;
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Goes to specification file, e.g. ”Notice_Board.ads”

Declarations are visible throughout the application
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Step 2, 

declarations

package body Notice_Board is

protected type Protected_Int is

entry Read( Value : out Integer);

procedure Write( Value : in Integer);

Goes to declaration file, e.g. ”Notice_Board.adb”

Details the implementation, also contains locals i.e. visible inside but not 

outside the package and ”privates”, i.e. unique copies for every object 

instance.

procedure Write( Value : in Integer);

private

X : Integer := 0;

Written : Boolean := False;

end Protected_Int;

protected body Protected_Int is

-- implementation of entry ‘Read’ and local procedure ‘Write’ (protected)

end Protected_Int;

-- multiple instances of the protected object... 
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type Protected_Int_List is array (Var_Num) of Protected_Int;

Board_Variables : Protected_Int_List;

-- Exported (visible) procedures

procedure read( Num : in Var_Num; Value : out Integer) is

... –- implementation of procedure ‘Read’ globally visible

procedure write ( Num : in Var_Num; Value : in Integer) is

... –- implementation of procedure ‘Write’ globally visible

end Notice_Board;
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Step 3, protected details

protected body Protected_Int is

entry Read(Value : out Integer) when Written is

begin

Value := X;

end;

procedure Write(Value : in Integer) is

begin

X := Value;

Written :=  True;

end;

end Protected_Int;
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Note that ’Value’ is unique for every instance of the 

Protected_Int object.

The choice of an entry for Read is motivated by the 

required guard (Written).
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Step 4, globally visible procedure details

procedure Read( Num : in Var_Num; Value : out Integer) is

begin

Board_Variables(Num).Read(Value);

end;

procedure Write ( Num : in Var_Num; Value : in Integer) is

begin

Board_Variables(Num).Write(Value);

end;
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’Num’ indicates the actual instance of the protected object
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package body Notice_Board is

protected type Protected_Int is

entry Read( Value : out Integer);

procedure Write( Value : in Integer);

private

X : Integer := 0;

Written : Boolean := False;

end Protected_Int;

package Notice_Board is

type Var_Num is range 1 .. 3;

procedure read( Num : in Var_Num; Value : out Integer);

procedure write( Num : in Var_Num; Value : in Integer);

end Notice_Board;

protected body Protected_Int is

entry Read(Value : out Integer) when Written is

begin

Value := X;

end;

procedure Write(Value : in Integer) is

begin

X := Value;

Written :=  True;

end;

end Protected_Int;
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type Protected_Int_List is array (Var_Num) of Protected_Int;

Board_Variables : Protected_Int_List;  

procedure read( Num : in Var_Num; Value : out Integer) is

begin

Board_Variables(Num).Read(Value);

end;

procedure write ( Num : in Var_Num; Value : in Integer) is

begin

Board_Variables(Num).Write(Value);

end;

end Notice_Board;
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Recommended home work...

Eloborate on the following assignments..

1-51-5

Will get you started and going with the IDE and 

ada95 taking mechanisms.

6

Learn how to make a set of procedures ”generic” 

simply by using types.
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8

A simple exercise on protected objects.
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Preparations for the laboratory assignments.
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Big and Little Endian representation
� Endianness is the ordering used to represent some kind of data.

� Let a 8-bit register as follows:

Low level programming and Exception handling in Ada95

� Inside Memory how to represent the nibbles (4 bits): 2 ways

bit bit bit bit bit bit bit bit

7 6 5 4 3 2 1 0

bit bit bit bit bit bit bit bit Little Endian
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bit bit bit bit bit bit bit bit

7 6 5 4 3 2 1 0

bit bit bit bit bit bit bit bit

7 6 5 4 3 2 1 0

Big Endian (ADA 95)

Little Endian
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Assignment 27
Assume the following declarations:

-- nybble.ads

with System.Storage_elements;

package NYBBLE is

type BYTE is range 0..255; -- Named type and min..max values

type HIGH_NIBBLE_TYPE  is range 0..15; -- Named type and min..max valuestype HIGH_NIBBLE_TYPE  is range 0..15; -- Named type and min..max values

type LOW_NIBBLE_TYPE is range 0..15; -- Named type and min..max values

type NIBBLES  is

record

high_nibble: HIGH_NIBBLE_TYPE;

low_nibble : LOW_NIBBLE_TYPE;

end record;

for NIBBLES use

record

high_nibble at 0 range 0..3; -- means b7-b4 in big endian

low_nibble  at 0 range 4..7; -- means b3-b0 in big endian

end record;
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end record;

D_reg: BYTE;

for D_reg’address use constant System.address := 
System.Storage_elements.to_address(16#FFFFFF15#);

procedure wnibble ( W : HIGH_NIBBLE_TYPE );

procedure wnibble ( W : LOW_NIBBLE_TYPE ); 

end NYBBLE;
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Assignment 27, cont’d

We now want a “single” procedure wnibble(..) to write either 
the high nybble or the low nybble of a byte to the register the high nybble or the low nybble of a byte to the register 
located at FFFFFF15. Show how to do this using function 
overloading and unchecked conversions.
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Solution 27 (nybble.adb)
with unchecked_conversion;

package body NYBBLE is

function to_byte is new unchecked_conversion( LOW_NIBBLE_TYPE, BYTE );

function to_byte is new unchecked_conversion( HIGH_NIBBLE_TYPE, BYTE );
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function to_byte is new unchecked_conversion( HIGH_NIBBLE_TYPE, BYTE );

procedure wnibble ( W : LOW_NIBBLE_TYPE ) is

begin

D_reg := to_byte( W );

end;

procedure wnibble ( W : HIGH_NIBBLE_TYPE ) is

begin

D_reg := to_byte( W );

end;

end NYBBLE;
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Assignment 28

Assume two eight bit registers available at address FFFFFF03h and FFFFFFF05h in 
memory space. 

The first register, called DATA, holds a character supplied by an external device. The first register, called DATA, holds a character supplied by an external device. 

The second register STATUS has a single read-only “sticky-bit” RxRdy 

which is set (1) each time the data register is filled with a new value 

the bit is reset (0) by the peripheral device when the data register is read. 

Remaining bits in this registers are always read as 0. 

Write a 
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Write a 

procedure ReadRegister ( valid : out BOOLEAN; data :out BYTE)

that either returns with “fresh” data (valid=TRUE) or “old” data (valid=FALSE).
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Solution 28
type BYTE is range 0..255;

DATA, STATUS : BYTE;

for DATA’address use constant System.address := System.Storage_elements.to_address(16#FFFFFF03#);

for STATUS’address use constant System.address :=System.Storage_elements.to_address(16#FFFFFF05#);
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pragma Volatile( STATUS );

pragma Volatile( DATA );

procedure ReadRegister(valid : out BOOLEAN; data: out BYTE) is

begin

if STATUS /= 0

-- “fresh” data

valid := TRUE;

elseelse

valid := FALSE; 

end if;

data = DATA;

end ReadRegister;
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Pragma Volitile(variable_name) enables compiler to supress optimization
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Exception handling

procedure X is

beginbegin

-- your code goes here as usual 

exception

when Some_Exception => 

Do_This; 

end X; 
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Your program should be designed to handle even 

the unlikely events.
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Some_Exception

Exceptions are either system defined or application 

defined. Important system defined exceptions are:

� Constraint_Error - This will occur if something goes out of its assigned range. 

� Numeric_Error - This will occur if something goes wrong with arithmetic such as 

the attempt to divide by zero. 

� Program_Error - This will occur if we attempt to violate an Ada control structure 

such as dropping through the bottom of a function without a return. 

� Storage_Error - This will occur if we run out of storage space through either 

recursive calls or storage allocation calls. 
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recursive calls or storage allocation calls. 

� Tasking_Error - This will occur when attempting to use some form of tasking in 

violation of the rules. 
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Some_Exception

While system defined exceptions are pre-declared, 
your application defined exception has (of course) 
to be declared:to be declared:

procedure X is

My_Own_Exception : exception;

begin

-- your code goes here as usual 

exception
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exception

when My_Own_Exception => 

Do_This; 

end X; 
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Raising exceptions
System defined exceptions are normally raised by the 

run-time (or operating) system. For example:

procedure X is

...

begin

A := B/C; -- what if C = 0 ?

exception

when Numeric_Error => 

Do_This; 

end
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end X; 

Execution is aborted when C = 0. Since there is an exception handler 

’Do_This’ will immediatly be executed.
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Raising exceptions

While system defined exceptions are raised by the run-
time (or operating) system, any exception can be 
raised by a program:raised by a program:

procedure X is

...

My_Own_Exception : exception;

begin

if C = 0

raise My_Own_Exception

A := B/C;
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A := B/C;

exception

when My_Own_Exception => 

Do_This; 

end X; 
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Unhandled exceptions

Any exception, not handled within the scope it occured, 

will be propagated to the next higher level.

procedure main is

...

Y;

end main; 

procedure Y is

...

X;

end Y; 

procedure X is

...

A:=B/C;

end X; 
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It will, if not handled by the application propagate to the system, 

resulting in some confusing printout such as

’Unhandled exception, program terminated’.

end X; 
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Unhandled exceptions
As a minimum requirement, your top level procedure 

should handle any exception.

procedure main is

...

Y;

exception

when ... 

end main; 
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Resulting in a (hopefully) less confusing printout.
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Simple exception handling
Exception handling is strictly application dependant. But at early 

software development stages, a simple printout is sufficient

exception

when Error : E1 |E2 ... => 

Put ("The exception was "); 

Put_Line ( Exception_Name(Error) );
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Ada.Exceptions defines a data type called Exception_Occurrence and provides a function 

called Exception_Name which produces the name of the exception as a string from an 

Exception_Occurrence. 
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Exceptions during elaboration
Exception handling can inhibit the execution of a procedure or a 

function, consider the following example:

procedure Impossible is

VALUE : constant := 8;VALUE : constant := 8;

subtype LIMIT_RANGE is INTEGER range 14..33;

Funny : LIMIT_RANGE := VALUE;

begin

Put_Line(“You will never see this printout");

exception

when Constraint_Error =>

Put_Line("Constraint error occurred");
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Put_Line("Constraint error occurred");

end Impossible ;
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Assignment 23.

Ada95 allows the application programmer to define any handling of 

exceptional events. Give an example of how you, as the programmer 

should handle the first instance of a particular exception, but would 

propagate a second occurrence of the same exception.
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Assignment 23.

Proposed solution:

......

exception

when My_Recoverable_Exception =>

begin -- attempt recovery

Recover;

exception

when My_Recoverable_Exception =>

Abandon; -- recovery failed!

end;
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end;
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Lab Related Issues…

Low level programming and Exception handling in Ada95

• How many tracks?

• What are the shared tracks?

• Resource Handler and  

Exceptions
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Recommended home work...

2121

Exception handling (provide diagnostics).

24,25,26

Type declarations and basic IO programming.
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