Quick Ada

1 The history of Ada
o 2 Sample programs
e 3 Lexical conventions, contents

o 4 Basicstypes of Ada, contents

o 5 Control Structures, contents

o B6Arrays, contents

o 7 Records, contents

« 8 Subprograms contents

o 9 Packages, contents

« - 10 Generics, contents

o 11 Exceptions, contents

e 12 Files, contents

o 13 Accesstypes, contents
o 14 Object Oriented features of Ada
o 15 Concurrency support, contents

o 16 Language interfaces, contents

o 17 ldioms, contents

o 18 Designing Ada programs, contents

o Appendix A Text 10 package

o Appendix B Sequential 10 package

o Appendix C Direct 10 package

RMIT specific information
o Appendix D Text package package

o "Appendix E Smple io package
o Appendix F GNAT Ada
o Appendix G RMIT Adaresources

Copyright Dale Stanbrough

They may be used freely, but they must not be resold, either in part or in whole, without permisssion.
Emalil: dale@rmit.edu.au

http://goanna.cs.rmit.edu.au/~dale/ada/aln.html [10/14/2000 12:54:39 PM]

mailto:dale@rmit.edu.au

The postscript filesfor the notes... (and don't i just wish they werein onefilel).

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18

http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/index.html [10/14/2000 12:54:42 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript1.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript2.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript3.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript4.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript5.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript6.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript7.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript8.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript9.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript10.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript11.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript12.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript13.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript14.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript15.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript16.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript17.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript18.ps.gz

1 The history of Ada

Overview

An understanding of the reasons why Ada was developed and the history of its development gives an
appreciation of the language and its future.

History of Ada.

In 1974 the US Department of Defence (DoD) realised that it was spending too much time, effort and
money devel oping and maintaining embedded computer systems (systems stuck in hardware e.g. missile
guidance systems).

At thistime over 450 different languages or language extensions were in use. Thisincreased the time and
costs for developing new systems and in continually retraining people to become familiar with existing
systems. Maintenance was also hampered by the lack of standardisation of support tools (editors,
compilers etc). All these factors led to the DoD realising it needed a single powerful language that could
be used by all embedded computer suppliers.

The developement work began in 1975 with the DoD producing alist of language requirements which
was widely circulated; however no existing language specified the criteriaso in 1977 DoD requested
proposals for a new language. Unlike committee languages such as COBOL, the new language was the
subject of a competition and extensive industry and academic review.

Of numerous entries four were selected for further refinement. This was later cut down to two competing
entries from which one was finally selected from the company Cii-Honeywell Bull. This language was
christened Ada. The design team was led by Jean Ichbiah who had overall control over the language.

In 1983 the language became an ANSI standard ANSI/MIL-STD-1815A. It became an 1SO standard the
following year. The language is defined in areference manual often referred to asthe LRM. References
to this manual occur often in books on the language, and in many compiler error messages. Thisbook is
recommended for any Ada site; although hard to read it is the final authority for any Ada question (an
ongoing group has been formed to clarify any inconsistancies detected in the language).

The language has since undergone revision, with 1SO standardisation of the new standard achieved in
early 1995. This new Ada fixes many of the flawsin the original language, and extends it in many useful

ways.

To prevent the proliferation of various imcompatable versions of Adathe Ada Joint Program Office (the
body set up for control of the language) took a very novel position - they trademarked the name Ada.

Y ou were not allowed to market "Ada"' compilers unless they have passed a compliance test. This has
subsequently been relaxed, the protected term now being "Validated Ada.

The resulting Ada validation certificate is limited in duration and has an expiry date. Once it expires the

http://goanna.cs.rmit.edu.au/~dale/ada/aln/1_history.html (1 of 2) [10/14/2000 12:55:02 PM]

compiler can no longer be marketed as a "Validated Ada’ compiler. In thisway the AJPO has ensured
that al currently marketed compilers comply with the current standards.

The am isto ensure that any Ada program can be compiled on any system - in this regard the AJPO has
succeeded better than many other language groups.

Design Goals

From the Ada LRM:
"Adawas designed with three overriding concerns: program reliability and maintenance, programming as
a human activity, and efficiency"

Of note is the sentence, also from the LRM:
"Hence emphasis was placed on program readability over ease of writing".

These design goals can be seen in the language. It has strong typing and enforcabl e abstractions which
have shown to increase reliability and ease maintenance.

It eschews cryptic syntax for a more verbose English style for the sake of readability (readability,
programming as a human activity). Also almost all constructs can be efficiently implemented.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/1_history.html (2 of 2) [10/14/2000 12:55:02 PM]

2 Sample programs

Overview

This chapter shows afew simple programsto give the 'feel’ of an Ada program.

Simple programs

One of Ada's major philosophiesis encapsulation. All of the standard /O routines come presupplied in packages that can be
included in a program. The following examples use the text_io package.

w th Ada. Text 1G use Ada. Text 1GQ

-- a package containing the"put |ine" procedure
procedure hello is -- candidate for the "main" procedure.
begi n

put _line("hello");
end;

Unlike C which has a function main, and Pascal which has a program, any parameterless procedure can be a"main™ routine.
The procedure thus designated is chosen at link time.

with Ada. Text |G use Ada. Text | QO
with Hell o;
-- include our previous procedure

procedure your _nane is

nane :string(1..100); -- 100 character array

| ast :nat ur al ; -- can only contain natural integers
begi n

put ("Hello what is your nanme? ");

get | ine(nane, | ast);

for i in 1..10 | oop -- i isinplicity declared

Hel | o;
put _line(" there " & nane(1l..last));
-- & string concatenation
-- nanme(l..last)- array slice

end | oop; -- control structure |abelled

end;

I nputting numbers requires the use of a package devoted to the task. A package to do this exists with all Adaimplementations.
Other simpler packages are often created within a site (see package simple_io in the appendices).

with Ada. Text |G use Ada. Text | O
wi th Ada.Integer_Text 1O use Ada.lnteger_Text 1O

procedure Age is

Age ;i nteger range 0..120;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/2_sample_programs.html (1 of 2) [10/14/2000 12:55:02 PM]

begi n
Put ("hell o, how old are you ? ");
Get (Age); -- mght cause an exception if val ue entered
--is outside range

if Age < 18 then
put line("ha! you' re just a baby");

elsif Age < 60 then -- note spelling of elsif
put | ine("working hard?");

el se
put line("Now take it easy old fella!");

end if;

exception
when constraint_error =>
put line("sorry only ages 0..120 are accepted");
end age; -- procedure nanme is optional at end;

to the index..

http://goanna.cs.rmit.edu.au/~dale/ada/aln/2_sample_programs.html (2 of 2) [10/14/2000 12:55:02 PM]

3 Lexical conventions

Overview

The lexical conventions describe the allowable character sequences that are used to create identifiers,
numbers and the special values used in the language. |mplementations must support 200 characters
lexical elements at the |east.

ldentifiers

Can be of any length (but can be restricted by an implementation).
Can only contain characters, digits and underscores
Must start with a character

Are case insensitive

E.Q.
Appl e, apple, APPLE -- sane identifier
Max Vel ocity Attai ned
M nor Nunmber -- illegal, trailing underscore
Mnor _Revision -- illegal, consecutive underscores
Literals

Literals are the typed representation of the values stored in the program.
Numeric literals can be broken up with non consecutive underscores as desired.

E.g. 5 101 456 isthe number 5101456
3.147 252 6

Numeric literals cannot end or start with an underscore.
Exponential notation is available for floats and integers

E.g. 2E6, 9E+4

Numeric literals can be represented in different bases (2-16).

E.g. 2#1011#, 10#45#, 16#Fe23#, 2411100.11001#

http://goanna.cs.rmit.edu.au/~dale/ada/aln/3_lexical_conventions.html (1 of 3) [10/14/2000 12:55:04 PM]

Float literals must have a digit either side of the radix point
E.g. 3.14, 100.0

Thus the numbers 100. or .034 are not valid float numbers.
Character literals are surrounded by single quotes
E.g.'d,'d

String literals are surrounded by double guotes

E.g. "Ada’, "literal", "embedded ""strings""!"

String literals cannot contain the tab character. String values can contain them, this can be achieved by
either concatenating strings and characters together, or directly inserting the character into the string.

Comments

Comments are introduced by the -- symbol and extend to the end of the line.

Reserved Words

abort el se new return
abs el sif not reverse
abstract* end nul |
accept entry sel ect
access exception separate
al i ased* exit of subt ype
al | or
and for ot hers tagged*
array function out t ask
at term nate
generi c package then
begi n got o pragma type
body private
if procedur e
case in pr ot ect ed* until*
const ant S use
rai se
decl are range when
del ay limted record while
delta | oop record while

http://goanna.cs.rmit.edu.au/~dale/ada/aln/3_lexical_conventions.html (2 of 3) [10/14/2000 12:55:04 PM]

digits r enanes
do nod requeue* xor

Reserved words followed by an asterisk have been introduced in Ada95.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/3_lexical_conventions.html (3 of 3) [10/14/2000 12:55:04 PM]

r i r i r i r i
') ')
r i r i r i r i
r ¥ r i r ¥ r i
r F r 3

goanna.cs.rmit.ed /~dale/ada/aln/3_lexical_conventions_ToC.html [10/14/2000

4 Basics types of Ada

Overview

This chapter introduces some of the types available in Adaas well as the operations available on and attributes of those types.

Types and subtypes

Al l types
El ement ary
Scal ar
Di screte
Uni ver sal i nt eger -- all integer
literals
Root i nt eger -- Ada95 only
Si gned i nt eger
Modul ar i nteger -- Ada95 nsighed types
Enuner ation
User defi ned
Char act er
Bool ean
Real
Uni ver sal _real -- all real literals
Root real -- Ada95 only
Fl oati ng poi nt
Fi xed poi nt
ordi nary fixed point
deci mal fi xed poi nt -- Ada 95 only
Access
Access-t 0- obj ect
Access-t o- subprogram -- Ada 95 only
Conposite
Array
String
O her array
Unt agged record
Tagged record -- Ada95
Task
Protected -- Ada95

Scalar types

The predefined package Standard contains declarations for the standard types such as integer, float, character and boolean, as well as
(notionally) defining the operations available on them.

All numeric literals belong to the class universal _integer or universal_float. Many of the attributes of the language (discussed later)

http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types.html (1 of 7) [10/14/2000 12:55:07 PM]

also return auniversal value. These universal types are compatable with any corresponding integer, float or fixed type.

E.Q.

Max_Custonmers : constant := 10 000; -- 10_000 is a "universal integer"
-- It is not of type "integer"

Subtypes can be created in Ada by restricting an existing type, by defining a new type based on an existing type or by enumerating
the possible values of the type. A discussion of how to create these new types follows alook at the predefined types and their
attributes.

The following operations are defined for all scalar types.

e Equality, inequality
e =l e =
[

n, not in Range nenbership text

Integer types

The following are examples of integer declarations. Here the standard predefined integer type is used.

Count . I nteger;

XY, Z : Integer;

Amount . Integer := 0O;

Unity . constant Integer := 1,

Speed_OF _Light : constant := 300_000; -- type universal _integer
A Mont h : Integer range 1..12;

subtype Months is Integer range 1..12; -- arestricted integer

-- subtypes are conpatable with their base type (here integer)
-- i.e. variables of type month can be m xed with integer variabl es

type File Id is new Integer; -- a newinteger famly derived
-- fromtype integer;

type result_range is new I nteger range 1..20_000;
-- a derived type with a constraint

type other result range is range 1..100 000;
-- a type derived fromroot integer
-- the conpil er chooses an appropriate sized integer to suit the range.

The following operators are also defined for all integer types.

L

A Exponenti ation (integer exponent only)
nod Modul us

rem Remai nder

abs Absol ute val ue

Floating point types

The following are examples of floating point declarations. Floating point numbers have arelative error.

X . float;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types.html (2 of 7) [10/14/2000 12:55:07 PM]

A 701G . float;
pi . constant float := 3.14 2;
Avogadr o . constant := 6.027E23; -- type universal fl oat

subt ype tenperatures is float range 0.0..100. 0;
type result is new float range 0.0..20 000. 0;

type Velocity is new Fl oat;

type Height is new Float;

-- can't accidentally mx velocities and hei ghts w thout an explicit
-- type conversion.

type Time is digits 6 range 0.0..10 _000. O;
-- 'six decimal digits of accuracy required, in this range.

type Degrees is digits 2 range -20.00..100.00;
-- two decimal digits of accuracy required.

The following operators are also defined for all float types.

+’ *1 /) F
s Exponenti ati on (integer exponent only)
abs Absol ut e val ue

Fixed point types

The following are examples of fixed point declarations. Fixed point numbers have a bounded error, the absolute value of whichis
called the delta of the type.

type Volt is delta 0.125 range 0.0 .. 255.0;

type Fraction is delta System Fine Delta range -1.0..1.0; -- Ada9s
-- Fraction'last = 1.0 - System Fine_Delta

type Money is delta 0.01 digits 15; -- decimal fixed point
subtype Salary is Mney digits 10;

The last example shows the usefulness of fixed point types - the ability to specify exactly how accurate the type should be. This
allows control over facilities such as errors in rounding expressions, for example.

Enumeration types

An enumeration type is defined by listing all the possible values of the type.

type Conputer Language is (Assenbler, Cobol, Lisp, Pascal, Ada);
type C Letter_ Languages is (Cobol, ©O;

Values of this type can be defined as follows:

a_| anguage . conput er _| anguage;

early | anguage : ‘conputer | anguage : = cobol;

first_| anguage : constant conputer | anguage := assenbl er;
exanpl e . c_letter_language : = cobol;

Note that Ada can distinguish between enumeration literals from different typesin most cases by examining the context. If thisis not

http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types.html (3 of 7) [10/14/2000 12:55:07 PM]

possible then type qualification must be used.
Enumeration types are useful to encode simple control codes used internally in a program.

There are two predefined enumerated typesin the package STANDARD, the type character and the type boolean.

Booleans

The two values of boolean variablesis true and false.

The following opeartors can be used with boolean types

and or not xor /= = 'and then' "or el se'

Adawill not allow an unparenthesied expression to contain both and's and or's. This decreases the likelihood of misreading the intent
of acomplicated boolean expression.

E.g.

(a <b) and (b >c) or (d < e) -- illegal

((a<b) and (b >¢c)) or (d<e) -- ok
Usually when evaluating a boolean expression, the compiler is free to rearrange the evaluation of the terms as it sees fit. Both terms
will be evaluated. For example in the following either term may be evaluated first.

if a<bandc >dthen ...

However in some instances we wish to evaluate the termsin a defined order, and stop evaluations as soon as the value of the
expression can be determined.

For example

if a/=0 and then b/a > 5.0 then .
Here we see if aisnon zero before further evaluation.

The'or else' statement is similar, only evaluation stops as soon as aterm evaluates to true. This can be useful, for example, in a
recursive search of atree.

E.Q.

return Present (Node. Left, Key) or el se Present(Node.Ri ght, Key);

Character

Ada83 initially had 7 bit characters. This restriction was eased before Ada95 arrived, but is still enforced by older compilers such as
the Meridian Ada compiler. This creates problems when attempting-to display graphic characters on a PC; generally you have to use
integersto display characters above Ascii 127, using specia routines supplied by the compiler vendor.

Adad5's Character type is based on Latin-1 and provides for 256 character positions. Ada95 also supports wide characters (1SO
10646 Basic Multilingual Plane (BMP)) and so all modern compilers can cope with 8 bit characters.

The 7 bit character set is described in the obsol ecent package Standard.Ascii. The 8 bit character set is described in the package
Standard. The package Ada.Characters.Latin_1 provides usable names for the characters.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types.html (4 of 7) [10/14/2000 12:55:07 PM]

Subtypes

We can restrict the range of values avariable can take by declaring a subtype with a restricted range of values (this corresponds to
Pascal's user defined types). Any attempt to place an out-of-range value into a variable of a subtype results in an exception (program
error). In thisway program errors can be discovered. The syntax for a subtype declaration is

subtype Name is Base_ Type;
subtype Nanme i s Base_Type range | owerbound . . upperbound;
Examples of declaring subtypes are given below.
type Processors is (Ms8000, 8086, i80386, Ms8030, Pentium PowerPC);

subtype A d _Processors is Processors range Ms8000. .i 8086;
subt ype New Processors is Processors range Pentium . Power PC;

subtype Data is Integer;

subtype Age is Data range 0 . . 140;
subt ype Tenperatures is Float range -50.0 .. 200.0;
subt ype Upper _Chars is Character range 'A .. 'Z;

Subtypes are compatable with their base types . They can be placed in the same place as any variable of the base type can. Also
variables of different subtypes that are derived from the same base type are compatable.

My _Age : ‘Age;

Hei ght : |Integer;
Hei ght : = My_Age; -- silly, but never causes a problem
My_Age : = Height; -- will cause a problemif height's

-- value is outside the range of
-- ny_age (0..140), but still
-- conpil abl e.

Derived types

When subtypes are created they are still compatabl e with their base type. Sometimes we may wish to create distinctly new types that
are not associated with the original type at all. This concept of typeis very different to that provided by Pascal.

To do this we create a derived type from a parent type using the following syntax

type Nanme i s new Parent Type;

type Nanme is new Parent _Type range | ower bound . . upper bound;
A derived typeis a completely new type and isincompatable with any other type, even those derived from the same parent type.
Derived types should be used when the modelling of a particular object suggests that the parent type is inappropriate, or you wish to

partition the objects into distinct and unmixable classes.

type Enpl oyee No i s new | nteger;

type Account No is new I nteger range 0..999 999;

Here employee no's and account_no's are distinct and unmixable, they cannot be combined together without using explicit type
conversion. Derived types inherit any operation defined on the base type. For example if arecord was declared that had procedures
push and pop, a derived type could be declared that would automatically have inherit the procedures.

Another important use of derived typesis to produce portable code. Ada allows us to create a new level of abstraction, onelevel

http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types.html (5 of 7) [10/14/2000 12:55:07 PM]

higher than, for example, the abstraction of Integer over a series of bits.

Thisis specified by using derived types, without a parent type.

type Nane is range <sone range>;

For example,

type Data is range 0..2_ 000 _000;

Here the compiler is responsible for choosing an appropriately sized integer type. On a PC, it would be a 32 bit size, equivalent to
long_integer. On a Unix workstation it would still be a 32 bit integer, but this would be equivalent to an integer. L etting the compiler
choose frees the programmer from having to choose. Compiling it on a new host does not require changing the source code.

Type conversion

Despite the usefullness of being able to create distinct types, there are still occasions where we wish to convert from one type to
another. One typical instance isto convert from one integer to float, or vice versa.

X | nt eger: = 4;
Y Fl oat ;

Y .= float(X);

X := 1nteger(Y);

This causes the compiler to insert the appropriate code for type conversion (if needed) as part of the trandlation.
Do not confuse this with unchecked conversions (covered later) which often perform no internal representation transformation.

It needs to be stressed however that types are created distinct for areason and that attempts to subvert the compiler's checks by
performing type conversions should be either discouraged or performed only when semantically meaningfull.

Type Qualification

In some situations an expression's or value's type can be ambiguous.

For example,
type primary is (red, green, blue);
type rainbow is (red, yellow green, blue, violet);

for i inred..blue loop -- this is anbi guous

Here we need to specify precisely what type is required. Thisis done with type qualification.

for i in rainbow (red)..rainbow (blue) |oop
for i in rainbow (red)..blue loop -- only one qualification needed
for i in primary' (red)..blue |oop

Type qualification does not change a value's type. It merely informs the compiler of what type the programmer thinks it should be.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types.html (6 of 7) [10/14/2000 12:55:07 PM]

Attributes

Adaalso provides the ability to enquire about atype or object from within the code by using attributes. Some of the attributes for
discrete types are

I nteger' first -- the small est Integer

I nt eger’ | ast -- the largest integer

Processors' succ(M8000) -- successor of the M8000

Upper _Chars' pred('C) -- the predecessor of 'C ('B)

| nt eger' i mage(67) -- the string " 67" --.space for a '-'
| nt eger’ val ue("67") -- the integer 67.

Processors' pos(M8030) -- the position of Ms8030 in the type.

-- (3, position 0 is first).

An example of the use of an attribute is

subtype Positive is Integer range 1..Integer'l ast;
Here we achieve amaximal positive integer range without introducing any system dependent features.

In Ada83 non discrete types such as float, fixed and all their subtypes and derived types, the concepts of pred, succ and pos do not
have meaning. In Ada95 they do. All other scalar attributes apply to the real types.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types.html (7 of 7) [10/14/2000 12:55:07 PM]

1. 4 Basicstypes of Ada

Overview
Types and subtypes

Scalar types
Integer types

Floating point types

Fixed point types

Enumeration types

Booleans

£0 MO0 OO By 0 LN T

Character

Subtypes
. Derived types

N
T

[EEN
N

. Type conversion
. Type Quadlification
14. Attributes

[N
w

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types_ToC.html [10/14/2000 12:55:08 PM]

5 Control Structures

Overview

The control structures of Adaare similar in style to most conventional languages. However some differences
remain.

As usual Adacontrol structures are designed for maximum readability, all control structures are clearly ended
with an ‘end something'.

If statements

All if statements end with an end if statement.

i f bool ean expression then
statenents
end if;

i f bool ean expression then
statenment s
el se
ot her statenents
end if;

To prevent the common sight of if's marching across the page there is the elsif structure. As many elsifs as
required can used. Note the spelling of elsif carefully.

i f bool ean expression then
statenents
el sif bool ean expression then
ot her statenents
el sif bool ean expression then
nore ot her statenents
el se
even nore other statenents
end if;

Thefina elseisoptional in thisform of theif.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/5_control_structures.html (1 of 5) [10/14/2000 12:55:09 PM]

Case statements

The case statement must have an action for every possible value of the case item. The compiler checks that this
Isthe case. In situations where it isimpractical to list every possible value the others case label should be used.

Each choice's value can be either asingle value (e.g. 5), arange (1..20) or acombination of any of these,
separated by the character '[' .

Each of the case values must be a static valuei.e. it must be able to be computed at compile time.

case expression S
when choi ces => statenents
when choi ces => statenents

when ot hers => statenents
end case;

Important The others option is mandatory in a case statement unless all possible values of the case selector have
been enumerated in the when statements.

case letter is
when ‘a'.."'z'| "A..*Z =>put ("letter");

when '0'.."' 9 => put ("digit! value is"); put (letter);
1 21 R) et i ot => put ("quote mark");
when ' & => put ("anpersand");
when ot hers => put ("sonething else");
end case;

Each of the case values must be a static valuei.e. it must be able to be computed at compile time.

Loops

All Adalooping constructs use the loop/ end loop form. Several variations exist. The exit statement can be used
to break out of loops.

Simple Loops
The simpleloop is an infinite loop. It isusually used in conjuction with the exit statement.

| oop
statenments
end | oop;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/5_control_structures.html (2 of 5) [10/14/2000 12:55:09 PM]

While Loops

The while loop is identical to the Pascal while loop. The test is performed before the loop is entered.

whi | e bool ean expression | oop
statenents
end | oop;

For Loops

The for looping contructs are similar to those in Pascal.

There are several rules that apply to the use of for statements.

| Theindex inthe for loop must be a discrete type - floats are not allowable.

| Theindex is not explicity declared.

| Theindex cannot be modified by any statements (read only)

Note that the statements will not be executed if the lower value of the range is higher than the upper value.
Important The index used in the for loop does not need to be declared. It isimplicitly declared to be of the same

type as the range.

for index in range |oop
statenents

end | oop;

for i in 1..20 | oop
put (i);

end | oop;

To count backwards...

for index in reverse range | oop
statenments

end | oop;

for i in reverse 1..20 | oop
put (i) ;

end | oop;

A type canbe used as arange.

decl are
subtype list is integer range 1..10;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/5_control_structures.html (3 of 5) [10/14/2000 12:55:09 PM]

begi n
for i in list |oop
put (i);
end | oop;
end;

Herethe type list is being used as arange. In asimilar manner an enumerated type can be used.

Exit and exit when

The exit and exit when statements can be used to exit loops prematurely. Execution continues with the first
statement following the loop. The two forms have identical effects. The following code segments are identical.

| oop
statenents
I f bool ean expression then
exit;
end if;
end | oop;
| oop
statenments
exit when bool ean expression;
end | oop;

Labeled loops

An exit statement will normally only exit the inner most loop in which it is enclosed. We can label |loops and
modify the exit statement accordingly to allow for an escape from a series of nested loops. In all casesthe
Instruction next executed is that following the loop exited.

out er | oop:

| oop
statenents
| oop
statenents
exit outer_|l oop when bool ean_expressi on;
end if;
end | oop;

end. | oop outer | oop;

Note that the end loop statement is also labelled.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/5_control_structures.html (4 of 5) [10/14/2000 12:55:09 PM]

Goto statement

The goto statement is provided in Adafor use in exceptional situations.

goto | abel ;

<<| abel >>

The use of goto'sisvery restrictive and quite sensible. Y ou cannot jump into if statements, loop statements or,
unlike Pascal, out of procedures.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/5_control_structures.html (5 of 5) [10/14/2000 12:55:09 PM]

1. 5 Control Structures

1. Overview
If statements

Case statements

Loops
Simple Loops

While L oops

For L oops

Exit and exit when
Labeled loops
Goto statement

$O 00N TODE O By 103 LI

=
©

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/5_control_structures_ToC.html [10/14/2000 12:55:10 PM]

6 Arrays

Overview

Most languages provide arrays of one sort of another. Those provided by Ada are most-similar to Pascal's, with theinclusion of
severa very handy features.

Unconstrained arrays, dynamic arrays and array attributes are some of the extras offered.

Simple arrays
Generally when declaring an array, a type definition would be created first, and an array would be declared using this definition.

type Stack is array (1..50) of Integer;
Cal cul at or _Wrkspace : stack;

type stock | evel is Integer range 0..20_000;
type pet is (dog, budgi e, rabbit);
type pet_stock is array(pet) of stock_|evel;

store_1 stock: pet_stock;
store 2 stock: pet _stock;

In general the declaration of an array has this form:

type array_nane is array (index specification) of type;
Some points to note:
* Theindex specification can be atype (e.g. pet).
* The index specification can be arange (e.g. 1..50).

Index values must be of adiscrete type.

Anonymous arrays

Arrays can also be declared directly, without using a predefined type.

no_of desks : array(1l..no_of _divisions) of integer;

Thisis known as an anonymous array (as it has no explicit type) and isincompatable with other arrays - even those declared exactly
the same. Also they cannot be used as parameters to subprograms. In general it is better to avoid them.

Accessing and setting arrays
To access an element of an array

if store_1 stock(dog) > 10 then ...

It isinstructive to note that accessing an Ada array is indistinguishable from calling a function in all respects.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/6_arrays.html (1 of 5) [10/14/2000 12:55:11 PM]

To storeavalueinto an array...

store_2 stock(rabbit) := 200;

Array aggregates
The values of an array can all be assigned at once, using an aggregate. An aggregate must specify avalue for every array element.

store_1 stock := (5,4, 300);
The valuesin the aggregate are assigned in order to the values in the array.

It is also possible to use a named version of the aggregate where the individual elements of the array are named.

store_1 stock := (dog => 5, budgie => 4, rabbit => 300);
Itisillegal to combine both notations in the one aggregate.

store_1 stock := (5,4, rabbit=>300); -- illegal

Aggregates can also be used in declarations in exactly the same manner, using either notation.

store_1 stock:pet_stock := (5,4, 300);
A discrete range can aso be included in the aggregate.

store_1 stock := (dog..rabbit=>0);
The others option is particuarly useful in setting all elements of an array to agiven value. In these situations type qualification is
often required.

new- shop st ock: pet_stock := (others = 0);
Consider the following declarations:

decl are

type nunbersl is array(1l..10) of integer;
type nunbers2 is array(1l..20) of integer;

a :nunber si;
b : nunber s2;
begi n
a:=(1,2,3,4, others => 5);
end;

The Adalanguage doesn't like this; if you mix the others option with either positional or named association then you have to qualify
it with atype mark:

a: = nunbersl' (1,2,3,4, others => 5);

Constant arrays

Constant arrays can be defined. In this case all elements should be initialised through the use of an aggregate when declared.

type nonths is (jan, feb,mar,...., dec);
subt ype nonth days is integer range 1..31;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/6_arrays.html (2 of 5) [10/14/2000 12:55:11 PM]

type nonth length is array (jan..dec) of nonth days;

days_in_nonth: constant nonth |ength := (31, 28, 31, 30,...,31);

Array attributes

Attributes associated with arrays are as follows.

array_nane' first -- lower bound of the array
array_nane' | ast -- upper bound of the array
array_nane' | ength -- the nunber of elenents in the array

-- array_nane'last-array_nanme' first +1

array_nanme'range -- the subtype defined by
-- array_nane' first . . array_nane'l ast

If the array is multi dimensional then the index should be specified e.g. array_name'range(n) supplies the range for the nth index.

Thisfacility is very useful for stepping through arrays

for i in array_nane'range | oop

end | oop

This guarantees that every element will be processed.

Unconstrained array types

Unconstrained array types allow us to declare array types that are identical in all respectsto normal array types except one - we don't
declare how long they are.

The declaration of an unconstrained array defines a class of arrays that have the same element type, the same index type and the same
number of indices.

subtype positive is integer range 1..integer'l ast;

type string is array (positive range <>) of character;

The <> represents a range that has to be specified when a variable of type string is declared (filling in the blank when declaring a
variable).

The type string can be used to define alarge class of character arrays, identical except in the number of elementsin the array.

To create an actual array, we have to provide aindex constraint for the type.

My Nanme : String (1..20);

Here theindex constraint is the range 1..20. The advantage of thisisthat al strings declared are of the same type, and can thus be
used as parameter to subprograms. This extralevel of abstraction allows for more generalised subprograms.

To process every element of an avariable that is derived from an unconstrained array type requires the use of array attributes such as
arange, afirst etc. as we cannot be sure what index values incoming arrays may have, such as below.

My_Nane : String (1..20);
My_Surname : String (21..50);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/6_arrays.html (3 of 5) [10/14/2000 12:55:11 PM]

Unconstrained arrays are typically implemented with an object that stores the bounds, as well as a pointer to the actual array.

Standard array operations

There are severa operations that can be applied to arrays as awhole and not just the individual components.

Assighment

An entire array can be assigned the value of another array. Both arrays must be of the same type. If they are of the same
unconstrained type then they both must have the same number of elements.

decl are

nmy _nane :string(l..10) :="Dale "

your namne :string(1..10) :="Russell i

her name :string(21..30) :="Liz 5

hi s_nane :string(l..5) ="Tim ";

begi n

your _nane := my_nane;

your _nane : = her_nane; -- legal, both have sane nunber of
-- elenents
his name := your_name; -- will cause an error, sanme type but

-- different length

end;

Test for equality, inequality

The tests for equality and inequality are available for (almost) every Adatype. Two arrays are equal if each element of the array is
equal to the corresponding element of the other array.

if arrayl = array2 then....

Concatenation

Two arrays can be concatenated using the & operator.

decl are
type vector is array(positive range <>) of integer;
a : vector (1..10);
b : vector (1..5):=(1,2,3,4,5);
c : vector (1..5):=(6,7,8,9,10);
begi n
a:=b &c;
Put Line("hello" & " " & "world");
end;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/6_arrays.html (4 of 5) [10/14/2000 12:55:11 PM]

Ordering operations

The operators <,<=,>,>= can all be applied to one dimensional arrays. They are of most benefit when comparing arrays of characters.

"hell 0" < "worl d" -- returns true

Dynamic arrays

The length of an array can be determined at run time, rather than being specified by the programmer when writing the program.

decl are

X . Integer :=y --y declared sonewhere el se
a : array (1..x) of integer;

begi n

for i in a' range |oop
end | oop;

end;

procedure deno(item :string) is
copy cstring(itemfirst..itemlast) := item

doubl e:string(l..2*itemlength) := item& item

begin

Note that this does not easily allow the user's input to decide the size of the array, and should not be thought of as a device for
achieving this. The second example is much more typical of it's use.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/6_arrays.html (5 of 5) [10/14/2000 12:55:11 PM]

1. 6 Arrays
1. Overview

Simple arrays

Anonymous arrays

Accessing and setting arrays
Array aggregates

Constant arrays

Array attributes

Unconstrained array types
Standard array operations

Assignment
. Test for equality, inequality

$O 00N TODE O By 103 LI

N
T

[EEN
N

. Concatenation

[EEN
w

. Ordering operations

14. Dynamic arrays

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/6_arrays_ToC.html [10/14/2000 12:55:12 PM]

7 Records

Overview

Once again Ada provides the same facilities as other languages, plus afew extra. Records can have aggregates, discriminants which
allow for variant records, variable sized records and initialized variables.

Simple records
In general the declaration of an record has this form:

type record nane is
record
field nane 1: type A
field nane 2: type B

fiéld nane n: type N
end record;

For example:

type bicycle is
record
frame :construction
maker : manuf act urer;
front brake : brake_t ype;
rear _brake : brake_type;
end record;

Accessing and setting fields

Accessing fields of arecord isidentical to that in pascal and C, i.e. the name of the variable is followed by a dot and then the field
name.

expensi ve bi ke :bicycle;

expensi ve bi ke. frane ;= al um ni um

expensi ve_ bi ke. manuf act urer := cannondal e;
expensi ve bi ke. front brake .= cantil ever;
expensi ve bi ke. rear brake ;= cantilever;

i f expensive bike.frame = al uniniumthen ..

As with arrays records can be assigned an aggregate, a compl ete set of valuesfor al record elements.

expensi ve_bi ke: =(al um ni um cannondal e, cani tl ever, cantil ever);

Alternatively the aggregate can use positional notation where each element of the record is named.

expensi ve bi ke := (
frame => al um ni um

http://goanna.cs.rmit.edu.au/~dale/ada/aln/7_records.html (1 of 4) [10/14/2000 12:55:13 PM]

manuf act urer => cannondal e,
front brake => cantil ever,
rear brake => cantil ever

)
Both notations can be mixed in the one aggregate with the proviso that all positional values precede named values.

Aggregates can also be used in declarations in exactly the same manner, using either notation.

expensi ve_bi ke :bicycle : = (al um nium cannondal e, cantil ever,cantil ever);

The same value can be assigned to different fields by using the ' character.

expensi ve_bi ke : = (
frame => al um ni um
manuf act urer => cannondal e,
front _brake | rear_brake => cantil ever
);

Default values

Fields in records can be given default values that are used whenever arecord of that type is created (unlessit isinitialised with
different values).

type bicycle is

record
frame: constructi on : = CroneMl yebdenum
maker : manuf act ur er;
front brake :brake type := cantil ever;

rear brake :brake type := cantil ever;

end record;

Constant records

Just like normal variables constant records can be created. In this case al fields should be initialised through the use of an aggregate
or default field values.

my_bi cycl e :constant bicycle
P =l hi tensile_steel,
unknown,
front _brake => side pull
rear_brake => side_pull);

The fields in a constant record cannot be assigned a value, nor can the record be reassigned a new value.

Discriminants

Adaallows records to contain discriminants. These extrafields help to customise the record further. They give an extralevel of
abstraction' when modelling data; records can be of the sametype yet till be different in size or the number of fields.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/7_records.html (2 of 4) [10/14/2000 12:55:13 PM]

Variant records

One of the uses of discriminants allows for variant records. In this case the record contains some fields whose existance is dependent
upon the value of the discriminant.

For example the discriminant in the following record is the variable vehicle type

type vehicle is (bicycle, car, truck, scooter);

type transport (vehicle_type: vehicle:= car) is

record
owner :string(l..10);
descri ption: string(1..10);
case vehicle_type is
when car =
petrol consunption:fl oat;
when truck =>
di esel _consunption: fl oat;
t are: real
net : r eal
when ot hers => nul | ;
end case;

end record;
The discriminant can be supplied when arecord is being declared.
my_car:transport(car);
my_bicycl e:transport (vehicle type => bicycle);

When the discriminant has the value car, the record contains the fields owner, description and petrol_consumption. Attempting to
access fields such astare and net isillegal and will cause a constraint error to be generated (this can be caught and handled using
exceptions).

Constrained records

The records above are said to be constrained, that is the discriminant can never change. The my. bicycle record does not have the
fields tare, net petrol_consumption etc. nor does the compiler allocate room for them.

We can declare the records without setting an initial value for the discriminant, in which case the record is said to be unconstrained.
In this case the discriminant can take on any value throughout its life. Obviously in this case the compiler has to allocate enough
room for the largest record possible.

Aggregates for records with discriminants must include the value of the discriminant as the first value.

my_transport:transport;

begi n
ny_transport := (car,"dale ", "escort -",30.0);

Unconstrained records

We can create records that do not have afixed discriminant, it can change throughout the life of the record. However to do thisthe
discriminant of the record must have a default value.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/7_records.html (3 of 4) [10/14/2000 12:55:14 PM]

type accounts is (cheque, savings);
type account (account type: accounts:= savings) is

record
account _no . positive;
title ;string(l..10);
case account _type is
when savi ngs => interest rate;
when cheque == nul | ;
end case;

end record;
Here the account record discriminant has a default value of savings.

We can declare arecord

househol d_account: account ;

which is created as a savings account. We can change the record type later...

househol d_account : = (cheque, 123 456, "househol d ") ;

Other uses of discriminants

Aswell as being used as a case selector in arecord, discriminants can also be used to specify the length of arrays that are components
of the record.

type text (length: positive:=20) is
record
val ue: string(1l..length);
end record;

In this case the length of the array is dependent upon the value of the discriminant. As described above the record can be declared
constrained or unconstrained.

Thistext record is the usual implementation used for variable length strings and text processing.

to theindex...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/7_records.html (4 of 4) [10/14/2000 12:55:14 PM]

1. 7 Records
Overview
Simple records

Accessing and setting fields
Default values
Constant records

Discriminants

Variant records

Constrained records

£0 MO0 OO By 0 LN T

Unconstrained records

=
o

Other uses of discriminants

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/7_records_ToC.html [10/14/2000 12:55:14 PM]

8 Subprograms

Overview

Sub programs, covering both procedures and functions, are the basis of all programs inAda. Ada provides
features which will be new to Pascal and C programmers. Overloading, named parameters, default parameter
values, new parameter modes and return values of any type al make Ada sub programs significantly different.

Procedures

Proceduresin Ada are similar to those in Pascal. A procedure can contain return statements.

procedure Denmo(x:integer; y:float) is
decl arati ons;

begi n
st at enent s;

end denv;

Procedures are called in the normal Pascal style:

deno(4, 5.0);

Functions

Functions are very similar to procedures except that they also return a value to the calling sub program. The use
of return statementsis very similar to C. Functions can have as many return statements as required. A function
returning a variable of a given type can be used anywhere a variable of that type can be used.

function Even(Nunber : Integer) return boolean is
begi n
if Nunmber nod 2 = 0 then
return true;
el se
return fal se;
end if;
end;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (1 of 9) [10/14/2000 12:55:17 PM]

Subprograms in general

Ada has been designed with separate compilation very much in mind. To this end we can produce just a
specification of a subprogram and submit this to the compiler. Once compiled and the description stored in an
attribute file, it can be checked for compatibility with other procedures (and packages) when they are compiled.
By producing alarge number of procedure stubs we can pre test the design of a system and pick up any design
errors before any more work is done.

A procedure specification for the above procedure would be:

procedure deno(x:integer; y:float);

If we wish to use a seperately compiled subprogram we can with it in another subprogram.

Wi th deno;
procedure use deno is

begi n

deno(4,5);
end use_deno;

A function specification may appear as.

function Even(Nunmber : Integer) return Bool ean;

Like Pascal and unlike C, a subprogram can contain nested subprograms within them that are not visible outside
the subprogram.

wi th Ada. Text |G use Ada. Text | Q
Wi th Ada.Integer Text 1O use Ada.lnteger Text |G

procedure Display Even_Nunbers is

-- decl arations
X:integer;

function even (nunber:integer) return boolean is
begi n

return nunber nod 2 = O;
end even;

begi n
for i in 1..10 |oop
if even(i) then
put (i) ;
new | i ne;
end if;
end | oop;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (2 of 9) [10/14/2000 12:55:17 PM]

end di spl ay_even_nunbers;

Parameter modes

Ada provides three parameter modes for procedures and functions.
oin

0 inout

0 out

These modes do not correspond directly to any modes in other languages, they will be discussed below. The
following should be noted.

0 All parameters to subprograms are by default in.

The parameter passing mechanism is by copy-in, copy-out for in/out scalars. The language specifies that any other
types can be passed by copy-in/copy-out, or by reference.

Adad95 mandates that limited private types (see later) are passed by reference, to avoid problems with the breaking
of privacy.

In mode

Parameters supplied with this mode are like value parameters in Pascal, and normal parametersin C with the
exception that they cannot be assigned a value inside the subprogram. The formal parameter (that in the sub
program) is a constant and permits only reading of the value of the associated actual parameter.

with Ada.Integer Text | O use Ada.Integer_Text |10

procedure Deno(x : ininteger; y : ininteger) is
begi n
X :=5; --illegal, in paraneters are read onlvy.
put (y);
get(y); -- also illega
end deno;
In out mode

This mode corresponds directly to the var parameters of Pascal. Actual parameters can be used on either the | eft
or the right hand side of statements in procedures. These parameters are effectively read/write.

procedure Deno(x : in out integer;
Vel Y I nteger) is

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (3 of 9) [10/14/2000 12:55:17 PM]

z: constant integer: =x;

begi n
X := z*y; --_this is ok!
end deno;

Out mode

The formal parameter is avariable and may be assigned values, however it'sinitial value is not necessarily
defined, and should not be relied upon.

procedure denp(x:out integer;
y:in integer) is

Z : integer :=Xx; -- not wwse, X not initialised
begi n

Xin= oy
end deno;

Caution - out mode parameters that aren't initialized!

procedure Location(

t ar get il 5 key;
position : out Small I nteger Range;
f ound : out bool ean) is

Hereif the target is not found, then if position is not assigned a value, the copy out parameter mode causes the
unitialised value to be placed into the awaiting actual parameter, the associated range check may cause a
constraint error.

E.g.
decl are
The Position : Small | nteger Range;

begi n
Location(Sone_Key, The Position, Result);

If result = false, a constraint error may be generated when the procedure returns.

Named parameters

Normally the association between the formal (defined in the sub program specification) and actual parameters
(supplied in the sub program call) ison aoneto one basisi.e. it ispositional. The first formal parameter is
associated with the first actual parameter, etc.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (4 of 9) [10/14/2000 12:55:17 PM]

To enhance the readability of sub program calls (Adais designed to be readable) we can associate the name of the
formal parameter and the actual parameter. This feature makes sub program calls immensely more readable.

procedure deno(x:integer; y:integer); -- procedure specification

deno(x=>5, y=> 3*45); -- when calling, associate fornmal
-- and actual paraneters.

Lining up the parameters vertically can also be an aid to readability.
deno(X =>5,
N =2 3% 4B

Because the association is made explicit (instead of the implicit association with positional parameters) thereisno
need to supply them in the same order as in the sub program specification. There is no restriction on the order in
which named parameters are written.

deno(y => 3*45, x => 5); -- the order of naned paraneters
-- is irrelavent

Mixing positional and named parameters

Positional parameters and named parameters can be mixed with the one proviso:
positional parameters must precede the named parameters.

procedure square(result : out integer;
nunber :in i nteger) is
begi n
resul t: =nunber * nunber ;
end square;

could be called in the following manners:
square(x, 4);
squar e(x, nunber => 4);

square(result => x, nunber => 4);
squar e(nunber => 4, result => Xx);

squar e(nunber => 4, Xx) -- illegal as positional follows naned.

Default parameter values

A default value can be be given for any in parameters in the procedure specification. The expression syntax is the
same as that for preinitialised variablesand is:

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (5 of 9) [10/14/2000 12:55:17 PM]

wi th Ada. Text | Q use Ada. Text 1O
procedure print_lines(no_of lines: integer:=1) is

begi n
for count in 1 . . no_of lines |oop
new | i ne;
end | oop;
end print _I|ines;

Thisassignsavalue for no_of linesif the procedure is called without a corresponding parameter (either
positional or named).

E.g. the procedure could be called as
print_Ilines; -- this prints 1 line.
print lines(6); -- overrides the default val ue of 1.

Similarly if a procedure write lines was defined as

wi th Ada. Text I G use Ada. Text |1 G

procedure wite_lines(letter in char:="*";
no of lines:in integer:=1) is

begi n
for i inl1 . . no_of lines |oop
for i inl1l . . 80 |loop
put (letter);
end | oop;
new | i ne;
end | oop;

end wite |ines;

then it could be called as

wite |ines; -- default character, default
-- no. of lines.

wite lines('-"'); -- default no. of |ines.

wite lines(no of lines =>5); -- default character

wite lines('-',5) -- specifying both.

Local subprograms

So far the subprograms presented have all been independent compilation units. It is possible to embed
subprograms in another subprogram such that only one compilation unit is constructed. These local subprograms
can only be referenced from the surrounding subprogram. Thisisidentical to the features provided by Pascal.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (6 of 9) [10/14/2000 12:55:17 PM]

wi th Ada. Text | Q use Ada. Text 1O
with Ada. | nteger_ Text IO use Ada. | nteger_Text 1O

procedure ive got _a procedure is

X . I nteger: =6;
y i nteger: =5;
procedure display val ues(nunber:integer) is
begi n
put (nunber);
new | i ne;

end di spl ay_val ues;

begi n
di spl ay_val ues(x);
di spl ay_val ues(y);
end ive _got _a procedure;

In this exampl e the scope of procedure display valuesis limited to inside the procedure ive_got a procedure - it

can't be 'seen’ or called from anywhere else.

Separate compilation

In the previous example if any change is made to any of the code then both procedures must be resubmitted to the
compiler (because they are in the one source file). We can separate the two components into seperate files while
still retaining the limited scope of procedure display _vaues. Thisisalittle like the #include directive in C, but the

files are now independent compilation units.

Inthefirst file...

with Ada. Text | Q use Ada. Text 1O
with Ada.Integer Text | O use Ada.Integer_ Text 1O

procedure |Ive got a procedure is

X i nteger: =6;
y i nteger: =5;

procedur e di splay val ues(nunber:integer) is separate;

begi n
di spl ay val ues(x);
di spl ay_val ues(y);
end ive_got _a procedure;

In the second file...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (7 of 9) [10/14/2000 12:55:17 PM]

separat e(l ve _got._a procedure) -- note no trailing sem col on

procedure di splay val ues(nunber:integer) is
begi n

put (nunber) ;

new | i ne;
end di spl ay val ues;

Apart from being in another file (and being a seperate compilation unit) the code isidentical in all respectsto the
previous version. However if the inner subprograms change then only they have to be submitted to the compiler.
This also allows a program to be broken up into several pieces, which can ease the job of understanding it.

Overloading

Finding new names for functions that do the same thing to variables of different typesis awaysa problem. The
procedure insert is a good example. To give programmers a bit more breathing space, Ada allows sub programs to
have the same name, it only insists that they are distinguishable. Thisis called overloading.

Subprogram overloading

Two sub programs with the same name are distinguishable if their profile is different. The profile consists of the
number of parameters, thier type and, if it isafunction, the return type.

So long as the compiler can tell which sub program you requested by matching the profile of the cal to the
specifications of the sub programs you have supplied, it's happy; otherwise you'll get an ambiguous reference
error.

procedure Insert(ltem: Integer); ~-- Two procedures wth the
procedure Insert(ltem: Float); -- sane name, but different.
-- profiles.

The procedures Put and Get in the package Ada.Text |0 are examples of overloaded subprograms.

Operator overloading

In languages such as Pascal the + operator is overloaded. Sometimesit is used to add integers, sometimes reals,
sometimes strings. It is quite obvious that this one operator is used to represent very different code.

Ada allows programmers to overload operators with thier own code. One restriction on this overloading of the
operator name, is as expected, that the functions are distinguishable from the originals supplied, i.e. its profile is
unique. Even this problem can be overcome by specifying the package name (see the next section).

Overloaded operators cannot be seperate compilation units. - they must be contained in another unit such as a
procedure, function or package.

Consider an example where we wish to provide facilities to add two vectors together.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (8 of 9) [10/14/2000 12:55:17 PM]

procedure add deno is

type Vector is array (positive range <>) of |nteger;

a : Vector(1l..5);
b : Vector(l..5);
c . Vector(1..5);

function "+"(left,right:vector) return vector is

resul t - Vector(left'first..left'last);
of f set : constant Natural :=right'first-1;
begi n
If left'length /= right'length then
rai se programerror; -- an exception,
end if;
for 1 in |left'range |oop
result(i):=left(i) + right(i - offset);
end | oop;
return result;
end "+";
begi n
a:=(1,2,3,4,5);
b:=(1, 2, 3,4,5);
c:= a + b;

end add_deno;

This example uses most features discussed in the last few chapters.

see | ater

to the index..

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (9 of 9) [10/14/2000 12:55:17 PM]

1. 8 Subprograms
Overview

Procedures
Functions
Subprograms in general

Parameter modes

In mode
In out mode
Out mode

£0 MO0 OO By 0 LN T

Named parameters

=
o

Mixing positional and named parameters

[HEN
[EEN

. Default parameter values

[EEN
N

. Local subprograms

13. Separate compilation
14. Overloading

15. Subprogram overloading
16. Operator overloading

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms_ToC.html [10/14/2000 12:55:17 PM]

9 Packages

Overview

Although its roots are in Pascal, Ada still borrowed heavily from other languages and was influenced by the
latest in software engineering techniques discussed in the 1970's. Undoubtedly the major innovation from
that period is the concept of packages. Separation of the specifications from the implementation of ‘objects
results in far more flexible code. The containment of the data structures behind awall of functional interfaces
results in much more maintainable systems. This chapter discusses Ada's implementation of packages.

Packages are not about how a program will run, but about how it is constructed and how it isto be
understood and maintained.

Package specifications

The package specification of an Ada package describes all the subprogram specifications, variables, types,
constants etc that are visible to anyone who ‘withs' the package into thier own code.

The following is an example of a package specification.
package odd _deno is
type string is array (positive range <>) of character;
pi :constant fl oat: =3. 14,
X: i nt eger;
type a_record is
record
| eft: bool ean;
ri ght: bool ean;
end record;
-- note that the foll ow ng two subprograns are
-- specifications only,the body of the subprograns are

-- in the body of the package

procedure insert(itemin integer; success:out bool ean);
function present(itemin integer) return bool ean;

end odd denv;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (1 of 9) [10/14/2000 12:55:19 PM]

The items described in the package specification are often described as resources. We can access these values
by ‘with'ing the package in our code and then using the package name, a dot, and the name of the resource
wanted, whether it is atype declaration, afunction or a variable name.

w t h odd deno;
procedure odder deno is

ny_nane - odd deno. string;

radius :float;

success : bool ean;
begi n

radi us := 3.0*odd_deno. pi ;

odd denvo.insert (4, success);

I f odd denvo. present(34) then ..
end odder deno;

It should be noted that accessing resourcesin a package is textually identical to accessing thefieldsin a
record.

As accessing the resources of a package using the full dot notation can be cumbersome, the use clause may
be employed. When a package is 'use'd in this way the resources are avail able as though they were declared
directly in the code.

wi th odd deno; use odd denv;
procedure odder deno is

my _name : string(l..10);
radius : float;
success : bool ean;
begi n
radi us: =3. 0* pi ;
I nsert (4, success);
I f present(34) then ...

end- odder deno;

If two packages are with'ed and use'd in the one compilation unit (e.g. subprogram or another package) then
there is the possibility of a name clash between the resources in the two packages. In this case the ambiguity
can be removed by reverting to dot notation for the affected resources.

kkhkkkkkhkkkhkhkkhkkkhkkhkkkhhkkihkkhkkhkkhkkikkikk*k

package nol is
a, b, c:integer;
end nol;

_kkkkkkhkkkhkhkkhkkkhkkhkkkhkhkkhhkkhkhkhkkhkkkhhkkhkhk*k

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (2 of 9) [10/14/2000 12:55:19 PM]

package no2 is
c,d, e:integer;
end no2;

khkkkhkkkhkkhkhkkhhkkhkkhkkkhhkhhkkhkikkhkkhkkihkhkk*k

with nol; use nol;
wth no2; use noz2;

procedure clash _deno i's

begi n
a:. =1,
b: =2;
c: =3; -- anbi guous, are we referring to nol.c or
-- no2.c?
nol. c: =3; -- renove abiguity by reverting to dot
-- notation
no2. c: =3;
end;

Another problem encountered iswhen local resources 'hide' the resources in a use'd package. In this case the
ambiguity can still be removed by using dot notation.

package nol is

a: i nteger;
end nol;
wi th nol; use nol,
procedure p is
a:integer;
begi n
a: =4, -- once again this is anbi guous
p.a: = 4, -- renove abiguity by using procedure nane in
-- dot notation
nol. a: =5; -- dot notation for package
end p;

Package body

The package body is where all the implementation details for the services specified in the package
specification are placed. Asin the specification the package body can contain type declarations, object
(variable) declarations, subprograms etc.

The format of a package body is

package body odd denp is

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (3 of 9) [10/14/2000 12:55:19 PM]

type list is array (1..10) of integer;

storage |i st st
upto i nt eger;
procedure insert(item Sin I nt eger;
success . out bool ean) is
begi n
end insert;

function present(itemin integer) return boolean is
begi n

end present;

begi n -- initialisation statenents for the whol e package
-- These are run _before_ the nmain programn
for i in storage |list'range |oop
storage list(i):=0;
end | oop;
upt o: =0;

end odd_denv;

The resources in the body of the package are unavailable for use by any other package. Any attempt to
reference them will result in a compiler error.

The variables declared in the package body retain their value between successive calls to the public sub
procedures. As aresult we can create packages that store information for later use.

The begin/end at the end of the package contain initialisation statements for the package. These are executed
before the main procedureisrun. Thisistrue for all packages. The order in which different package's
initialisation statements are run is not defined.

All the resources specified in the package specification are available in the package body without the use of a
with clause.

Private types

So far al the types declared in the package specification have been completely visible to the user of the
package.

Sometimes when creating packages we want to maintain total control over the manipulation of objects. For
instance in a package that controls accounts in general ledger, we only want to provide the facilities to make
withdrawals, deposits and creation of accounts. No other package needs to know or should have access to the
representation details of the account object.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (4 of 9) [10/14/2000 12:55:19 PM]

In Ada packages type declarations (and also constants) can be declared private.

package accounts is
type account is private; -- declaration cones | ater

procedure w thdraw(an_account:in out account;
anmount in noney) ;

procedur e deposit(an_account:in out account;

anount in noney) ;
function create(I nitial_bal ance: noney) return account;
function balance(an_account:in account) return integer;
private -- this part of the package specification

-- contains the full description.
type account is
record
account _no . positive;
bal ance :integer;
end record;
end accounts;

Outside the package the only operations that can be performed on a private type are assignment, tests for
equality and those operations defined by subprograms in the package specification.

Full details of the representation details are available in the package body. Any routine in the package body
can access and modify the private type as though it were not private - the privacy of an object applies only
outside the package.

It may seem a contradiction to put the private specifications in the package specifications - the public part of
the package when you are trying to hide the representation details of an object. Thisisrequired for programs
that allocate an object of that private type- the compiler then knows how much space to allocate.

Although the reader of the package specifications can see what the representation of the private typerealy is,
thereis no way he or she can make explicit use of the knowledge.

Objects can be created outside a package even if of a private type.
E.Q.
wi th accounts; use accounts;

procedure denb_accounts is

hone_account ;account;
nort gage »account ;
t hi s_account - account ;
begi n
nortgage : = accounts.create(initial bal ance => 500. 00);

wi t hdr awm(honme_account , 50) ;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (5 of 9) [10/14/2000 12:55:19 PM]

this_account: =nortgage; -- can assign private types.

-- conparing private types.
If this account = hone_account then

end;

Limited private types

A private type can be made even more private by removing the ability to compare and assign the values
outside the package. Y ou generally then have to provide afunction to test equality (you can overload the
equality operator =, thisimplicity overloads /= as well). Also you may have to create a procedure to perform
assignments.

Q Why do we need private types?

A Consider the following:

type text (maxi mum| ength: positive:=20) is
record
| engt h: i ndex: =0;
val ue cstring(l. . maxi num.| ength);
end record;

In this record the length field determines the number of charactersin the field value that have meaning. Any
characters from position length+1 to maximum_length are ignored by us when using the record. However if
we ask the computer to compare two records of thistype, it does not know the significance of the field
length; it will compare the length field and all of the value field. Clearly in this situation we need to write a
comparison function.

Ada9d5 allows the programmer to override the equality operator for al types.

Deferred constants

In some package specifications we may wish to declare a constant of a private type. In the same manner as
declaring a private type (and most forward references) we give an incomplete declaration of the constant - the
compiler expects the rest to follow in the private section of the package specifications.

package coords is
type coord is private;
hone: constant coord; -- the deferred constant!

private

type coord is record
X . i nt eger;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (6 of 9) [10/14/2000 12:55:19 PM]

y .1 nteger;
end record;

hone: const ant coord: =(0, 0);
end coords;

Child units (Ada95)

It was found in large system devel opments that a single package specification could grow extraordinarily
large, with subsequent costs in recompilation of compilation units that depend on it if it were to change. To
remedy this situation, the concept of child compilation units was conceived. Child units allow alogically
single package to be broken into several physically distinct packages and subprograms, Aswell as solving the
problem of large recompilations, they also provide a convenient tool for providing multiple implementations
for an abstract type and for producing self contained subsystems, by using private child units.

Extending an existing package

A package that consists of a set of declarations may need to be extended at some time. For example a stack
package may need the addition of a peek facility. If this package is heavily "withed" by many other units,
then modifying the specification to include this extra features could result in a large recompilation despite the
fact that most clients would not be using the new feature.

A child package can be declared that logically extends the package, but in a physically separate manner.

For example

package stacks is
type stack is private;
procedure push(onto:in out stack; iteminteger);
procedure pop(from:in out stack; item out integer);
function full(item stack) return bool ean;
function enpty(item stack) return bool ean;
private
-- hidden i npl enentati on of stack

-- point A
end st acks;

package stacks.nore stuff is
functi on peek(item stack) return integer;
end stacks. nore stuff;

The package stacks.more_stuff is a child packge of stacks. It has the visibility of all the declarations
preceeding point A, that is the parent package presents the same visibility to a child package asit doesto its
body. The child package can see all of its parents private parts. The package bodies would be compiled

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (7 of 9) [10/14/2000 12:55:19 PM]

separately.
The clients who wish to use the function peek can simply have awith clause for the child package,

W th stacks.nore stuff;

procedure deno is

X : st acks. st ack;
begi n

st acks. push(x, 5);

I f stacks.nore_stuff.peek = 5 then
end;

"With'ing the child package automatically causes the parent package to be ‘with'ed, and its parent package to
be 'with'ed, and so on. However the use clause does not act in thisway. Visibiliy can only be gained on a
package by package basis. Thisisno doubt a pragmatic decision based on what most organisations would
prefer (asindicated by existing use of the 'use' clause).

W th stacks.nore stuff; use stacks; use nore stuff;

procedure deno is

X . stack;
begi n

push(x, 5);

I f peek(x) = 5 then

end;

A package can have child functions and procedures. Rules for use of these are easily inferred.

Private child units

Private child units allow a child unit to be created that is only visible within the hierachy of the parent
package. In thisway facilities for a subsystem can be encapsulated within its a hidden package, with the
compilation and visibility benefits that this entails.

Because they are private, a child package's specification is allowed to advertise, in its specification, private
parts of its parents. This would not normally be alowed as it would allow the breaking of the hidden
implementation of a parent's private parts.

private package stacks.statistics is
procedure i ncrenment push_count;
end;

The procedure stack.statistics.increment_push count could be called from within the implementation of the
stacks package; this procedure is not available to any clients external to this package hierachy.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (8 of 9) [10/14/2000 12:55:19 PM]

:/lgoanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (9 of 9) [10/14/2000 12:55:19 PM]

1. 9 Packages
1. Overview

Package specifications
Package body
Private types

Limited private types
Deferred constants

Child units (Ada95s)

Extending an existing package
Private child units

$O 00N TODE O By 103 LI

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages_ToC.html [10/14/2000 12:55:20 PM]

10 Generics

Overview

Code reuse has been one of the great programming hopes for many years. Although suitable in the area of
mathematical routines (where the functions are well defined and stable) trying to develop libraries in other areas
has met with very limited success, due to the inevitable intertwining of process and data typesin procedures. Ada
has attempted to free us from this problem by producing code that does not rely as much on the specific data types
used, but on their more general algorithmic properties.

As described by Naiditch, generics are like form letters; mostly they are complete letters with afew blanks
requiring substitution (eg name and address information). Form letters aren't sent out until thisinformation is
filled in. Similarly generics cannot be used directly, we create a new subprogram or a package by ‘instantiating' a
generic and then using the instantiated compilation unit. When ageneric isinstantiated we have to supply
information to fill in the blanks, such as type information, values or even subprograms.

Generics

In Adaa program unit (either a subprogram or a package) can be a generic unit.

This generic unit is used to create instances of the code that work with actual datatypes. The data type required is
passed in as a parameter when the generic unit isinstantiated. Generics are usually presented in two parts, the
generic specification and then the generic package.

Once they are compiled the generics are stored in the Ada library and can be with'ed (but never use'd) by other
compilation units. These other units, whether they be subprograms, packages or generics, can be with'ed and
instantiated (the process of creating a usable subprogram or package by supplying generic parameters). The
instatiated subprogram or package can be stored in the Adalibrary for later use.

The following is the instantiation of the generic package integer_io. Int_io isnow available to be with'ed (and
use'd) by any program.

with text io; use text i o;

package int_io is new integer_io(integer);
The package can be instantiated with other types as well.

with text io; use text i o;
with accounts; use accounts;

package account _no_io is new integer _io(account_no);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics.html (1 of 6) [10/14/2000 12:55:22 PM]

Generic subprograms

The following is a compilation unit. Onceit is compiled it is available to be 'with'ed (but not ‘'use'd) from the Ada
library. It includes the keyword generic, alist of generic parameters and the procedure specification.

generic
type elenent is private; -- caution private here neans
-- elenent is a paraneter to
-- the generic sub program
procedure exchange(a,b in out elenent);

The body of the generic procedure is presented as a seperate compilation unit. Note that it isidentical to a
non-generic version.

procedure exchange(a,b :in out elenent) is
tenp el enent ;
begi n
a: =t enp;
a: =b;
b: =t enp;

end exchange;

The code above is simply atemplate for an actual procedure that can be created. It can't be called. It is equivalent
to atype statement - it doesn't allocate any space, it just defines atemplate for the shape of thingsto come. To
actually create a procedure:

procedure swap i s new exchange(i nteger);
We now have a procedure swap that swaps integers. Here "integer” is called a generic actual parameter.
"Element” is called a generic formal parameter.

procedure swap i s new exchange(character);

procedure swap i s new exchange(el enent => account); -- named associ ation

Y ou can create as many of these asyou like. In this case the procedure name is overloaded and as normal the
compiler can tell which one you call by the parameter type.

It can be called (and behaves) just as though it had been defined as

procedure swap(a,b in out integer) is
tenp: i nt eger.

begi n

end;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics.html (2 of 6) [10/14/2000 12:55:22 PM]

Generic packages

Packages can be generics as well.

The following generic package specification isfairly standard:

generic
type elenent is private; -- note that this is a
-- paraneter to the generic
package stack is

procedure push(e: in elenment);
procedure pop(e: out el enent);
function enpty return bool ean;

end st ack;

The accompanying package body would be

package body stack is
t he_stack carray(1l..200) of elenent;
top :integer range 0..200: =0;

procedure push(e:in elenment) is
procedure pop(e:out elenent) is
function enpty return boolean is

end st ack;
Quite simply you replace any instance of the data type to be manipulated with that of the generic type name.
How would you create a generic unit and test it?

- Create it using a specific type and translate it to use generic parameters.

Generic parameters

There are three types of parameters to generics
Type parameters

Value and object parameters

Subprogram parameters

So far we have only seen type parameters.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics.html (3 of 6) [10/14/2000 12:55:22 PM]

Type parameters

Despite the alluring appeal of generics we are till restricted by the very nature of the tasks we are attempting to
accomplish. In some generics we may wish to provide afacility to sum an array of numbers. Quite clearly thisis
only appropriate for numbers, we can't add records together. To provide protection from someone instantitating a
generic with an inappropriate type, we can specify the category of types that can be used when instantiating.

The compiler can also check that we don't perform any inappropriate actions on a variable inside the code e.g. it
wont alow usto find the 'pred of arecord.

A list of the various type restrictionsis given below.

type T is private -- very fewrestrictions
type Tis limted private -- fewer restrictions,
type T is (<>) -- T has to be a discrete type
type T is range <> -- T nust be an integer type
type T is digits <> -- T must be a floating point type
type T is delta <> -- T nust be a fixed point - not
-- discussed
type T is array(index_type) of elenent_type
-- The conponent type of the actual array nust match the
-- formal array type. If it is other than scal ar then
-- they nust both be either constrained or
-- unconstr ai ned.
type T is access X -- T can point to a type X (X can be

-- a previously defined generic paraneter.

To understand the rule governing instantiation of array type parameters consider the following generic package

generic
type item is private;
type i ndex is (<>);
type vector is array (index range <>) of item
type table Is array (index) of item
package P is .
and the types:

type color is (red,green.blue);
type Mx is array (color range <>) of bool ean;
type Option is array (color) of bool ean;

then Mix can match vector and Option can match table.

package R is new P(i tem => bool ean,

http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics.html (4 of 6) [10/14/2000 12:55:22 PM]

i ndex => col or,
vector => m X
tabl e => option);

Value parameters
Value parameters allow you to specify avalue for a variable inside the generic:

generic
type elenent is private;
size: positive := 200;

package stack is

procedure push. ..

procedure pop..

function enpty return bool ean;
end st ack;

package body stack is

si ze: i nteger;
theStack :array(l..size) of elenent;

Y ou would instantiate the package thus:

package fred is new stack(element => integer, size => 50);

or

package fred is new stack(integer, 1000);

or

package fred is new stack(integer);

Note that if the value parameter does not have a default value then one has to be provided when the genericis
instantiated

Value parameters such as string can also be included.

generic
type elenent is private;
file _name »string;

package ...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics.html (5 of 6) [10/14/2000 12:55:22 PM]

Note that the file_name parameter type (string) is not constrained. Thisisidentical to string parameters to
subprograms.

Subprogram parameters

We can pass a subprogram as a parameter to a generic.

Why? If you have a limited private type you can pass tests for equality and assignment in as subprogram
parameters.

E.g.

generic

type elenent is limted private;
with function "="(el, e2:elenent) return bool ean;
wi th procedure assign(el, e2: el enent);

package stuff is .

To instantiate the generic

package things is new stuff(person,text."=",text.assign);

Other forms allow for a default subprogram if noneis given.

wi th procedure assign(el,e2:elenent) is nyAssign(el, e2: person);
Or you can specify the computer makes a default selection of procedure based on the normal subprogram
selection rules:

with function "="(el,e2:elenent) return boolean is <>;

If no function is supplied for the "=" function then the default equal function will be used according to the type of
element (i.e. if element isinteger the normal integer "=" will be used).

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics.html (6 of 6) [10/14/2000 12:55:22 PM]

1. 10 Generics
1. Overview
Generics
Generic subprograms

Generic packages

Generic parameters

Type parameters

Vaue parameters

© NSO Ok D

Subprogram parameters

http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics_ToC.html [10/14/2000 12:55:23 PM]

11 Exceptions

Overview

Exceptions are described in the Ada Language Reference Manual as errors or other exceptional conditions that
arise during normal program execution. Exception handling is the process of catching these errors at run time
and executing appropriate code to resolve the error, either by correcting the cause of the problem or by taking
some remedial action.

Predefined exceptions

There are five exceptions predefined in the language. They are described below.
The exception CONSTRAINT_ERROR israised whenever an attempt is made to violate a range constraint.

procedure constraint_deno is

X ;integer range 1..20;
y i nteger;

begi n
put ("enter a nunber "); get(y);
X =Y,
put ("t hank you");

end constrai nt_deno;

If the user enters a number outside the range 1..20, then x's range constraint will be violated, and a
constraint_exception will occur. The exception is said to have been ‘raised’. Because we have not included any
code to handle this exception, the program will abort, and the Ada run time environment will report the error
back to the user. The line 'put("thank you");" will not be executed either - once an exception occurs the
remainder of the currently executing block is abandoned.

This error also occurs when an array index constraint is viol ated.

procedure constraint_denp2 is

X carray (1..5) of integer:=(1,2,3,4,5);
y i nteger :=6;
begi n
x(y):= 37,

end constrai nt_deno2;

In this example the constraint exception will be raised when we try to access a non existant index in the array.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html (1 of 8) [10/14/2000 12:55:24 PM]

The exception NUMERIC_ERROR is raised when a numeric operation cannot deliver a correct result (e.g. for
arithmetic overflow, division by zero, inability to deliver the required accuracy for afloat operation).
NUMERIC_ERROR has been redefined in Ada95 to be the same as CONSTRAINT_ERROR

procedure nuneric_denp is

X ;i nteger;
y i nteger;

begi n
X: =i nteger'l ast;

y: =X+X; -- causes a nuneric error
end nuneri c_deno;

The exception PROGRAM_ERROR is raised whenever the end of afunction is reached (this means that no
return statement was encountered). Aswell it can be raised when an elaboration check falils.

procedure programdenp is
y4 i nteger;

function y(x :integer) return integer is

begi n
If x < 10 then
return Xx;
elsif x < 20 then
return Xx
end if;
end v; -- if we get here, no return has been
-- encount ered
begi n
z:= y(30);

end program deno;

The exception STORAGE_ERROR israised whenever space is exhausted, whether during a call to create a
dynamic object or when calling a subprocedure (and stack space is exhausted).

The exception TASKING_ERROR is raised when exceptions arise during intertask communication; an
example istask that attempts to rendezvous with atask that has aborted.

Handling exceptions

So far the code seen has not processed the exceptions. In these cases the programs are aborted by the run time
code. To make exceptions useful we have to be able to write code that is run whenever an exception occurs.

The exception handler is placed at the end of a block statement, the body of a subprogram, package, task unit

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html (2 of 8) [10/14/2000 12:55:24 PM]

or generic unit.

To handle aconstraint error consider the following code.

decl are

X:integer range 1..20;

begi n
put (" pl ease enter a nunber ");
get (x);
put ("t hank you");
exception
when constraint _error =>
put ("that nunber should be between 1 and 20");
when ot hers =>
put ("some other error occurred");
end;

If the user enters a number between 1 and 20 then no error occurs and the message "thank you " appears.
Otherwise the message "that number ..." appears and the block terminates.

If we want the user to continue to enter in numbers until there is no constraint error then we can write the
following:

| oop
decl are
begi n
get (x);
exit;
exception
when constraint_error =>
put ("t hat nunber
end;
end | oop;

This highlights the point the instruction executed after an exception is that following the block in which the
exception was handled.

Exceptions can be raised by the programmer simply by using the raise statement.

rai se nunmeric_error;

The exception raised is indistinguishable from a genuine numeric_error.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html (3 of 8) [10/14/2000 12:55:24 PM]

Exception propagation

If an exception is not handled in the subprocedure in which it was raised, the exception is propagated to the
subprocedure that called it. A handler for the exception is searced for in the calling subprocedure. If no handler
is found there then the exception is propagated again. This continues until either an exception handler is found,
or the highest level of the current task is reached, in which case the task is aborted. If there is only one task
running (typical for student projects) then the Ada runtime environment handles the exception and the program

is aborted.

procedure exception_deno is

procedure level 2 is

-- no excpetion handl er here
begi n

rai se constraint_error;
end | evel _2;

procedure level 1 is
begi n
| evel _2;
exception
when constraint_error =>
put ("exception caught in level 1");
end | evel 1,

begi n
| evel _1;
exception
when constraint_error =>
put ("exception caught in exception_denp");
end excepti on_denv;

If this program was run the only output would be "exception caught in level _1". The exception is handled here
and does not propagate any further. If we want to we can place a raise statement in the exception handler - this
has the effect of propagating the exception up to the calling subprogram. In thisway an exception can be
viewed by each subprocedure in the call hierachy, with each performing whatever action it deems necessary.

exception
when constraint_error =>
package di sabl ed: =t r ue;
raise; -- re raise the current exception,
-- allow other procedures to have a go
-- at processing the exception.

end;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html (4 of 8) [10/14/2000 12:55:24 PM]

The raise statement is very useful when used in the others section of an exception handler. In this case the
appropriate exception is still raised and propagated.

User defined exceptions

Ada givesthe user the ability to define their own exceptions. These are placed in the declarative part of the
code. They can be placed whereever anormal declaration is placed (e.g. even in package specifications). The
format for the declaration of an exception is

nmy_very _own_exception :exception;
anot her _exception . exception;

The use of exceptionsis the subject of much debate about whether it isalazy way of programming, without
thinking too much about the problem and likely error conditions, or whether it isavalid form of control
structure that can be used to some effect.

Problems with scope

Handling user exceptionsis identical to that of the predefined exceptions except for the problem of scoping.
Consider the following example.

Wth text _io; use text_io;
procedure deno is

procedure problemin_scope is

cant be seen . exception;
begi n

rai se cant __be_seen;
end problem.in_scope;

begi n
probl em i n_scope;
exception
when cant be seen =>
put ("just handl ed an_exception");
end deno;

Thisexampleisillegal. The problem is that the scope of an_exception is limited to procedure exception_raiser.
It's name is not defined outside of this procedure and thus it cannot be explicity handled in procedure demo.

The solution is to use the others clause in the outer procedure's exception handler.

wth text io; use text _io;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html (5 of 8) [10/14/2000 12:55:24 PM]

procedure deno is

procedure problem.in_scope is

cant be seen . exception;
begi n

rai se cant be seen;
end problem.in_scope;

begi n
probl em.in_scope;
exception
when ot hers =>
put ("just handl ed some exception");
end deno;

Another problem arises when one procedure's exception hides another exception due to scoping rules.

wth text io; use text _io;

procedure deno is
fred . exception;

procedure pl is
begi n
rai se fred,
end pl;

procedure p2 is

fred . exception; -- a local exception
begi n
pl;
exception
when fred =>
put ("wow, a fred exception");
end p2;
begi n
p2;
exception
when fred =>
put ("just handled a fred exception");
end deno;

The output of this procedureis"just handled afred exception”. The exception handled in p2 is simply alocal
exception. Thisissimilar to the handling of scope with normal variables.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html (6 of 8) [10/14/2000 12:55:24 PM]

Procedure p2 could be rewritten as

procedure p2 is

fred :exception;
begi n
pl;
exception
when fred =>
-- the |l ocal exception
put ("wow, an_exception");
when deno.fred =>
-- the nore 'global' exception
put (" handel ed deno. fred exception");
end p2;

Suppression of exception checks

Exceptions are generated because extra code that is inserted inline detects some erroneous condition, or
through some hardware checking mechanisms such as software interrupts or traps.

Accordingly it is possible to suppress the insertion of these checksinto the code. The method that Ada usesis
the pragma SUPPRESS. However it should be noted that through use of program analysis by the compiler, a
good number of checks can automatically be removed at compile time.

The pragma can be placed in the code where the suppression is required. The suppression extends to the end of
the current block (using normal scope rules).

It has a large range of options to enable suppression of various checks on either atype basis, an object basis or
afunctional basis. The versatility of the pragmais dependent upon the implementation. Aswell various
implementations are free to implement (or ignore) any pragma suppress feature.

The exception CONSTRAINT _ERROR can be raised by failing several suppressable checks

pragma suppress (access_check);
pragma suppress (discrimnm nant_check);
pragma suppress (index_check);

pragma suppress (| ength_check);
pragma suppress (range_check);

pragma suppress (division_check);
pragma suppress (overfl ow check);

The exception PROGRAM_ERROR has only one suppressable check

pragnma suppress (el aboration_check);

The exception STORAGE_ERROR has only one suppressable check

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html (7 of 8) [10/14/2000 12:55:24 PM]

pragma suppress (storage_check);

Applying suppression of checks

We can suppress the checking of exceptions on individual objects.

pragma suppress (index_check, on => table);

It can also relate to a single type.

type enployee_id is new integer;
pragma suppress (range_check, enployee id);

The use of apragmawould be as follows. In this case the scope of the pragmaistill the end of the block.

decl are
pragma suppress(range_check);

subtype small _integer is integer range 1..10;
a smal | _i nteger;

X . i nteger: =50;

begi n

a: =x;
end;

This code would cause no constraint error to be generated.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html (8 of 8) [10/14/2000 12:55:24 PM]

1. 11 Exceptions

1. Overview
Predefined exceptions
Handling exceptions

Exception propagation

User defined exceptions

Problems with scope

Suppression of exception checks

© NSO Ok D

Applying suppression of checks

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions_ToC.html [10/14/2000 12:55:25 PM]

12 Files

Overview

Conceptually similar to most extended Pascalsfilei/o, Ada provides a simple yet effective collection of file packages. These can be
discarded and replaced by any other file package, with of course a subsequent decrease in portability. Most of the facilities provided
would not be used in high performance applications directly, but may form the basis of such afile system.

The I/O packages

So far dl the 1/0 performed has been on directed to the standard input/output. All of the facilities provided have come from the
TEXT _I0O package (even the generic packages integer_io and float_io). This package provides facilities for file manipulation of
textual files (files of characters) and provides facilities such as close, delete, reset,open, create etc.

Two other standard 1/0 packages are for storing files that consist of the one type of fixed length object, such as records, arrays,
floating point numbers etc. These are the generic packages sequential_io and direct_io.

The Text_10O package

The text i/o package's main datatype isthe FILE_TYPE. Thisisthe internal representation of the file. When afile is opened or
created an association is made between the name and the FILE_TY PE. The object of type FILE_TY PE is used from then on to
reference the file.

The procedure create creates a file and writes some data to it.

with text _io; use text_io;
with int_io; use int_io;

procedure deno file io is
ny file :text_io.file_type;

begi n

create(file => ny_file,
node => out _file,

name => "data.dat");

put (file => ny_file,
item=> "nunbers and their squares");

for i in 1..10 |oop
put (ny_file,i);
put(nmy_file," ")
put (ny_file,i*i);
new line(ny_file);

end | oop;

close(ny_file); -- required, Ada may not cl ose your

-- open files for you
end deno file_io;

The following program reads data from one file and writes it to another, a character at atime. It should be noted that the concept of
‘end of line' is different to that provided by Unix and Dos. In those systems there is sSimply a character that marks the end of the line

http://goanna.cs.rmit.edu.au/~dale/ada/aln/12_files.html (1 of 5) [10/14/2000 12:55:27 PM]

which is processed as a normal character; in Ada and Pascal there is the concept of aline terminator that is not a character in the file.
To read pass this terminator you need to perform askip_line. Similarly to partition the output file into lines, the command new_line
has to be given.

-- programto read a file a character at a tinme, and to wite
-- it out a character at a tine

with text _io; use text _io;

procedure read wite is

input _file file_type;
output file :file_type;
char :char acter;

begi n
open(input file,in file,"input.dat");
create(output file,out file,"output.dat");

while not end of file(input file) |oop

while not end of line(input file) |oop
get(input _file,char);
put (output file, char);
end | oop;
skip line(input file);
new | ine(output file);
end | oop;
close(input _file);
close(output file);
end read wite;

There are various procedures to perform file manipulation. These are
Create - Creates afile with the given name and mode. Note that if the file
- hasanull string, then the file is temporary and is deleted later.

Open - Opens an existing file with the given name and mode.

Delete - Deletes the appropriatefile. It is an error to delete an open file.
Reset - Returns the read (or write) position to the start of the file.
Aswell there are functions that report on the status of the file system.
End_of File- Returnstrue if we are at the end of the current file.
End_of_Line- Returnstrue if we are at the end of the current text line.
Is_open - Returns trueif the given file is open.

Mode - Returns the mode of the given file.

Name - Returns the name (string) of the current file.

There are various other routines, it is best to examine the specifications of the package text_io (appendix B) to get a clear idea of the
package.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/12_files.html (2 of 5) [10/14/2000 12:55:27 PM]

Use of text files

Adastext_iofacilities rely on the exception mechanism to report errorsin the creation and opening of files. For example attempting
to create afile that already exists causes an exception, as does attempting to open afile that does not.

To get around this circularity the following procedure robust_open could be used. This attempts to open thefile, if it fails due to the
file not being there, it attemptsto create it instead.

The codeis, of course, subject to race conditions. This program could be interrupted after an attempt open the file, and before the
create is attempted; a second process could conceivably create the file in thistime.

-- Attenpts to open the specified file.
-- If it doesn't work then it creates it instead

with text_io; use text_io;

procedure robust_open(the_file :in out file_type;
node :in file_node;
name sin string) is

begi n

open(the_fil e, node, nane);

exception
when nanme_error =>
create(the_fil e, node, nane);
end robust _open

Another utility, the boolean function file_exists, allows students to check if the file exists. An exception (use_error) israised if theis
already open.

-- Returns true if the file specified in 'nanme' exists.
-- This works by attenpting to open the file. If this
-- suceeds then the file is there.

wth text_io; use text_io

function file_exists(nane :string) return boolean is
the file:text_io.file_type;

begi n
open(the_file, in_file, nane);
-- yes it worked, close the file and return true
close(the_file);
return true

exception

when nanme_error =>
-- couldn't open the file, assune it's not there.
return fal se;
end file exists;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/12_files.html (3 of 5) [10/14/2000 12:55:27 PM]

Adagd5 Text_io enhancements

The mode append_file has been added to the allowable modes for text files. Aswell the concept of a standard error file (c.f. Unix/C)
has been added. The procedures flush have been added to enable flushing of text file buffers.

Improvements in character handling include look ahead, and get_immediate, with various options.

Generic packages for the I/0 of the new modular and decimal types have been included - their specifications conform to that of the
other numeric generic I/O packages.

The sequential _io package

Most large systems do not utilise text as the basis for their files. The files are usually composed of composite objects, and typically
they are records. The sequential_io generic package allows usto create files whose components are any type (they must however be
constrained).

The basics of the sequential_io generic package are identical to the text_io package, except that the procedures get and put are now
read and write, and the procedures deal in terms of the type the package was instantiated with. Similarly the concepts of line has
dissapeared, so that the function end_of line and the procedures skip_line and new_line have also gone.

Use of the package is demonstrated below.
with sequential io; -- generic package

with personnel details; use person_details;
-- has record type 'personnel’

with produce retirement letter;
procedure sequential _deno is

package person_i o is new sequential _io(personnel);
data file :person_io.file_type;

a_person : personnel ;

begi n
person_io.open(data file,in_file,"person.dat");

while not person_io.end of file(data file) |oop
person_io.read(data file, a_person);

if a_person.age > 100 then
produce_retirenent _|etter(a_person);
end if;
end | oop;

cl ose(data file);
end sequential _deno;

No direct access of thefileis possible. Thefile is opened at the start and processed until you get to the end, you reset or close thefile.
Adad5 has added the file mode append_file to the specifications of sequentia_io.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/12_files.html (4 of 5) [10/14/2000 12:55:27 PM]

The direct_io package
The direct io package builds on top of the sequential io package by providing the ability to seek directly to a given record, to
determine the size of thefile, to determine the current index and to be able to open the file with anew mode - inout_file (read/write).

These facilities should make it possible, in conjuction with a suitable indexing package, to provide very high level file processing
packages.

The following code demonstrates the use of direct files. For brevity it assumes that the employee records are stored on the basis of
their employee numbers.

with direct_io; -- generic package

wi th personnel _details; use personnel details;
-- has record type 'personnel
-- has procedure display_personnel, etc

with int_io; use int_io;
with di splay_nenu

procedure direct_deno is

package person_io is new direct_io(personnel);

data_file :person_io.file_type;
a_person : personnel ;
option :integer;
enpl oyee_no i nteger
begi n
person_i o. open(data_file,inout_file,"person.dat");
| oop
di spl ay_nenu;
get _option(option);
case option is
when 1 =>
get (enpl oyee_no) ;
set _i ndex(positive_count (enpl oyee_no));
read(data_fil e, a_person);
di spl ay_person(a_person);
when 2 =>
get (enpl oyee_no) ;
set _index(positive_count(enpl oyee no));
read(data file,a person);
get _new detail s(a_person);
wite(data file, a person);
when 3 =>
exit;
when ot hers =>
put ("not a great option!");
end case;
end | oop;

close(data__file);
end direct_deno;

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/12_files.html (5 of 5) [10/14/2000 12:55:27 PM]

1. 12 Files
Overview

=

The 1/O packages

The Text 10 package

Use of text files

Adad5 Text io enhancements
The sequential 10 package
The direct io package

N o o~ DN

http://goanna.cs.rmit.edu.au/~dale/ada/aln/12_files_ToC.html [10/14/2000 12:55:28 PM]

13 Access types

Overview

Access types (and the objects they access) are used to create dynamic data structures. It should be noted that access types
are not necessarily implemented as pointers are in other languages (e.g. the address of the object in question), although in
many cases they are. They can be used to create dynamic data structures such as linked lists, trees, graphs etc.

Access types

Access types allow for the dynamic referencing and allocation of objectsin Ada.
To specify an access type consider the following:
type person is
record
name cstring(l..4);

age :0.. 150;
end record;

fred : person

type person_ptr is access person;
someone : person_ptr;

To dynamically create an object that someone will point at:

someone: = new person;
An object referred to by someone can be referenced in exactly the same way as an explicity declared object.
E.g.

"fred";
fim?*";

fred. name
sonmeone. nane:

A specia value caled null is used to indicate that the access object does not reference any valid objects. An access object
isalwaysinitialised to null.

Given the following declarations

decl are
X . person_ptr := new person;
y . person_ptr := new person;
begi n
X = ("fred", 27);
y := ("anna", 20);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/13_access_types.html (1 of 4) [10/14/2000 12:55:29 PM]

X =Y, -- *
y.all := ("sue ", 34);
put (x. name) ;

end,

Thiswill output the string "sue ". When the line highlighted with a star is executed, the value of the access object y is
assigned to x, not the object that y was accesses. Both x and y both refer to the same object, so a change to the object that y
refersto implicity changes the object x refersto.

If we wish to change afield of the object refered to by x

X. name : = y.nane;

Access objects x and y still point to distinct objects. Both access objects are implicitly dereferenced in this example.
Because of the implicit derefence, we need a specia syntax to denote the entire object the access object accesses. Ada has
the reserved word all for this purpose.

x.all :=y.all; -- all fieldin object referred to by y now
-- in the object referred to by y. They are
-- still distinct objects.

A comparison of Pascal, C and Ada pointer/access syntax.

Pascal C Ada
Access an. fiel dname *a. fiel dnane a.fiel dnane
a->fi el dnane

Copying pointer b := a; b = a; b := a;
Copyi ng accessed b = a’; *b = *a; b.all := a.al
obj ect

Adads. Typically all access objects are allocated from a storage pool (heap) (see below). However it is possible to create
an access type to other objects, so long as they are declared aliased, and the access type is declared to point at 'all' objects.

procedure deno is

type ptr is access all integer;
a :aliased integer;
X, y :ptr;
begi n
X .= a' access;
y = new integer;
end;

Scope rules ensure that there cannot be any dangling references to objects. The attribute Unchecked Access can be used to
create access values in an unsafe manner.

Access types to subprograms

A feature not available in Ada83, access types to subprograms allow for functional parameterisation such as used in
Fortran mathematical libraries, aswell as ad-hoc late binding. Asfor the rest of Ada, thisistype safe.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/13_access_types.html (2 of 4) [10/14/2000 12:55:29 PM]

An example from the LRM (3.10).

type Message Procedure is access procedure (Min String := "Error!");
procedure Default_Message_Procedure (M:in String);
G ve_Message : Message Procedure : = Default_ Message Procedure' Access;

procedure O her_Procedure (M:in String);
G ve_Message : = O her _Procedure' Access;

G ve_Message. ("File not found");
G ve_Message. al | ;

Self referencing data structures

To define a structure that refersto itself requires normally requires making references to data structures that don't as yet
exist. Ada circumvents this problem by allowing for incomplete type declarations. These ssmply specify the name of atype
that is yet to be defined. The compiler expects that the full definition will be given before the end of the sourcefile.

type el enent; -- inconplete type definition.
type ptr is access el enent;

type element is -- full definition of the type.
record
val ue: i nt eger;
next: ptr;
end record;

Initialisation of objects

When an object isdynamically allocated its value can be set in the same statement as its creation. Thissimply usesa
gualified (type name specified) aggregate.

E.g.

head : = new el enent' (40, head); -- insertion at the head
-- of a linked |ist.

The same thing can be done using named aggregates.

head : = new el enent' (val ue => 40; next => head);

Garbage collection

There is no language requirement for deallocated memory to be put back into use for later allocation. Y ou should consult
your compiler reference manual for details.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/13_access_types.html (3 of 4) [10/14/2000 12:55:29 PM]

If you want to deallocate memory (similar to free system call in Unix), then you can instantiate the generic procedure
Unchecked Deallocation (child of package Adain Ada95). It is called unchecked because it does no live object analysis
before deallocation.

generic
type Qbject(<>) is limted private;
type Nane is access bject;
procedure Ada. Unchecked Deal | ocation(X: in out Nane);
pragma Convention(lntrinsic, Ada.Unchecked Deal | ocatoin);

Thiswould be instantiated as follows...

procedure Free is new Ada. Unchecked_Deal | ocati on(obj ect => node,
name => ptr);

Free could then be called as follows...

head : = new node;

l;lr.ee(head) ;

Storage Pools

Adad5 allows a storage pool to be specified from which allocated memory comes from. Different access types can share a
pool, typically most user defined access types share the one program wide pool. By extending the abstract type
Root_Storage Pool, defined in packge System.Storage Pools, users can write their own storage pool type, and then
associate it with an access type via the Storage Pool attribute.

For example (from LRM, 13.11)

Pool _Obj ect : Sone_St orage_Pool _Type,;

type T is access <sonething or other>;
for T Storage_Pool use Pool (Object;

Storage pools alow for the possibility access types that are smaller than for a default access type that accesses a default
pool.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/13_access_types.html (4 of 4) [10/14/2000 12:55:29 PM]

13 Access types
Overview

Access types

Access types to subprograms

Salf referencing data structures

Initialisation of objects
Garbage collection
Storage Pools

© NS Ok DR

http://goanna.cs.rmit.edu.au/~dale/ada/aln/13_access_types_ToC.html [10/14/2000 12:55:30 PM]

14 Object Oriented features of Ada

Overview

The type system of Adathat existed in Ada83 has been extended to include support for object oriented
programming. Rather than an extension that would be discordant with what existed, the object oriented
facilities extend the existing type system to allow for type extension. These provide all the classical object
oriented facilities such as inheritance, dynamic dispatching, polymorphism, with the usual Ada features of
readability and safety.

Types are for many purposes similar to classes.

The following object diagram isimplemented using Ada.

! Perzon b

narme :=Ting
dob:dae
zalaryioat
ernploy
dizmnizs
 [ize

hdanager

maser_key_code
=Ting

allocate_rmaser_key
pay_fise

Inheritance (Ada83)

Inheritance can be split into two distinct concepts, inheritance of operations (methods) and inheritance and
further addition of attributes (type extension). Ada 83 supported inheritance of operations. If anew typeis
derived from a base type, then the derived type inherits the operations avail able from the parent. For example,

type person is

record
name cstring(l..10);
dob : dat e;
salary :float := 0.0; -- :-(

end record;

procedure enpl oy(soneone:in out person);
procedure di sm ss(soneone:in out person);

type manager i s new person;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_0O0O.html (1 of 9) [10/14/2000 12:55:32 PM]

-- derived type manager inherits the operations of person,
-- and can add new operations of its own.

procedure all ocate _master_ key(soneone:in out manager);

This model of inheritance does not allow for extension of types, that is we cannot add in extra attributes. The
procedures (or functions) that take a parameter of atype are said to be the operations on the type and are
equivaent to methods in other OO languages.

Inheritance (Ada95)

Adad5 has extended the notion of type derivation to support conventional object oriented programming. A new
type, the tagged record, has been introduced to represent atype that can be extended (inherited). The syntax for
atagged typeis

type person i s tagged

record

name cstring(l..10);
dob . dat e;

salary :float := 0.0;

end record,
A tagged record is treated like a conventional record in most situations. Field accessing, and setting isjust as
normal.
] ane »person : = ("Jane ", (6,10,1978), 210.0);
Operations on the type are written just as before...
procedure enpl oy(soneone:in out person);

procedure di sm ss(soneone:in out person);
procedure pay_rise(soneone:in out person);

If we want to extend the type, we follow a notation similar to the type derivation common in Ada...
type manager i s new person with
record

mast er _key code :string(l..10);
end record;

The "with record” part indicates the extension to the base type (in this case "person").
New operations for the manager can be added, just asin Ada83...
procedure all ocate _master_key(

sonmeone:in out nanager;
code cin string);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_0O0O.html (2 of 9) [10/14/2000 12:55:32 PM]

We may even want to override an inherited operation...

procedure pay_rise(soneone:in out nanager);

We can now write a different algortihm for pay_rise's for manager's compared to person's.

How do | set all of this up?

In Ada, the package concept is simply used for encapsulating the declaration of atype, and it's operations. The
package is used to hide the implementation details, and as an aid to recompilation (we can split a program up
into smaller chunks, which individually are quick to compile). A very common convention is to place one type
and it's operations into one package.

The above example would thus be placed into two packages...
with dates; use dates; -- definition of type date

package persons is
type person i s tagged

record

name :string(1l..10);
dob . dat e;

salary :float := 0.0;

end record;

procedure enpl oy(soneone:in out person);

procedure di sm ss(soneone:in out person);

procedure pay rise(soneone:in out person);
end persons;

The declaration of the derived type would be placed in a second package...

Wi th persons; use persons;

package managers is
type manager i s new person with
record
mast er _key_code :string(1l..10);
end record;
procedure all ocate master key(
soneone: i n out nanager;
code cin string);
procedure pay_rise(soneone:in out person);
end nmanagers;

For tagged types, the operations on the type that are included in the same package as the type declaration (as
all of the above are) have a specia status - they are called the primitive operations of the type - and are all
potentially dispatching calls. Thiswill be described in further detail later.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_0O0O.html (3 of 9) [10/14/2000 12:55:32 PM]

Using tagged types

Using these typesis quite ssmple. Y ou just declare variables as you would have before...

Wth text io; use text _io;
w th persons; use persons;
wi th dates; use dat es;

W th nanagers; use nanagers;

procedure deno is

e . person;
hi m manager ;

begi n
me. nane : = "Santa "
me. dob = (29,11, 1962);
hi m name : = "Rudol ph " -- inherited field
himdob := (28, 6, 1962); -- inherited field
enpl oy(him; -- inherited operation
-- new net hod for type nmanager
al l ocate_nmaster_key(him code => "XYZ398");
pay_rise(him; -- Manager version
pay_rise(nme); -- Person version

end;

Null records and extensions

A type may need to be created that has no fields (attributes), only operations (methods). This can be achieved
by specify an empty record when declaring atype.

type root is tagged
record
nul | ;
end record;

Adahas a special syntax for null records being used with tagged types:

type root is tagged null record;

This can now be used as the basis of further derivations.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_0O0O.html (4 of 9) [10/14/2000 12:55:32 PM]

Operations on the type can be added as normal within a package specification...

procedure do_sonet hing(item :root);

Moretypicaly anew type may be derived from an existing type without the need for new attributes, but with
the need for new subprograms.

The syntax for such an extension would be...

type director is new manager with null record;

procedure pay_rise(soneone :in out director);

A director has no new components added, but can has yet another method for allocating apay_rise.

Abstract types and subprograms

Sometimes we wish to create an artificial type that we never expect to use, but serves asthe "root" of atree of
types. These are called abstract types. They may also include abstract subprograms, which do not have a body
and must be overridden by a derived type. Thisforces al descendants of atype to support acommon
functionality.

An abstract type has the following syntax...

package Sets is
type Set is abstract tagged null record,;

function Enpty return Set is abstract;
function Enpty(El enent: Set) return boolean is abstract;
function Union(left, right:set) return Set is abstract;
function Intersection(left, right:set) return Set is abstract;
procedure Insert(El enent:natural; into:Set) is abstract;

end Sets;

Thisimplementation of a set of natural numbers is taken from the Ada Language Reference Manual. Note that
you cannot declare a variable of type Set because it is an abstract type. E.g.

wth Sets; use Sets:;

procedure wont_conpile is

nmy_set : Set; -- illegal, abstract type
begi n

nul | ;
end;

However a derived type may or may not be abstract...

wth Sets;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_0O0O.html (5 of 9) [10/14/2000 12:55:32 PM]

package quick sets is

type bit_vector is array(0..255) of bool ean;
pragma pack(bit_vector);

type quick _set is new Sets.set with
record
bits:bit_vector := (others => fal se);
end record;

-- advertise concrete inplenentations
function Enpty return quick_set;
function Enpty(El enment: quick _set) return bool ean;

etc. etc.

Class wide types

For any given tagged type, there is an associated class wide type, that encompasses the tagged type and all
types derived from it. Ada has used the word "class" differently to most object oriented languages. It is perhaps
used in amore traditional English sense, as a collection of similar types.

For example in the type family (inheritance hierachy)

vehi cl e
not ori sed
truck
car
train
unnot ori sed
bi cycl e

thetypevehi cl e' cl ass refersto al the types above. Mot or i sed' cl ass refersto the classes
motorised, truck, car and train.

This can be used to allow for dynamic selection of the appropriate operation.
Assume that the following procedure was defined in package persons.
procedure reward _good work(soneone:in out person) is
begi n
print_certificate(soneone. nane);

pay_ri se(soneone);
end;

If we call thiswith amanager as a parameter, then the procedure per sons. pay_ri se will be called, not

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_0O0O.html (6 of 9) [10/14/2000 12:55:32 PM]

managers. pay_ri se.

A solution to this problem isto accept as a parameter any variable in the class wide type. Thisis done as
follows...

procedure reward _good work(soneone:in out person'class) is
begi n

print_certificate(soneone. nane);

pay_ri se(soneone);
end;

If the following declarations are made...

me . person;
hi m manager ;

and then...
rewar d_good_wor k(ne) ; -- calls persons.pay _rise
reward _good work(him; -- calls managers.pay rise

Here the pay_rise procedure called depends on the specific type passed in as a parameter. Thisis called
dynamic dispatching - deciding which procedure to dispatchi to (or call) at run time (dynamically). Passing in
amanager object resultsin acall to the manager's pay_rise routine. Passing in a person object resultsin a call
to the person's pay_rise routine.

What pay_rise routine would be called if a Director object was passed in?

In fact all the primitive operations of type are potentially dispatching calls, given the right circumstances. The
example using aclass wide type is one example. Another (closely related) example isthe use of class wide
access (pointer) types.

What you can't do with a class wide type (such as person'class) is create an array of them. Thisis because each
object is potentially a different size - arrays require all elements to be the same size. Similar considerations
apply for any place where a declaration must be of afixed size (constrained, in Ada parlance).

Class wide pointers

Most pointersin Ada are restricted to pointing at just asingle type. For example...

t ype node;
type ptr is access node;
type node is record
item ;i nteger;
next cptr;
end record;

Here variables of type ptr are restricted to always pointing at variables of type node.

With the concept of class wide typesin Ada, comes the concept of a pointer that can point to any item within

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_0O0O.html (7 of 9) [10/14/2000 12:55:32 PM]

an inheritance hierachy.
Thisisachived by...

type person_ptr i s access person'cl ass;
who . person_ptr;

who' can now point at any object from the derivation tree rooted at person, i.e. person, manager, director, and
quite importantly, any future types included in the inheritance hierachy.
For example we could make 'who' point at...

who : = new person;
who : = new nanager;
who : = new director;

Interestingly, we could create an array of class wide accesstypes...

type person_list is array(1..10) of person ptr;
peopl e :person_list;

peopl e(1) := new person;
peopl e(2) := new manager;
peopl e(3) := new person;
peopl e(4) := new director,

-- initialise the vari abl es appropriately.

for i in people'range |oop
exit when people(i) = null;

-- now dispatch to the appropriate routine...

pay_rise(people(i).all);
end | oop;

Class wide pointers can be used to build hetrogeneous data structures, that is those were the components are
not all the same type (they must however be in the same class).

Private tagged types

A type can be declared private to help enforce information hiding (especially of the exact details of its
representation, e.g. isit an array, or alinked list?). Similarly tagged types can be made private.

type person i s tagged private;

The private section of the package must complete the declaration (provide what is called afull view of the
type)...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_0O0O.html (8 of 9) [10/14/2000 12:55:32 PM]

type person is tagged record...

A type extension can also have a private extension if desired...

type manager is new person with private;

This gives sufficient flexibility for most purposes.

Generic type parameters

Tagged types can now be specified as generic type parameters (they can still be passed as actuals to the normal
private or limited private type parameters). The syntax is asfollows...

generic
-- actual nust be a tagged type
type T is tagged private;

-- actual nust be direct descendent of S
type T is new S

-- actual nust be derived fromS somewhere
type T is new S with private;

package some_interesting pacakge is...

Multiple Inheritance

Adad5 does not directly support MI. It provides features that can be used to build M| "by hand" with a bit of
extrawork. The options are generics (to extend a type with a set of new features), access discriminants (to
allow atypeto point at it's containing object, and therefore allow delegation) and another one that | can't quite
remember now.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_0O0O.html (9 of 9) [10/14/2000 12:55:32 PM]

15 Concurrency support

Overview

Adaisone of the few mainstream languages that supports concurrency from within the language. This has the benefit of
stable semantics, and therefore portability between computers. The task and rendezvous mechanism of Ada83 has been
enhanced through the introduction of protected objects and greater considertion for real time systems.

Tasks

An Ada program consists of at least one, and possible more tasks, which run concurrently. The tasks run independently of
each other, communication/synchronisation is achieved by high level concepts such as the rendezvous or with protected
objects. With an abstraction level higher than ssmple semaphores, the rendezvous and protected objects come supplied with a
range of options for guards (as Dijkstra postul ated), timeouts and (in Ada95) to selectively requeue clients and abort
operations.

The death of atask does not necessarily affect the operation of other tasks, except if they attempt to communicate with it.
There is no specialised task, even the main procedure of the Ada program can end, with other tasks continuing.

The rendezvous

As one mechanism for tasks to safely communicate and synchronise with each other, the rendezvous is conceptually simple.
Tasks publish entry points at which they are prepared to wait for other tasks. These entry points have a similar semantics to
procedures; they can have parameters of in, inout and out mode, with default parameter values. A task wishing to rendezvous
with a second task simply makes a procedure-like rendezvous call with an entry; Either is held up until they can both
communicate. The rendezvous is non symmetrical - onetask is viewed as a server and cannot initiate a rendezvous.

procedure deno is
task single entry is
entry handshake;
end task;

task body single entry is

begi n
del ay 50. 0;
accept handshake;
del ay 1.0;
end;
begi n
for i in 1..randon(100) | oop
delay(1.0);
end | oop;
handshake;
end;

When this program is run the task single_entry is started. If succeful the parent task is also activated. If 'random’ returns a
value less than 50, then after the initial delay the main task waits for the second task, and vice versaif it returns greater than
50. Once the two tasks have rendezvoused, they depart on their separate ways. The main task finishes, the second task
continues until it too finishes. The program then terminates.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_concurrency.html (1 of 6) [10/14/2000 12:55:34 PM]

The same program can be modified to include parameters in the entry call. In this example, the two tasks swap duration times

for the delay statements. However they may still not finish together as the quicker task to the rendezvous will still have to
wait for the second task.

procedure deno is

X :duration := duration(randon 100));
y :duration;

task single entry is
entry handshake(ne_wait: in duration; you wait: out duration);
end task;

task body single entry is
a :duration := duration(randon{100));
b :duration;

begi n
del ay a;

accept handshake(ne_wait:in duration; you wait: out duration) do
b:=nme wit,;
you wait := a;
end handshake;

del ay b;
end;
begi n
del ay(x);
handshake(x, y) ;
del ay(y);
end;

A task can have several rendezvous. If it waits for arendezvous and there is no possible task that can rendezvous with, then it
will abort with atasking_error exception.

Rendezvous' can be treated in amanner very similar to procedure calls. They can bein loops, if statements, subprograms etc.
Typicaly however they are structured in a high level loop; this allows a client architecture in which after servicing a
rendezvous, and performing some processing, it goes back and waits for another rendezvous.

procedure deno is
type service is (increnent, decrenent, quit);
task single entry is
entry accept _command(which : service);
end task;

task body single entry is

conmand : service;

i .1 nteger;
begi n

| oop

accept accept command(whi ch : service) do
conmand : = whi ch;
end accept _command;

case command i s
when increnent =>i =i + 1;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_concurrency.html (2 of 6) [10/14/2000 12:55:34 PM]

when decrenment =>1i =i - 1;
when quit => exit;
end case;
end | oop;
end;

begi n
-- stuff, dependi ng per haps upon user input.
end;

This situation can be impoved having multiple entry points, and making use of the select statement in conjunction with the
accept statement.

procedure deno is
task multiple entry is
entry i ncrenent;
entry decrenent;
end nultiple entry;

task body nultiple_entry is

i @ integer;
begi n
sel ect
accept increnent;
= L 8
or
accept decrenent do
bl g
end decrenent
or
term nat e;
end sel ect;
end;
begi n

-- rendezvous'
end;

The select statement allows the task to wait on severa different entry points. This example shows the increment entry without
any associated processing. The decrement entry forces the calling task to wait while the decrement takes place. The terminate
alternative causes task multiple_entry to finish if it is uncallable from any other task.

The select statement can have a selective wait, unconditional alternative, aterminate or none of these. The previous example
showed the terminate. The unconditional aternative is shown below.

procedure deno is
task multiple entry is
entry increnent;
entry decrenent;
end multiple_entry;

task body nultiple entry is
i : integer;
begi n
sel ect
accept increnent;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_concurrency.html (3 of 6) [10/14/2000 12:55:34 PM]

or
accept decrenent do
Ioi=00- 00
end decrenent
el se
per form sonme_processi ng;
end sel ect;
end;
begi n
-- rendezvous
end;

In this example, the task stops only briefly to inspect if another task is waiting to rendezvous. If not it goes off and does some
processing.

The selective wait allows the task to wait for a given time, after which it gives up and continues on with other actions.

procedure deno is
task nmultiple_entry is
entry increnent;
entry decrenent;
end multiple_entry;

task body nultiple entry is

i . integer;
begi n
sel ect
accept increnent;
o e 5 R T
or
accept decrenent do
i~i=d -1
end decrenent
or
del ay 3.0; -- not a normal delay statenent!
perform some_processi ng;
end sel ect;
end;
begi n
-- rendezvous'
end;

Here the task will wait for at least 3.0 seconds for another task. If none comes along it will call perform_some_processing.

Similarly the client task can either wait unconditionally for a rendezvous, it can not wait at all (impatient), or it can specify a
time out after which it will give up on arendezvous.

Task types

All of the above tasks are of an anonymous type. Ada allows you to create atask type (viaa special and non consistent syntax
from all other type declarations) and to declare objects of the type. They can be declared dynamically (through an allocater) as
well aslocal variables. They can be composed into other objects - you could have an array of tasks, or arecord, a component
of which, isatask.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_concurrency.html (4 of 6) [10/14/2000 12:55:34 PM]

Problems with the rendezvous mechanism

The rendezvous mechanism is a synchronisation as well as a communication mechanism. Tasks that should normally run
asynchronously and which want to pass data between them are required to stop and "have achat", instead of simply leaving
the data for the other task. The solution to this problem is usually to creat an intermediary task that manages the data flow,
and, the designer hopes, is aways available to respond to a rendezvous from either task. It sits between the two tasks, acting
as an emissary for both.

Protected Objects

A simpler solution can be provided in Ada95 which has a concept of a protected object or type. Protected objects provide for
task safe access to data via entries and guards, without the overhead of a separate task being created. The subprograms and
entries inside a protected object are executed in the context of the calling task. As with tasks types you can create arrays of
protected type, and compose other objects from them.

All the examples in this section come from Introducing Ada9x, John Barnes.

An example of aprotected entry follows

protected Variable is
function Read return item
procedure Wite(New Value:item;
private
Data :item
end Vari abl e;

protected body Variable is
function Read return itemis
begi n
return ltem
end;

procedure Wite(New value :iten) is
begi n
data : = New Val ue;
end;
end Vari abl e;

Functions are only allowed read access to the data, procedures can manipulate them in any way they wish. Procedure calls are
exclusive, that is only one task can access a procedure at any one time. Multiple reads can occur concurrently.

Another example is a semaphore, to provide exclusive access to resources.

protected type Counting Semaphore (Start_count :Integer := 1) is
entry Secure;
procedure Rel ease;
functi on Count return integer;
private
Current _count :integer := start_count;
end,

protected body counting senmaphore is

entry Secure when Current _count > 0 is
begi n

http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_concurrency.html (5 of 6) [10/14/2000 12:55:34 PM]

Current Count Current _count + 1;

end;

procedure Rel ease is
begi n

Current Count Current count + 1;

end;

function Count return integer is
begi n
return current_count;
end;
end Counti ng_semaphor e;

When called the barrier on the entry is queued. If it isfalse, the task is queued, pending it becoming true.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_concurrency.html (6 of 6) [10/14/2000 12:55:34 PM]

15 Concurrency support

Overview

Tasks

The rendezvous

Task types

Problems with the rendezvous mechanism
Protected Objects

ROV Ohy iRy LOg RS

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_Concurrency_support.html [10/14/2000 12:55:35 PM]

16 Language interfaces

Overview

No matter how good a new language is, there is usually a great deal of investment in existing programs. The
designers of Adarealised this and provide a standard mechanism to interface with other language. The facilites
provided are optional, and just which languages are supported depend on the compiler vendor. Considerably
more support has been built into Ada95. Consult your compiler's reference manual for full details.

Interfacing with foreign languages (Ada83)

Assume you are on a Unix system and you wish to make use of the kill command. Y ou should perform the
following.

function kill(pid 2in integer;
si g ;in integer) return integer;
pragma i nterface(C kill);

Thefirst parameter to pragma interface is the language of the called routine, the second the name the routineis
known by in Ada.

Another example for a packageis
package MATHS is

function sqgrt(x:float) return fl oat,;
function exp (x:float) return float;

private
pragma i nterface(fortran,sqrt);
pragma i nterface(fortran, exp);
end MATHS;

The pragmainterface cannot be used with generic subprograms.

Interfacing with foreign languages (Adagb5)

Ada95 makes extensive use of the predefined libraries to enable data type trandlation between Ada and foriegn
languages. Together with the pragmas import, export and convention they allow Ada systemsto be easily used
in a multi-language environment.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/16_interfaces.html (1 of 5) [10/14/2000 12:55:36 PM]

Pragma Import

The pragma Import allows the inclusion of foreign language entities within an Ada program, such as variables or
procedures/functions. The code below shows an example of the use of pragma import for the Unix function
read.

Pragma Import consists of three parameters,
- the language convention (only Ada and Instrinsic must be supported)
- Ada

- Instrinsic
-C

- Fortran

- Caobol

- any other implementation defined value

- the Ada name for the object
- the foreign langauge name for the object, as a string.

procedure read(file _descriptor :in I nt eger;
buf fer ;i n out string;
no_bytes cin i nt eger;
no_read : out integer) is

function read(file_descriptor :integer;
buffer :system address;
no_bytes:integer) return integer;

pragma i nport(C, read, "read");

begi n
no read := read(file_descriptor,
buffer(buffer'first)'address,
no_bytes);
end;

The interface packages

The interface package hierachy consists of packages designed to ease the interfacing of Adawith other
langauges. The standard suggests interfaces for C, COBOL and Fortran.
The package hierachy is

package I nterfaces

http://goanna.cs.rmit.edu.au/~dale/ada/aln/16_interfaces.html (2 of 5) [10/14/2000 12:55:36 PM]

package I nterfaces.C

package Interfaces.C Pointers
package Interfaces.C Strings
package | nterfaces. COBOL
package I nterfaces. Fortran

The packages give sufficient power to deal with most foreign language interfacing issues.

One areain which Ada has problems interfacing to other languages is functions that contain non homogenous
variable length parameter lists, such as printf. Such functions are inherently type unsafe, and there is no
satisfactory way to handle such situations.

Ada can, however, handle functions where the argument types are homogenous, thisis achieved through the use
of unconstrained array types.

A simple example would be a C function...

void sonething(*int[]);

it could be accessed as follows...

type vector is array(natural range <>) of integer;
procedure sonmething(item:vector) is

function C_Sonet hi ng(address: syst em addr ess) ;
pragma i nport(C, C sonething, "sonething);

begi n
if itemlength = 0 then
C sonet hi ng(system nul | _address);
el se
C sonething(item(item first)' address);
end if;
end;

A larger and more complex example is given below for the Unix C function execv. The added complication is
caused by the necessity of trandlation from Ada stringsto C style character arrays (and is not necessarily as good
asit could be. See the LRM for more information on using interfaces.c child family).

The C function is defined as...

i nt execv(const char *path, char *const argv[]);

you need to declare afew things...

type string_ptr is access all string;
type string_array is array(natural range <>) of string_ptr;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/16_interfaces.html (3 of 5) [10/14/2000 12:55:36 PM]

function execv(path »string;
arg_li st :string_array) return interfaces.c.int;

-- execv replaces the current image with a new one.
-- Alist of argunents is passed as the conmmand |ine
-- paraneters for the called program

-- To call this routine you can...

-- option2 -aliased string := "-b";
-- option3 -aliased string :="-¢c";
-- optiond cstring = "Cxy";

-- result sinterfaces.C.int;

-- result := execv(path => "sone_prograni,

- - -- build up an array of string pointers...

- - argv => string_array' (new string' ("sonme_progranm),
- - new string' ("-a"),

- - opti on2' Unchecked_access,

- - opti on3' Unchecked_access,

- - new string ('-' & optiond));

-- Any mxture of dynamc string allocation and

-- '"Unchecked access to aliased variables is allowed. Note however that
-- you can't do "sone_string"'access, as Ada requires a nane,

-- not a value, for the '"access attribute to be applied to.

This function could be implemented as follows. Note that the address of the first item in the array is passed, not
the address of the array. Arrays declared from unconstrained array types often have a vector which includes
extrainformation such as the lower and upper bounds of the array.

function execv(path »string;
ar gv :string array)return interfaces.C.int is

Package C renanes Interfaces. C,
Package Strings renanes Interfaces.C Strings;

C path :constant Strings.chars ptr(1..path'length+l)
:= Strings. New_string(path);

type char_star_array is array(1l..argv'length + 1) of
Strings.char_array ptr;

C argv :char_star_array;

I ndex i nteger;
result :C int;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/16_interfaces.html (4 of 5) [10/14/2000 12:55:36 PM]

functi on C_execv(pat h :Strings. Char_ptr;
Carg list:Strings. Char_ptr)
return C.int;
pragma i nport(C, C _execv, "execv");

begi n
- set up the array of pointers to the strings
I ndex := 0;
for i in argv'range | oop
I ndex := index + 1;
C argv(index) := Strings.New String(argv(i).all));
end | oop;
-- append C style null to the end of the array of addresses
C argv(C argv'last) := Strings.Null _Ptr;
-- pass the address of the first elenent of each
-- parameter, as C expects.
result := C execv(C path(l)' address, C argv(1l)'address));
-- Free up the nenory as obviously this didn't work
for i in argv'range | oop
Strings.free(argv(i));
end | oop;
Strings.free(C _path);
return result;
end execv;
to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/16_interfaces.html (5 of 5) [10/14/2000 12:55:36 PM]

16 L anquage interfaces

Overview
Interfacing with foreign languages (Ada83)

I nterfacing with foreign languages (Ada95s)

Pragma | mport

o gk~ wWw DR

The interface packages

http://goanna.cs.rmit.edu.au/~dale/ada/aln/16_interfaces_ToC.html [10/14/2000 12:55:37 PM]

17 Idioms

Overview

Using alanguage effectively requires more than a knowledge of it's syntax and semantics. An acquaintaince with
common problems, and the various methods to solve these problems can simplify the process of writing programs,
and in this respect Adais no exception. This chapter isinvolved in exposing some of the more common idioms of
programming in Ada.

Introduction

Abstraction is one of the most important part of programming, and it should always be considered when
programming solutions. Y ou must always make an effort to distinguish what service atype is providing and how it is
implemented. Y ou expose the what, but try to hide the how.

Similarly a knowledge of how to hide thingsin Adaisimportant. Ada provides for (predominantly) orthogonal
concepts of type/behaviour, and modularity/controlling visibility. The semantics of a program (how it runs, what it
does) are independent of whether you design the program carefully for modularity and robustness in the face of
change. Clearly though it is more often than not worth the effort to design a system competently.

Abstraction

Abstractions allow us to present only that which we want the user to be concerned with, and not giving access to
information which isirrelavent. For example in the all too often used stack example, the user should not be too
concerned with whether the implementation uses arrays or linked lists.

A rough stab at an abstraction could be...

package stacks is

max :constant = 10;
subtype count is integer range O..nmax;
subtype index is range 1..nax;

type list is array(index) of integer;

type stack is
record
values : |ist;
top : count;
end record;

overfl ow . exception;
under f | ow . exception;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (1 of 23) [10/14/2000 12:55:42 PM]

procedure push(item:in out stack; value :in integer);
procedure pop(item:in out stack; value : out integer);

function full(item:stack) return bool ean;
function enpty(item :stack) return bool ean;

-- return an enpty initialized stack
function init return stack;

end;

Here however the details of the implementation are rather obvious; the how tends to get in the way of the what. This
can be changed simply by moving whatever is not relavent into the private section...

package stacks is

type stack is private;
-- This is called a partial view of the type stack
-- It makes info about its inplenentation inaccessable.

overfl ow . excepti on;
underfl ow . exception;

procedure push(item:in out stack; value :in integer);
procedure pop(item:in out stack; value : out .integer);

function full (item:stack) return bool ean;
function enpty(item:stack) return bool ean;

-- return an enpty initialized stack
function init return stack;

private
-- full view of the type, along with other private details.
max :constant := 10;
subtype count is integer range O..max;
subtype index is range 1..nax;

type list is array(index) of integer;

type stack is
record
val ues : |ist;
top : count;
end record;
end;

Although the programmer who uses your abstraction can see al the detailsif they have access to the code, they can't
write their programs to rely on this information. Also the separation clearly enforces the notion of what is important
for the abstaction, and what is not.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (2 of 23) [10/14/2000 12:55:42 PM]

Alternatively we could change the private section to reflect alinked-list implementation...

package stacks is

type stack is private;
-- make info about its inplenentation inaccessabl e.
-- this is called a partial view of the type stack

overfl ow . excepti on;
under fl ow . exception;

procedure push(itemin out stack; value:in integer);
procedure pop(itemin out stack; value : out integer);

function full (item stack) return bool ean;
function enpty(item stack) return bool ean;

-- return an enpty initialized stack
function init return stack;

private
t ype stack;

type ptr is access stack;

type stack is record
val ue :integer;
next S ptr;
end;
end;

A user program could then use either package asfollows...

with stacks; use st acks;

procedure deno is

a stack :=init;
b cstack (= init;
tenp 1 nteger;
begi n
for i in 1..10 | oop
push(a,i);
end | oop;
whil e not enpty(a) | oop
pop(a, tenp);
push(b, tenp);
end | oop;
end;

The concept of being able to substitute a different implementation, or more precisely, only relying on the public

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (3 of 23) [10/14/2000 12:55:42 PM]

interface, isavery important design principle for building robust systems.

(Note that these two implementations aren't quite identical. Consider the case where we have

with stacks; use stacks;

procedure not _quite right is
a, b:stack

begi n
push(a, 1) ;
push(a, 2);
b .= a;
end;

An array implementation will work correctly when copied, but alinked list implementation will only copy the head
pointer. Both aand b will then point to the same linked list. The solution to thisis presented later on. For the
examples presented here on, assume that this problem has been fixed).

Creating abstractions from other abstractions (code
reuse)

Private inheritance

It isimportant to establish the difference between what services atype provides, and how it implements that service.
For example alist abstraction (that has appropriate routines, and itself may be implemented as a linked list, or an
array) can be used to implement a queue abstraction. The queue abstraction will have only afew operations:

add_to_tail
renove_from head
full

enpty
init

We want to ensure there is a clear distinction between the abstraction and the implementation in our program.
Preferably the compiler should check and ensure that no-one makes the mistake of calling routines from the
implementation, rather than the abstraction.

Below is an example package which can lead to problems.
package lists is
type list is private;
procedure add to head(itemin out list; value :in integer);

procedure renove fromhead(itemin out list; value :out integer);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (4 of 23) [10/14/2000 12:55:42 PM]

procedure add to tail (itemin out list; value:in integer);
procedure renove fromtail(itemin out list; value: out integer);

function full(item list) return bool ean;
function enpty(itemlist) return bool ean;

function init return |ist;

private
type list is... -- full view of type.
end;
wth lists; use |ists; -- abstraction of lists

package queues is

type queue is new list;

-- inherits operations fromthe list type

-- 1.e. the followng are "automagically" (inplicity) declared
-- procedure add to head(itemin out queue; value :in integer);
-- procedure renove_from head(

- - item i n out queue;

-- val ue : out integer);

-- etc.

end queues;

Here type queue inherits all of the operations of the list type, even those that aren't appropriate, such as
remove from_tail. With thisimplementation of queue, clients of the abstraction could easily break the queue, which
should only allow insertion at the tail, and removal from the head of the list.

For example a client of the queues package (something that "with queues'), could easily do the following

wi th queues; use queues;

procedure break abstraction is
my_Q : queue;

begi n
add_to_head(ny_Q 5);
add to tail (my. Q 5);
-- gueues should only add at the tail, renove fromthe head,
-- or vice-versa
end;

What we need to do is advertise a different abstraction, but reuse the list abstraction privately.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (5 of 23) [10/14/2000 12:55:42 PM]

wth |ists; -- this is only used in the private section.

package queues is
type queue is private;

procedure renove from head(itemin out queue; value :out integer);
procedure add to tail (itemin out queue; val ue:integer);

function full (item queue) return bool ean;
function enpty(item queue) return bool ean;

function init return queue;

private
type queue is new lists.list;

end;

package body queues is

-- Performa type conversion (from queue to list), and then cal
-- the appropriate |list routine.

use |ists;

procedure renove fromhead(itemin out queue; value :out integer) is

begi n
lists.renmove _fromhead(list(iten), value);
end;

function full (item queue) return boolean is

begi n
return lists.full(list(item);
end;

function init return gueue is
begi n

return queue(lists.init);
end;

end;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (6 of 23) [10/14/2000 12:55:42 PM]

Another example

Let's say we wish to create a stack package, but we don't want to recode all of the routines. We may already have a
linked list implementation that could form the basis of the storage for the stack. The list package stores integers.

Assume the package listsis defined as follows...

package lists is
type list is private;
under f | ow . exception;

procedure insert_at head(itemin out list; value :in integer);
procedure renove from head(itemin out |ist; value:out integer);

procedure insert_at tail(itemin out list; value :in integer);
procedure renove fromtail (itemin out list; value: out integer);

function full(itemlist) return bool ean;
function enpty(itemlist) return bool ean;

-- returns an enpty initialized |ist
function init return |ist;

private

end;

We can then make use of Ada's ability to hide the full view of atypein the private section. Here we declare a brand
new type (asfar as the client is concerned), which is actually implemented as a derived type. The client can't "see"
this - the "under the hood" details remain well hidden.

We implement the stack as...

wth |ists;

package stacks is
type stack is private;
underfl ow : excepti on;

procedure push(itemin out stack; value:in integer);
procedure pop(itemin out stack; value : out integer);

function full (item stack) return bool ean;
function enpty(item stack) return bool ean;

-- return an enpty initialized stack
function init return stack;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (7 of 23) [10/14/2000 12:55:42 PM]

private
-- create a new type derived froman existing one.
-- This is hidden fromthe clients of the type
type stack is new lists.list;

-- stack inherits all the operations of type |list.
-- They are _inplicity declared as

-- procedure insert_at head(itemin out stack; value :in integer);
-- procedure renove_fromhead(item:in out stack;
-- val ue: out integer);

-- function full (item stack) return bool ean;
-- function enpty(item stack) return bool ean;
-- function init return stack;

end;

We now have to relate the implicity declared routines to those that are advertised publically. Thisis done by asimple
"call through" mechanism.

package body stacks is

procedure push(itemin out stack; value:in integer) is
begi n
insert _at head(item val ue);
end;
-- you can nmake it nore efficient by...
pragma inline(push);

procedure pop(itemin out stack; value : out integer) is
begi n
renove_from head(item val ue);
excepti on =>
when |ists.underfl ow =>
rai se stacks. underfl ow
end;

end st acks:

Thisis ok for publically advertised routines that have different names from the implicity declared routines (those
inhertied from type list).

However in the package specification there are two functions full which have the profile

function full (item stack) return bool ean;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (8 of 23) [10/14/2000 12:55:42 PM]

Oneisexplicity declared in the public section, one implicity declared in the private section. What's going on? The
first function specification in the public part of the package is only a promise of thingsto come. It is an as-yet
unrealised function. It will be completed in the package body. Aswell we have another (implicity) declared function
which just happens to have the same name and profile. Y ou still have to describe to the Ada compiler how you are
going to implement the function declared in the public part of the package. The Ada compiler can see that both
functions have the same name and profile, but it does not assume that public function should be implemented by the
private function.

For example imagine that integer_lists.full always return false, to indicate that the linked list was never full, and
could always grow. As the implementor of the stack package you may have decided that you wanted to enforce a
[imit on the stack, so that it would only contain 100 elements at most. Y ou would then write the function stacks.full
accordingly. It would be incorrect for the implementation of function full to default back to the linked list
implementation.

So far so good. How do | write the function full?

Because of the visibility rules of Ada, the explicit public declaration completely hides the implicity declared private
one, and so is not accessable at all. The only solution isto call on the function in the list package, which you have to
do explicity.

package body stacks is

function full (itemstack) return boolean is

begi n
-- call the original full in the other package.
return lists.full(lists.list(item);
-- type conversion of paraneter
end;

end st acks;

This seems al terribly obtuse and annoying. Why does Adaforce this upon you? The reason you are encountering
this sort of problem is because of the nature of constructing programs with independent name spaces (different
scopes where identical names do not clash with each other). Adais merely providing a solution to a problem that is
an inevitable consequence of name spaces. The aternative, of having to work with alanguage in which there can be
no names the same is worse than this solution. So don't shoot the messenger just because you don't like the message

).
Thisis avery important point to note. Don't go on unless you understand this point.

The full package body for stacks would be

use lists;

package body stacks is

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (9 of 23) [10/14/2000 12:55:42 PM]

procedure push(itemin out stack; value:in integer) is
begi n

insert _at head(item val ue);
end;

procedure pop(itemin out stack; value : out integer) is
begi n
renove from head(item val ue);

exception =>
when |ists. underfl ow =>
rai se stacks. underfl ow,
end;
-- note how the exception advertised in the other package
-- 1s "transl ated" to an exception defined wthin this package.

function full (itemstack) return boolean is
begi n

return lists.full(list(item);
end;

function enpty(item stack) return boolean is
begi n

return lists.enpty(list(item);
end;

-- return an enpty unitialized stack
function init return stack is
begi n

return stack(lists.init);
end;

end st acks:

Creating abstractions by using generic abstractions

Often a generic package that implements a suitable data structure can be used to implement another abstraction. This
isvery similar to the section presented previoudly.

Assume the package generic_listsis defined as...

generic
type elenent is private;

package generic lists is

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (10 of 23) [10/14/2000 12:55:42 PM]

type list is private;
under f | ow . exception;

procedure insert_at head(itemin out list; value :in elenent);
procedure renmove _fromhead(itemin out list; value:out elenent);

procedure insert_at tail(itemin out list; value :in elenent);
procedure renove fromtail (itemin out list; value: out elenent);

function full(itemlist) return bool ean;
function enpty(itemlist) return bool ean;

-- returns an enpty initialized |ist
function init return |ist;

private

end;

We can instantiate this generic to create a new package that will store the integers for us. The question is "where do
we want to-instantiate it, such that it won't get in the way of the abstraction, or cause other devel opement
problems?'. The solution to this (asit isto alot of these type of questions) isin the private section of the package.

We can then use the generic as follows...
with generic_lists;
package stacks is
type stack is private,;
underfl ow : excepti on;

procedure push(itemin out stack; value:in integer);
procedure pop(itemin out stack; value : out integer);

function full (item stack) return bool ean;
function enpty(itemstack) return bool ean;

-- return an enpty initialized stack
function init return stack;

private
-- Instantiate the generic to create a new package.
package integer lists is new generic_lists(integer);

type stack is new integer lists.list;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (11 of 23) [10/14/2000 12:55:42 PM]

-- stack inherits all the operations of type |list, as before.

end;
The package body is the same as previously described.

Here we can enforce privacy, without changing what the type does for a client.

Abstractions from composition

Abstractions can be implemented by using composition (composing new abstractions by putting existing abstractions
together, typically in arecord) and by forwarding subprogram calls onto the appropriate component object. (Thisis

al pretty smple stuff!).
wth |ists; use lists;
package queues is

type queue is private;

procedure renove from head(itemin out queue; value :out integer);

procedure add to tail (itemin out queue; value:integer);

function full (item queue) return bool ean;
function enpty(item queue) return bool ean;

function init return queue;
private
---a queue is conposed fromthe following itens...

type queue is record
val ues: | i st;
no_of el enents:integer;
end record;
end;

package body queues is

procedure renove_fromhead(itemin out queue; value:out integer) is
begi n

renove_from head(item val ues, val ue);

itemno_of _elenents := itemno_of _elenents - 1
end;

procedure add to tail(itemin out queue; value:integer) is
begi n

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (12 of 23) [10/14/2000 12:55:42 PM]

add to tail (item val ues, val ue);
itemno of elenents := itemno_of elenents + 1;
end;

procedure reset (item in out queue) is ...

function full (item queue) return boolean is
begi n

return full (item val ues);
end;

function enpty(item queue) return boolean is
begi n

return itemno of elenents = O;
end;

end;

In this example calls on a queue are "forwarded" onto the list component, which is responsible for implementing
some aspect of the queue abstraction (in this case a major part!).

Abstracting common functionality - families of
abstractions

Both implementations of the stack described above provided a common set of routines, that is push, pop etc. In Ada
we can state the commonalities using a common type. The common type will describe what routines are to be
provided, and their profiles, but not actually describe how to implement them. Type derived from this type are forced
to implement each subprogram in its own way. Thisis called an abstract type. It is an abstraction abstraction!

The reason we go to all of thistrouble isto tell the clients of the stack that no matter what implementation they
choose, they can be sure of getting at least the functionality described by the abstract type.

package stacks is
type stack is abstract tagged null record,
-- An abstract type with no fields, and no "real" operations.
-- Ada required the "tagged" description for abstract types

under f | ow . exception;
overfl ow . exception;

procedure push(itemin out stack; value:in integer) is abstract;
procedure pop(itemin out stack; value : out integer) is abstract;

function full (item stack) return bool ean is abstract;
function enpty(item stack) return boolean is abstract;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (13 of 23) [10/14/2000 12:55:42 PM]

function init return stack is abstract;

end;

Here we have made the type abstract - this package just provides a series of subprogram that must be implemented
by someone else. We could also have made the type private...

package stacks is
type stack is abstract tagged private;

-- subprograns

private
type stack is abstract tagged null record;

end;

Either in the same package (or more typically in another package) we can extend the type, and create areal type that
implements the abstract type...

wth lists;
w th stacks;

package unbounded stacks is

t ype bounded_stack is new stacks.stack with private;

-- bounded _stack is derived fromthe enpty stack record,
-- With sone extra bits added on that are descri bed

-- in the private section.

procedure push(itemin out unbounded stack; value:in integer);
procedure pop(itemin out unbounded stack; value : out integer);

function full (itemunbounded stack) return bool ean;
function enpty(item unbounded _stack) return bool ean;

-- return an enpty initialized unbounded_st ack
function init return unbounded_st ack;

private
-- Extend the enpty stacks.stack record with one
-- 'nore' field.
-- Al calls will have to be forwarded onto the
-- internal linked |ist.

t ype unbounded stack is new stacks.stack with
record

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (14 of 23) [10/14/2000 12:55:42 PM]

values:lists.list;
end record;

end;

As described in the section on composition, you will have to forward calls onto the linked list within the
unbounded_stack. The package body would therefore be...

package body unbounded stacks is

procedure push(itemin out unbounded stack; value:in integer) is
begi n

lists.insert at head(item val ues, val ue);
end;

procedure pop(itemin out unbounded stack; value : out integer) is
begi n
lists.renove from head(item val ues, val ue);
exception
when |ists.underfl ow =>
rai se stacks. underfl ow,
end;

end unboijlnaed_st acks:

Packaging

In Ada, types and packages are ailmost completely independent of each other. This allowsyou to devise a solution to
aproblem in terms of types and operations, and later decide on how these parts should be split into pieces to meet the
software engineering requirements of ease of modification, encapsulation, modularisation, reduced recompilation
costs, namespace management etc.

This has been demonstrated already, in the choice to hide implementation details in the various packages above.
However Ada also provides further choices that can be made in this regard.

Namespace management

In language such as C, there is only one namespace. There is no hierachy of names; no ability to ‘hide' or qualify a
name. A good analogy is the first version of the Mac OS, which had no directories. All filenames had to be different,
and could not conflict with predefined system filenames. The solution typically adopted in C to resolve this problem
isto prepend some form of semantic information in the name. For example al posix thread routines are prepended
with 'pthread .

Ada83 solved this problem by allowing packages which contain their own namespace, in which locally defined
names don't conflict with other names (the analogy is for one level of subdirectories (actually not quite accurate, asa
package can contain other entities...)).

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (15 of 23) [10/14/2000 12:55:42 PM]

Adad5 however expands the namespace concept with the inclusion of child packagesto allow for truly hierachic
namespaces. Child packages are typically used to model some form of hierachy present in the problem domain. For
example aunix binding may implement packages

uni X -- can be an enpty "place hol der" package
uni x.file -- file routines
uni X. process -- process operations

Alternatively the package hierachy can be used to reflect the inhertiance hierachy of an object oriented type. Note
however the package hierachy does not define the inhertiance hierachy - the type declarations do that.

The example given earlier of an abstract stack, and a concrete implementation of an unbounded stack is a good
example of how we could have chosen a different organisation, without affecting the meaning of the abstraction.

with stacks; use stacks;
with |ists;

package stacks. unbounded is

t ype unbounded stack is new stack with private;
-- partial view of the bounded _stack

-- override the primtive operations wth concrete services

procedure push(itemin out bounded stack; value:in integer);
procedure pop(itemin out bounded_stack; value : out integer);

function full (item bounded_stack) return bool ean;
function enpty(item bounded stack) return bool ean;

function init return unbounded st ack;
private

end;

We could create another type, bounded stack, and decide to put it into the package stacks.bounded.

package stacks. bounded is
t ype bounded stack is new stacks.stack with private;

end;

Handling dynamic structures properly

As discussed earlier in the implementation of a stack with alinked list, making a copy of such atype through an
assignment statement doesn't quite work. The problem is that copying often only copies a pointer to the head of alist
(or tree) and does not copy the entire list. Another problem is that the space allocated to alinked list is often not
recovered when an object goes out of scope.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (16 of 23) [10/14/2000 12:55:42 PM]

An example which highlights these problemsiis...

wth |ists; use |ists;
procedure bad voodoo is

a, b:list;
result :integer;

procedure | oose _nenory is
c :list;
begi n
insert _at head(c, 1);
i nsert_at_head(c, 2);
end; -- when you get to here, ¢ goes out of scope
-- and you |l ose the nenory associated with the nodes!

begi n
insert _at head(a, 1);
insert _at head(a, 2);
insert _at head(b, 3);
i nsert_at_head(b, 4);
b .= a;
-- b and a now point to the sane list, and all of b's nodes
-- have been | ost!
renmove fromtail (a, result);
-- affects both a and b

end;

In Ada95 you can solve these problems by providing special routines that are "automagically" called when avalues
are being copied, when they go out of scope, or when they are initialized. For thisto happen, the object in question
must be derived from a special type called Controlled, defined in package Ada.Finalization.

The three routines automagically called are called Initialize, Adjust and Finalize. They are called in the following
contexts...

with |ists; use |ists;

procedure denpo is

a :list; -- Initialize(a);

b :list i ="1nit}y -- Initialize not called
begi n

insert_at_head(a, 1);

insert _at _head(a, 2);

insert _at head(b, 3);
insert _at _head(b, 4);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (17 of 23) [10/14/2000 12:55:42 PM]

2 1|--> null
b-->] 4]--> 3 |--> nul

Finalize(b);
Free b's nodes, before it is overwitten

a-->|21]--> 1]-->null
b --> null
Copy a to b.

Now they both point at the sane |ist

a-->1|21|--> 1]|-->null

Adj ust (b);
b has to duplicate the list it currently
points at, at then point at the new |ist.

a-->| 2/|--> 1]-->null
b -->] 2 |--> 1]|--> null
end; Finalize(a), Finalize(b).

Del ete the nenory associated with both a and b.

a --> null
b --> null

Here we finally give the full details for package List. The code for it looks like...

wth Ada. Finalization;

package lists is
type List is private,
under fl ow . exception;

procedure insert at head(itemin out list; value :in integer);
procedure renove_from head(itemin out |ist; wvalue:out integer);

procedure insert_at tail(itemin out list; value :in integer);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (18 of 23) [10/14/2000 12:55:42 PM]

procedure renove fromtail (itemin out list; value: out integer);

function full (itemlist) return bool ean;
function enpty(itemlist) return bool ean;

-- returns an enpty initialized |ist
function init return |ist;

private
-- Normal stuff for the |ist

t ype Node;
type Ptr is access Node;

type Node is record

Val ue . I nt eger;

Next o 2l A
end record;
-- Only the head of the list is special..
type List is new Ada. Finalization.Controlled with
record

Head Ptr;
end record;
-- No need for Initialize (pointers are automatically set to null)
-- procedure Initialize(itemin out list);
procedure Adjust(itemin out |ist);

procedure Finalize(itemin out |ist);

end;

Note that the routines were declared in the private section. This prevents clients from calling them when it is
inappropriate.

The package body would be implemented as follows...
w t h unchecked deal | ocati on;
package body lists is

-- routine for deallocating nodes
procedure free is new unchecked _deal | ocati on(node, ptr);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (19 of 23) [10/14/2000 12:55:42 PM]

-- Inplenment all the other stuff (insert_at head, renove from head...)

-- given a ptr to alist, this will allocate a new
-- 1dentical Iist

function Copy List(itemptr) return ptr is

begi n
if item= null then
return null;
el se
return new node' (item val ue, Copy List(itemnext));
end if;
end;
-- In the assignnent b := a, b has just been

-- overwitten by the contents of a. For a linked

-- list this neans that both a and b point at the

-- sane object. Now have to nake a physical copy

-- of the itens pointed at by b, and repl ace the head
-- ptr with a pointer to the copy just nade

procedure Adjust(itemin out list) is

begi n
item head := Copy List(item head);
end;

-- delete all the nenory in the about to be
-- destoyed item

procedure Finalize(itemin out list) is

upto: ptr := item head,
temp :ptr;
begi n
while upto /= null | oop
tenmp := upto;
upto : = upto. next;
free(tenp);
end | oop;
itemhead := null;
end;
end;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (20 of 23) [10/14/2000 12:55:42 PM]

The use of controlled types gives a good degree of control over dynamic objects. It simplifiesthelife of aclient of
the type as it relieves them of the worry of having to manage the types memory. It also alows for easy substitution
of dynamic and non dynamic solutions to problems.

Typicaly once the 3 routines (initialize, adjust, finalize) have been written, the rest of the services can be written
without regard to these features.

Enforcing initialization

In C++ you can enforce the initialization of al objects by supplying a class with a constructor, which is called when
an object is created. The same effect in Adais achieved by assigning a value the result of calling a function.

For example

package stacks is
type stack is tagged private;

function init return stack;
-- ot her operations

private

type list is array(l..10) of integer;
type stack is record
val ues :list;
t op :integer range O0..10;
end record;
end;

W th stacks; use stacks;
procedure main is

a: stack :=init;
b : stack;

begi n
nul | ;

end;

In this example the object ais properly initialized to represent an empty stack. Y ou can only use functions provided
in the package; you can't set it any other way, because the type is private. However as can be seen, the object b has
not been initialized. The language has not enforced an initialization requirement.

The only way to do thisis through the use of record discriminants. The partial view of the typeis declared to have
discriminants, even if the full view does not. As the number of fields that a record has may depend on a discriminant,
and because Ada likes constrained objects (one's whose size is known) the combination of discriminant and private
type causes the compiler to enforce all objects of the type to be initialized.

package stacks is
type stack(<>) is private;
-- declare that stack _may_ have di scrimnant. ..

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (21 of 23) [10/14/2000 12:55:42 PM]

function init return stack;
-- other operations

private.
type list is array(1..10) of integer;

-- ...even if you have no intention of it having such
type stack is record
val ues :list;
top i nteger range O0..10;
end record;
end;

w th stacks; use stacks;
procedure main is

a: stack := init;
b : stack;
-- nowthis is illegal. You nust_call a function
-- toinitialize it.
begi n
nul | ;
end;

Thisisall quite non intuitive, and rather counter to the Ada notion of readability (IMHO). Certainly C++ manages

thisisamore programmer friendly way.

Mutually Recursive types

Sometimes there is aneed for two (or more) types that are mutually recursive, that is they have pointers that point at
each other. An example is a doctor and a patient, who wish to maintain pointers at each other. Unless you wish to
place them together in the same package, Ada does not properly support you. The best you can do if you want to

retain separate compilation, is to define two base types, then join them together later in other packages.

package doctors and patients is
type doctor is abstract tagged null record,;
type doctor _ptr is access all doctor'class;

type patient is abstract tagged null record;
type patient _ptr is access all patient'class;
end;

Wi th doctors and patients; use doctors and patients;

package doctors is
type doc is new doctor with private;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (22 of 23) [10/14/2000 12:55:42 PM]

- - subpr ogr ams

private

type doc is new doctor with
record
pat: patient _ptr;
end record;
end;

-- simlarly for patient type

If you can forsee all operations required, or at least those required by each other, you can place them in package
doctors and patients. Futher operations can be added along with subsequent type declarations (for example type

doc).
It's probably worth point out here that package bodies can see into package specs, so...

with doctors; use doctors;
package body patients is

-- The patients body can access the doctor's services
-- declared in the doctor's spec

end patients;
with patients; use patients;
package body doctors is

-- The doctors body can access the patients services
-- declared in the patient's spec

end doctors;

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (23 of 23) [10/14/2000 12:55:42 PM]

1. 17 Idioms

1

T el T =
N W NP O

15.

$O 00N TODE O By 103 LI

Overview

I ntroduction

Abstraction

Creating abstractions from other abstractions (code reuse)

Private inheritance

Another example

So far so good. How do | write the function full ?

Creating abstractions by using generic abstractions

Abstractions from composition

Abstracting common functionality - families of abstractions

. Packagin
. Namespace management

. Handling dynamic structures properly

Enforcing initialization

Mutually Recursive types

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms_ToC.html [10/14/2000 12:55:43 PM]

18 Packages and program design

When a program starts to get large it needs to broken up into smaller pieces, to make it easier to understand, distribute the
work, quicker to fix, isolate changes etc.

But how to do this? Typical introductory programming courses teach programming with alarge main procedure, and
perhaps a couple of packages.

So how do you progress from thisinitial stage to amore mature view of system devel opement? One way isto show asimple
mapping (or transformation) of a program to a functionally equivalent program with a number of packages.

The following attempts to show how an existing Ada program may be broken up into smaller pieces.

Consider the following program...

with Ada. Text | O use Ada. Text | O
with Ada.lnteger Text 1GQ use Ada.lInteger Text IO

procedure Main is

- CoNStant S----- - - -
Max_Booki ngs : constant := 20;
Max_Nane Length : constant := 40;
No_Cars . constant := 10;
s LYPES- - s - oo

subtype Nanme_Array is String(1l..Max_Nane_Length);
subtype Registration is String(1..6);

type Date is

record
Day . Positive;
Month : Positive;
Year : Positive;

end record;

type Booking is

record
On . Dat e;
Nanme : Nane_Array,
Car . Registration;

end record;
type Booking_Array is array (1..Mux_Booki ngs) of Booking;
-- Variables--------------m e

Booki ngs : Booki ng_Array;
...other variables...

-- Procedures & Functions-----------------------

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (1 of 14) [10/14/2000 12:55:48 PM]

-- Part of booking systemfor after a date
function After(A, B : Date) return Boolean is...

-- display a date in the format dd/ miyy
procedure Display(ltem: in Date) is...

procedure Search_For _Enpty_Booki ng(
Booki ngs : in out Booking Array;
On i Dat e;
Position : out Positive) is...

procedure Make_ Booki ng(
Booki ngs : in out Booking Array;

On sin Dat e;
Nane cin Name_ Array;
Success out Bool ean) is...

procedure Menu(Option : out positive) is...

begi n
| oop
end;
Figure 1. Sample program.

Here the code makes use of different types, and has numerous procedures. We can imagine, for example, that the procedure
Make Booking calls Search_For_Empty_Booking, which in turn calls the function After to check if the requested booking
is after another booking.

When we look at the code there does not seem to be much cohesion - declarations of types, constants and subprograms are
in their own little sections. Thisis one way to split a program up into pieces, but it is not avery good way.

Another way to split it up is to note that we can see that somethings "belong" together. For example the type date is closely
related to the function After and procedure Display. What we can do is group these routines more closely together.

(Imagine that there are others programs being developed, and that they also had a need of these routines. It would be silly to
have programmers recode these routines. Reuse of the code would be cheaper - but it is not easy in this situation. If someone
copies the code by doing "cut and paste” then any bug fixes made to the date routines will only occur in one program. It
would be better if we made these routines available in one place for all programs).

The first thing we should think about is grouping these items together...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (2 of 14) [10/14/2000 12:55:48 PM]

with hda.Text IO: use Ada.Text I0;
with hda.Integer Text I0; use Ada.Integer Text IO;

procedure Main is

type Date is Dide code
record
Day : Positive;
Momth @ Positiwve;
¥Yedr @ Positiwve;

end record:;

—— Part of booking system Eor after a date
function hfter(i, E : Date] return Eoolean is...

—— display a date in the format dd/mm/yr
procedure Display|Item : in Date] is...

Max EBookings : constant = 20; Eﬂﬂkﬁlg code
Max Name Length : comstant 1= 2o0;
No Cars : constant = 103

subtype Name hrray is String(l..Max Name Lengthj:
subtype Registration is string(l..6];

trpe Eooking is

record
on : Date;
Nam= @ Name Array:
Car ! Registratiom;

end record:

trpe Eooking hrrar is
array [l..Max Eookings] of Booking;

procedure Search For Empty Eockingi
Eookings : in out Eooking Array;
on : in Date;
Positiom : cut Positiwve] is...

procedure Make Eooking|
Eookings : in out Eooking Array;

on : in Date;
Name : in Nams Array:
SuoCeESs cut Eoolean] is...

Bookings : EBooking Array:

——Procedunres-not-=asily-classified
procedure Menu| Option @ out positive)] is...

Figure 2. Like types and procedures grouped together.
This does not change how the program runs, only how it islayed out.

Y ou can see that the bookings require the definition of a date to be available, in fact they have to preceede the definition of
the booking. The date definitions do not require any previous declarations.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (3 of 14) [10/14/2000 12:55:48 PM]

with hda.Text IO: use Ada.Text I0;
with hda.Integer Text I0; use Ada.Integer Text IO;

procedure Main is

Date declaratioms

Eooking declaraticom
[Wwhich require dates to be defined)

Eookings @ Eooking Array:

——FProcedures-not-easily—classified
procedure WMenu| Optiom @ out positiwe] is...

begin
laoop

end;
Figure 3. Overview of program structure.

From thiswe can see that it is possible to take these two sections out, and place them into separate files. However we have
to be careful to maintain Bookings visibility of the Date declarations. Likewise the main program has to be able to "see" all
of the booking declarations, and all of the date declarations.

The bookings section only has to be able to "see" the date declarations.
The date section doesn't have to be ableto "see" any other declarations.

We are now in a position to place them into separate packages...

package Dates is

trpe Date is

record
Day : Fositiwve;
Month @ Positive;
Year 1 FPositive;

end record:

—— Part of booking system for after a date
function afterja, E : Date] return Boolean;

—— display a date in the format dd/mm/ vy
procedurs Display(Item : in Datej:

end Dates:

Figure 4. Date package

Note that instead of writing out the subprogramsin full, we just write them as specifications. The full description of them
(with al the code) is placed in the package body.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (4 of 14) [10/14/2000 12:55:48 PM]

with Dates; use Dates; —— this is how we let Eookings
—— "gsee" the Date definitions

package Eockings is

Max Eookings : constant := z0;
Max MName Length : comstant := 2o0;
No Cars : constant := 10:

subtype Name hrray is String(l..Max Name Lengthj:
subtype Registration is Stringl..G6]:

trpe Eooking is

record
on : Date;
Nam= = Mame Array:
Car : Registratiom;

end record:

type Booking hrray
is array [l..Max Eockings] of Eooking;

procedure Search For Empty Eookingi
Eookings : in out Eooking hrray;
on : in Date;
Positiom : out Positive]:

procedure Make Eooking|
Eookings : in out Eooking hrray;

on 1 in Date;
HName : in Name hrray:
S1oCess & out Eoolean):

end Boockings;
Figure 5. Bookings package

The main procedure can now be...

wi t h Dat es; use Dat es;
Wi t h Booki ngs; use Booki ngs;
wth Ada. Text |1 Q use Ada. Text |G

wi th Ada.lnteger_Text | QO use Ada.lnteger_Text |1Q
procedure Main is
Booki ngs : Booki ng_Array;

--Procedures-not-easily-classified---------------
procedure Menu(Option : out positive) is...

begi n
| oop

end;

Figure 6. Revised program

When this program is compiled and run, it will execute exactly the same as the very first example. All that is happened iswe
have moved code into different places, so asto make it easier to write and maintain. These are software engineering, or
program construction concerns, not issues relating to how the program runs.

However in separating items out, we have had to be very aware of what declarations are dependent on what other
declarations. If we had dates declared after bookings, bookings would not compile. Thisis called the dependency
relationship and it is avery useful piece of information that tells us alot about how a program is constructed.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (5 of 14) [10/14/2000 12:55:48 PM]

For exampleif we found out that a routine in the date package was incorrect, we would need to look at all the routines that
had something to do with dates to see if they were affected, and should also be fixed. In the first example, this may not have
been easy. With the dependency relationships explicity described, it makesit very easy to search through large programs
and find what may be affected by a bug and what isn't.

Also when a maintenance programmer has to change a program, they always have to be aware of the ripple effect - the
possibility that a change in one part of a program may have consequences in other parts that are not anticipated. Dependency
relationships (which are explicitly stated in the with clause) help the programmer understand how alarge program is pieced
together.

A "Layered" view of the program

When we think about the dependency relationshipsin a system, we can see that some packages don't have any
dependencies. Others depend on one or two other packages, and some depend on many. In general we can depict thisin a
layered diagram...

Main

/

Eookings

\

Dates=s

\

Integer Text IO Bda, Text IO

Here the procedure main isin the hightest layer, and it depends on services provided by lower layer packages. Anitem at a
lower layer however, never depends on higher layer items. Designing systemsin layers makes the process of abstraction,
and the notion of providing services afairly natural one.

Interestingly by turning the diagram upside down, you get the same program strucutre asin Figure 2.
Look at putting the pieces into package specs...
When afunction such as
-- Part of booking systemfor after a date
function After(A B : Date) return Bool ean;
iscalled from, say, procedure

procedur e Make_Booki ng(
Booki ngs : in out Booking_ Array;

On Sin Dat e;
Nane in Nane_Array;
Success out Bool ean);

the procedure doesn't really care how the function is written - what internal variablesit has, or the order of if statements etc,
so long asit produces the correct result. All it really cares about is giving two dates, and getting a boolean result. It only
really depends on the specification of the function, and not the body of it.

Ada enforces this distinction when we put things into a package, by allowing only subprogram specifications in the pacakge

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (6 of 14) [10/14/2000 12:55:48 PM]

spec, and the full subprogram in the package body.
Look at putting pieces into a package body

When we examine our main program, we may find that subprograms such as

procedure Search_For Enpty_ Booki ng(
Booki ngs : in out Booking_ Array;
On S Dat e;
Position : out Positive);
are never called from any routine other than the other booking related subprograms. For this reason there is not much point

in making it publically available. We can place it soley in the package body for bookings, and not have any adverse impact
on the system at all.

Designing programs with Direct_10/Sequential IO

Many students desiging programs with Direct_|O, or indeed any generic package, often have trouble figuring out where the
instantiation should be placed.

Generally a program can be structured using child packages; the definition of an item is placed in one package, and child
packages are created to contain the /O facilities for it.

Consider, for example...

package Bl ahs is
type Blah is...

end;

If we want a package to perform 1/0O on this type we can instantiate direct_io as a child package...

with Ada.Direct |Q
wi t h Bl ahs;

package Bl ahs.Direct 10 is new Ada. D rect | Q Bl ahs. Bl ah);

However direct_io (and sequential_io) are extremely low level packages. They offer very little in terms of the functionality
you would really like to have, such as the ability to search for an item, or even delete an item.

If you want to write and retrieve binary datato afile, consider the Direct_|O generic as simply a building block, used to
create more sophisticated services.

(We can make an analogy between direct_io and arrays. Both are very low level concepts, and are generally used to
construct higher level concepts such as hash tables).

In the example below, we create a higher level file abstraction, that supports searching and deletion of itemsin thefile.

wi th Keys; use Keys;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (7 of 14) [10/14/2000 12:55:48 PM]

package Bl ahs is
type Blah is...

-- routines to help "find" records
function "="(Left : Blah; Right : Key Type) return Bool ean;
function "="(Left : Key_Type; Right : Blah) return Bool ean;

with Ada.Direct IO

package Blahs.1Ois
type File Type is limted private;

-- Open a file in r/w node (you may decide to include a
-- node paraneter). Also create the file if needed.

procedure Open(
File : in out File_Type;
Nane : in String);

procedure Close(File : in out File_Type);

private

-- build in support for "deleted" cells in the file
type Conponent is

record
l[tem . Bl ah;
Del eted : Bool ean : = true;

end record;

package Blahs Direct 10 is new Ada. Direct | O Conponent);

-- provide a shorter renam ng for the package
package BDI O renanmes Bl ahs_Direct |G

-- Conpletion of the private type adverti sed above
type File_Type is new BDI O Fil e_Type;

end;

At this point, we have afile type that can be used in further child packages to build severa different 1/O facilities. The
package has been instantiated in the private section for two reasons.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (8 of 14) [10/14/2000 12:55:48 PM]

1. It prevents packages outside the Blahs.|O hierachy from accessing the low level routinesin Blahs Direct_|O, that are of
no concern to them. We can force them to use the high level routines we will provide.

2 It allows child packages to 'see' the Blahs_Direct_|O package, and therefore to be able to call on these routines.
The package body would look like...

package body Blahs.IOis

-- Forward the call to the blah_direct _io package

procedure Open(
File : in out File_Type;

Nane : in String) is
begi n
BDI O. Open(

File => BDIO File_Type(File),
Mode => BDI Q. inout file,
Nanme => Nane);

exception
when BDI O. Nane_Error =>
BDI O. Creat e(
File => BDIO File_Type(File),
Mode => BDI Q. inout file,
Nanme => Nane);
end;
procedure Close(File : in out File_Type) is
begi n

BDI O Close(BDIO File Type(File));
end;

end;

For example you may want to produce a package with facilities for reading, deleting, searching etc, while another package
could be used to consolidate afile.

W th Keys; use Keys;
package Bl ahs.| O Advanced Features is

procedure Read(

File : in out File_ Type;
Key cin Key_Type;
Item : out Bl ah;
Found out Bool ean);

procedure Del et e(
File : in out File_Type;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (9 of 14) [10/14/2000 12:55:48 PM]

Key : in Key Type;
l[tem: out Bl ah);

package Blahs. IO Utility Routines is

-- Rewite the file to renove enpty cells.

-- This presunes that free space is not nanaged in sone
-- nore sophisticated manner

procedure Conpact _File(File : in out File_Type);

end;

The package body for these packages can be roughly sketched out as follows. Note that it makes a simplifying assumption
asto how it searches for akey vaue.

W th Keys; use Keys;
package body Bl ahs. | O Advanced Features is

-- Call on the Read facility from package BDI O
procedur e Read(

File : in out File_ Type;
Key cin Key Type;
l[tem : out Bl ah;

Found : out Boolean) is

Data : Conponent;
use BDI G
begi n
for i in 1..BDQO Size(BD O File Type(File)) I oop

BDI O Read(BDI O Fil e _Type(File), Data);

-- use the "=" operator defined in Blahs to
-- conpare what we have read
if (not Data.Deleted) and then

(Data.ltem = Key) then

Found : = True;
Iltem := Data.ltem
return;
end if;
end | oop;

-- Searched-for data not found.

return Fal se;
end;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (10 of 14) [10/14/2000 12:55:48 PM]

etc.

end;

It isinformative to note that if we examine the non private interfaces in this package hierachy, we will see no referencesto
the generic Direct_|O at all.

package Bl ahs is
type Blah is...
end;

package Blahs.1Ois
type File_Type is limted private;
procedure QOpen(...
procedure d ose(...

end

package Bl ahs.| O Advanced Features is
procedure Read(...
procedure Delete(...

end;

package Blahs. IO Utility Routines is
procedure Conpact File(...
end;

To use these routines you may have code as follows...

with Keys; use Keys;
wit h Bl ahs; use Bl ahs;
with Blahs. |G use Bl ahs. | QO

wi th Bl ahs. | O Advanced Feat ures;use Bl ahs. | O Advanced Feat ures;

procedure Deno is

Data : Bl ah;
File : Blahs.l1O File_Type;
Key . Key_Type;
Found : Bool ean;
begin
-- Read sone data fromthe user..
get (Key);

Qpen(File, "ny file.dat");
Read(Fil e, Key, Data, Found);

i f Found then

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (11 of 14) [10/14/2000 12:55:48 PM]

-- do what ever
el se
-- do what ever
end if;
end;

These child packages can also be written as generic packages, so that this structure can be replicated for different file types.

Private packages

When we develop systems we find that new issues appear as we tackle larger and larger programs. Initially splitting a
program into subprograms makes devel opement easier. We can place variables that are only used by one subprogram inside
it - hiding it from outside view and interference.

Asthe number of subprograms grows, however, we find a need to split them up into another level of grouping - the package.
This gives us the opportunity to hide entire subprograms inside package bodies - subprograms that are not meant for other
routines to use.

After the number of packages starts to grow, we turn to child packages to create subsystems, in which afamily of logically
related types and functionality is packaged together. Each subsystem provides servicesto all clients by advertising them in
it's client specifications. Once again however, we find at this high level of abstraction some of the services that are offered
should only be available to those within the subsystem.

Timy small Medium Moderate/Large

One procedure Many procedures Packages subsystems
Local wariables Local subprograms Local pachages

Increasing Risfconglenny abimetion

-

Private packages allow you to structure your program with local packages, and prevent offering services to anyone who
wants them. Banks are, of course, more secure if the internal procedures they make use of to deliver services to customers,
are not made available to those same clients. We definately want the same level of security for our subsystems!

How do | know when to use private packages?

Armies during war time generally run on a"needs to know" basis. Y ou only tell people what they need to know. Similarly
when you progressed from to each new level in the diagram above, you dealt with the issue of what to hide on a "needs to
know" basis. If aclient doesn't need to know the details of a service then they are hidden from view. This split is based on
the difference between what serviceis offered, and how it isimplemented. Y ou simply need to apply the same knowledge,
only at ahigher level.

This may come about from a hierachical object decomposition, where the services provided at a high level analysis provide
the subsystem level interfaces. Further elaboration of the design results in objects which may only be needed to implement
the subsystem services aready offered.

A case study

A temporal assertions package (used for making assertions such as "this event must happen within 5 seconds of that event”,
or "this event must never occur before that event™") has been developed at RMIT. Severa concepts emerged from the
analysis of the requirements.

Events Sonething that occurs at an instant in tinme

I nterval s A duration, nmarked by a begi nning and end event

Predi cat es A statenent involving events, intervals, bool ean
connectives (and, or, not, xor) and special

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (12 of 14) [10/14/2000 12:55:48 PM]

condi ti ons, such a "nmust occur before", and
"must occur at | east once"

Tri State Logic
A special form of boolean |logic consisting of three
states (false, true, don't know)

Aswell asthese types/concepts discovered at the analysis stage, other types were found at the design stage, such as data
structures to hold the events and predicates that would be declared.

The packages developed for this were...

package Assertion
decl ared nmaj or types

private package Assertion. Events_Tabl e
mai ntai ns data structure for storing events

package Tri_State
3 val ued bool ean | ogi c

Assertion contains most of the code of the program. Package Tri_State, although not involved in any other part of the
system, was felt to be a useful sort of package, and was therefore not declared private.

Package Assertion.Events_Table maintains the data structure for storing the events that clients have declared. Asan
aternative it could have been included in the package body of Assertion in a number of different ways.

One technigue would be to dump all of the code, data structures and variables in the package body. This would not be
satisfactory as it would make the package body more cluttered.

Another technique would be to place a package inside the package body ...

package body Assertion is

package Events _Table is
type Event _Table is private;
procedure Insert(
Into : in out Event Tabl e;
Item: in Event);
end Events;

package body Events Table is
procedure Insert(....) is

Stored _Events : Events_Tabl e. Event _Tabl e;

-- rest of Assertion package

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (13 of 14) [10/14/2000 12:55:48 PM]

end Assertion;

Although it fixes the problem of cluttering, it still causes the package to be longer than it needs to be (increased compilation
times), harder to develop (it is harder to make calls on it). Aswell the structure of the program is harder to understand (the
program structure is easiest to see when we can easily see the packages that make up the program).

For this reason the package was made a private child package of Assertion.
A package because

We need to hide away the low level details of how the table isimplemented
A child package because

It needs to see the declarations of type Event in the spec of Assertion

It's name clearly links it into the Assertion subsystem of a program

A Private child package because

No other part of a program, apart from the Assertion subsystem, needs to know the internal details of how events are stored
away.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (14 of 14) [10/14/2000 12:55:48 PM]

1. 18 Packages and program design
2. A "Layered" view of the program

3. Designing programs with Direct 10/Sequential 10
4. Private packages

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs_ToC.html [10/14/2000 12:55:49 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a

Appendi x A Text | O package

with Ada. | O Excepti ons;

with System

with System Par anet ers;

package Ada. Text 10 is

type File Type is limted private;

type File_

type Count

subt ype Positive_Count

Unbounded :

Mode is (In_File, Qut_File

Append _Fil e);

is range 0 .. System Paraneters. Count Max;

-- Line and page | ength

subtype Fi

subt ype Nunber Base is Integer

type Type_

procedure
(File :
Mode :
Name :
Form :

procedure
(File :
Mode :
Name :
Form :

procedure
procedure
procedure
procedure

function Mode (File : in File Type)
function Nane (File : in File_Type)
function Form (File : in File _Type)

function |

eld is Integer range O ..

Set is (Lower_Case,

Create
in out File Type;

in File_Mde := Qut_

in String :
in String :

Open

in out File Type;
in File_Mde;

in String;

in String :=""),

")

constant Count :=

is Count range 1 ..

0;

Count ' Last ;

range 2 .. 16;

Upper Case) ;

Fil e;

Close (File: in out File Type);
Delete (File : in out File Type);
Reset (File : in out File_ Type;

Reset (File : in out File_ Type);

s _Open (File : in File _Type)

Mode :

System Paraneters. Fi el d_Max;

in File_Mde);

return File_ Mde
return String;
return String;

return Bool ean

-- Control

of default input,

output and error files --

procedure
procedure
procedure

function Standard_I nput
function Standard_Qut put

Set Input (File :
Set_Qutput (File :
Set _Error (File :

in File Type);
in File Type);
in File Type);

return File_ Type;
return File_ Type;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a (1 of 8) [10/14/2000 12:55:51 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a
function Standard Error return File_ Type;
function Current _Input return File Type;

function Current_CQutput return File Type;
function Current _Error return File Type;

type File Access is access constant File Type;

function Standard I nput return File Access;
function Standard _Qut put return File_ Access;
function Standard Error return File Access;

function Current _Input return File_ Access;
function Current_CQutput return File_ Access;
function Current _Error return File_ Access;

procedure Flush (File : in out File_ Type);
procedure Flush

-- Specification of line and page | engths --

procedure Set Line Length (File : in File _Type; To : in Count);
procedure Set Line Length (To : in Count);

procedure Set Page Length (File : in File _Type; To : in Count);
procedure Set Page Length (To : in Count);

function Line Length (File : in File _Type) return Count;
function Line _Length return Count;

function Page Length (File : in File Type) return Count;
function Page Length return Count;

-- Colum, Line, and Page Control --

procedure New Line (File : in File Type; Spacing : in

Positive Count := 1);
procedure New Line (Spacing : in Positive Count := 1);
procedure Skip Line (File : in File Type; Spacing : in
Positive Count := 1);
procedure Skip_ Line (Spacing : in Positive Count := 1);
function End O Line (File : in File_Type) return Bool ean;

function End_OF _Line return Bool ean;

procedure New Page (File : in File_ Type);
procedur e New Page;

procedure Skip Page (File : in File_Type);
procedure Ski p_Page;

function End O Page (File : in File_Type) return Bool ean

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a (2 of 8) [10/14/2000 12:55:51 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a

function End O _Page return Bool ean

function End O _File (File : in File _Type)

function End O _File return Bool ean;

procedure Set _Col (File : in File_Type;
Positive_Count);

To :

procedure Set _Col (To : in Positive Count);

To :

return Bool ean

in

in

procedure Set Line (File : in File_ Type;
Positive_Count);
procedure Set Line (To : in Positive Count);

function Col (File : in File Type) return Positive_ Count;

function Col return Positive Count;

function Line (File : in File_Type) return Positive_Count;

function Line return Positive Count;

function Page (File : in File _Type) return Positive_Count;

function Page return Positive Count;

procedure Get (File : in File Type; Item:

procedure Get (ltem: out Character);

procedure Put (File : in File Type; Item:

procedure Put (lItem: in Character);

procedure Look Ahead
(File . in File_Type;
ltem . out Character;
End O _Line : out Bool ean);

procedure Look Ahead
(Item . out Character;
End O _Line : out Bool ean);

procedure Get | mmedi ate
(File : in File_Type;
Item: out Character);

procedure Get | mmedi ate
(Item: out Character);

procedure Get | mmedi ate
(File . in File_Type;
ltem . out Character;
Avai |l abl e : out Bool ean);

procedure Get | mmedi ate

(I'tem . out Character;
Avai |l abl e : out Bool ean);

procedure Get (File : in File Type; Item:

out Character);

in Character);

out String);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a (3 of 8) [10/14/2000 12:55:51 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a

procedure Get (ltem: out String);
procedure Put (File : in File Type; Item: in String);
procedure Put (ltem: in String);

procedure Get Line
(File : in File_Type;
Item: out String;
Last : out Natural);

procedure Get Line
(l'tem: out String;
Last : out Natural);

procedure Put Line
(File : in File_Type;
Item: in String);

procedure Put Line
(Item: in String);

-- CGeneric packages for |nput-Qutput of Integer Types --

generic
type Numis range <>;

package Integer lo is

Default Wdth : Field := Num Wdt h;
Def ault _Base : Nunber Base := 10;

procedure GCet
(File : in File_Type;
Iltem : out Num

Wdth : in Field := 0);
procedure GCet

(Item : out Num

Wdth : in Field := 0);
procedure Put

(File : in File_Type;

ltem : in Num

Wdth : in Field := Default_Wdth;

Base : in Nunber Base := Default_ Base);
procedure Put

(I'tem : in Num

Wdth : in Field := Default_Wdth;

Base : in Nunber Base := Default_ Base);
procedure GCet

(From: in String;

Iltem: out Num

Last : out Positive);
procedure Put

(To . out String;

ltem: in Num

Base : in Nunmber Base := Default_ Base);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a (4 of 8) [10/14/2000 12:55:51 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a

end | nteger |o;

generic
type Numis nod <>;

package Mdular 10is

Default Wdth : Field := Num Wdt h;
Def ault _Base : Nunber Base := 10;

procedure GCet
(File : in File_ Type;
Iltem : out Num

Wdth : in Field := 0);
procedure GCet

(Item : out Num

Wdth : in Field := 0);
procedure Put

(File : in File_Type;

ltem : in Num

Wdth : in Field := Default_ Wdth;

Base : in Nunber Base := Default_ Base);
procedure Put

(I'tem : in Num

Wdth : in Field := Default_ Wdth;

Base : in Nunber Base := Default_ Base);
procedure GCet

(From: in String;

Iltem: out Num

Last : out Positive);
procedure Put

(To . out String;

ltem: in Num

Base : in Nunmber Base := Default_ Base);

end Modul ar 1O

-- Input-CQutput of Real Types --

generic
type Numis digits <>;

package Float lo is

Default Fore : Field := 2;
Default Aft : Field := NumiDigits - 1;
Default Exp : Field := 3;

procedure GCet

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a (5 of 8) [10/14/2000 12:55:51 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a

(File : in File_Type;
Iltem : out Num

Wdth : in Field := 0);
procedure GCet

(Item : out Num

Wdth : in Field := 0);

procedure Put
(File : in File_Type;

ltem: in Num

Fore : in Field := Default_Fore;
Aft : in Field := Default_ Aft;
Exp : in Field := Default_ Exp);

procedure Put
(I'tem: in Num

Fore : in Field := Default_ Fore;
Aft : in Field := Default_ Aft;
Exp : in Field := Default_ Exp);

procedure GCet
(From: in String;
Iltem: out Num
Last : out Positive);

procedure Put

(To . out String;
ltem: in Num
Aft : in Field := Default_ Aft;
Exp : in Field := Default_ Exp);
end Fl oat 1 o;
generic
type Numis delta <>;
package Fixed lo is
Default Fore : Field := Num Fore;
Default Aft : Field := Num Aft;
Default Exp : Field := 0;

procedure GCet
(File : in File_Type;
Iltem : out Num

Wdth : in Field := 0);
procedure GCet

(Item : out Num

Wdth : in Field := 0);

procedure Put
(File : in File_Type;

ltem: in Num

Fore : in Field := Default_ Fore;
Aft : in Field := Default_ Aft;
Exp : in Field := Default_ Exp);

procedure Put
(Item: in Num
Fore : in Field :

Def aul t _For e;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a (6 of 8) [10/14/2000 12:55:51 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a

Aft : in Field := Default_ Aft;
Exp : in Field := Default_ Exp);

procedure GCet
(From: in String;
Item: out Num Last : out Positive);

procedure Put

(To . out String;

ltem: in Num

Aft : in Field := Default_ Aft;
Exp : in Field := Default_ Exp);

end Fi xed_Io;

generic
type Numis delta <> digits <>;

package Decinmal 10 is

Default Fore : Field := Num Fore;
Default _Aft : Field := Num Aft;
Default Exp : Field := 0;

procedure GCet
(File : in File_Type;
Iltem : out Num
Wdth : in Field := 0);

procedure GCet
(Item : out Num
Wdth : in Field :

0);

procedure Put
(File : in File_Type;

ltem: in Num

Fore : in Field := Default_ Fore;
Aft : in Field := Default_ Aft;
Exp : in Field := Default_ Exp);

procedure Put
(I'tem: in Num

Fore : in Field := Default_ Fore;
Aft : in Field := Default_ Aft;
Exp : in Field := Default_ Exp);

procedure GCet
(From: in String;
Iltem: out Num
Last : out Positive);

procedure Put

(To . out String;

ltem: in Num

Aft : in Field := Default_ Aft;
Exp : in Field := Default_ Exp);

end Decinmal IO

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a (7 of 8) [10/14/2000 12:55:51 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a

-- Input-CQutput of Enuneration Types --

generic
type Enumis (<>);

package Enuneration lo is

Default Wdth : Field := 0;

Default _Setting : Type_Set := Upper_ Case;

procedure Get (File : in File Type; Item:
procedure Get (ltem: out Enum;
procedure Put
(File : in File_Type;
ltem : in Enum
Wdth : in Field := Default_Wdth;
Set :in Type_Set := Default_Setting);
procedure Put
(I'tem : in Enum
Wdth : in Field := Default_Wdth;
Set :in Type_Set := Default_Setting);
procedure GCet
(From: in String;
Iltem: out Enum
Last : out positive);
procedure Put
(To . out String;
ltem: in Enum
Set : in Type_Set := Default_Setting);
end Enuneration_|o;
-- Exceptions
Status_Error : exception renanes | O Exceptions.
Mode_ Error . exception renanes | O Exceptions
Nane_Error . exception renames | O Exceptions.
Use Error . exception renanmes | O Excepti ons.
Device Error : exception renames | O Exceptions.
End Error . exception renanmes | O Excepti ons.
Data_Error . exception renanmes | O Exceptions.
Layout Error : exception renanmes | O Exceptions.

private

| npl enent ati on defined. ..
end Ada. Text |

O

out Enum;

Status_FError;

. Mode_Error;

Nanme_ Error;
Use Error;
Device_Error;
End Error;
Data_Error;
Layout FError;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a (8 of 8) [10/14/2000 12:55:51 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_b

Appendi x B Sequenti al | O package

with |1 O exceptions;

generic

type ELEMENT TYPE is private;

package SEQUENTIAL IO is

type file type is limted private;
type file node is (in_file,out file);

-- Fil e nmanagenent

procedure

procedure

procedure
procedure
procedure

procedure

CREATE
OPEN
CLOSE (file
DELETE
RESET (file
RESET (file

function MODE (file
function NAME (file
function FORM (file

function |

S OPEN(file

-- I nput and output operations

procedure

READ(file

procedure WRI TE(

function END OF FI LE(fi

-- Excepti
status_err
node_error
name_error
use_error
device_err
end_error
data_error

private

-- inplenentation dependent

ons
or cexcepti
cexcepti
s excepti
cexcepti
or s excepti
cexcepti
s excepti

end sequential 10

(file cin out file_ type;

node cin file_node:=out file;
nane in string :="";
form (in string :="");
file cin out file_ type;

node in file_node;

nane in string;
form (in string :="");
cin out file_ type);
(file cin out file_ type);

cin out file_ type;

node cin file_node);

cin out file_ type);

cin file type) return file_node;
cin file_ type) return string;
cin file_ type) return string;
cin file_ type) return bool ean;
cin file_type;
item ;out el ement _type);
file cin file_ type;
item ;in elenment _type);
e:;in file_type) return bool ean;

on
on
on
on
on
on
on

renamnes
renamnes
renamnes
renamnes
renamnes
renamnes
renamnes

10
10
10
10
10
10
10

EXCEPTI ONS.
EXCEPTI ONS.
EXCEPTI ONS.

EXCEPTI ONS.
EXCEPTI ONS.
EXCEPTI ONS.

status_error;
node_error;
name_error

.use_error;

device_error;
end_error;
data_error;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_b [10/14/2000 12:55:51 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_c
Appendi x C Direct | O package
with |1 O exceptions;
generic

type ELEMENT TYPE is private;

package DIRECT 1O is
type file type is limted private;
package direct io is
type file node is (in_file, in_out file, out file);
type count is range 0.. inplenentation_defined;

subtype positive count is range 1..count'l ast;

-- Fil e nmanagenent

procedur e CREATE(file cin out file_ type;
node iin file node := out file;
nane in string :="";
form (in string :="");
procedure OPEN(file in out file_ type;
node in file_node;
nane in string;
form in string :="");

procedure CLOSE (file cin out file_ type);
procedure DELETE (file cin out file_ type);
procedure RESET (file cin out file_ type;

node cin file_node);
procedure RESET (file cin out file_ type);
function MODE (file (in file type) return file_node;
function NAME (file (in file type) return string;
function FORM (file (in file type) return string;
function IS _OPEN file cin file type) return bool ean

-- I nput and output operations

procedure READ(file iin file type

item : out el ement _type);
procedure READ(file (in file type

item : out el ement type

from (in positive_count);
procedure WRI TE(file (in file type;

item (in el ement _type

from (in positive_count);
procedure WRI TE(file (in file type;

item cin el enent _type);
procedure SET | NDEX(file iin file type;

to iin positive_count);
function INDEX(file iin file type) return positive_count;
function SIZE(file iin file type) return count;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_c (1 of 2) [10/14/2000 12:55:52 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_c

function END OF FILE(file:in file_type) return bool ean;

-- Exceptions

status_error ;exception renanes | O EXCEPTI ONS. status_error;
node_error . exception renanes | O EXCEPTI ONS. node_error;
name_error . exception renanes | O EXCEPTI ONS. nane_error;
use_error . exception renanes | O EXCEPTI ONS. use_error;
devi ce_error . exception renanes | O EXCEPTI ONS. devi ce_error;
end_error . exception renanes | O EXCEPTI ONS. end_error;
private

--inpl emrent ati on depenedent
end DI RECT_I G

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_c (2 of 2) [10/14/2000 12:55:52 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_d

Appendi x D Text package package

The text package package is used by first year students for variable |ength string
mani pul ation. It is |loosely based on that provided in the LRM

Equal ity can be tested by sinply using the standard "=" operator because paddi ng
is maintai ned as spaces in the unused portion of the record.
Ada95 allows the overriding of the "=" operator for all types, and allows the

operands to be of different types, so such paddi ng woul d not be required.
with text _io;
package text package is

max_chars .constant integer := 256;

subtype length _range is integer range O..nmax_chars;

subtype i ndex_range is |length _range range
1..length_range'l ast;

type text is
record
val ue :string(index_range);
I ength :length_range: =0;
end record;

-- read a whole line of characters, throw away anything that
doesn't fit.

procedure get |ine(item ;in out text);

procedure get line(file :in out text _ io.file_ type;
item:in out text
)

-- put the characters in the text to the screen. do not include a
new | i ne at

-- the end
procedure put(item iin text);
procedure put(file (in text _io.file_ type;

item in text);

-- Put the characters in the_ text to the screen. Do include a
new | ine at the

-- end.
procedure put _line(item:in text);
procedure put _line(file :in text _io.file_ type;

item in text);

-- get the string inside the text item

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_d (1 of 3) [10/14/2000 12:55:53 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_d

function to_string(item:in text) return string;

-- return the length of the string

function length(item (in text) return | ength_range;

-- return true if the string is enpty

function enpty(item (in text) return bool ean

-- set the value of "the text" to "a_string". Disregard any
characters that
-- don't fit into the record

function to text(item :in string) return text;

-- append a character onto the end of the text
-- disregard anything that doesn't fit in

procedure append(item :in out text;
add _on :in character);

-- append a string onto the end of the text
-- disregard anything that doesn't fit in

procedure append(item :in out text;
add _on :in string);

-- append the two text itens together
-- disregard anything that doesn't fit in

procedure append(item ;in out text;
add _on :in text);

-- returns the first n characters of the string, the string is
padded out with
-- spaces if itemis not |ong enough

function first_n chars(item:in t ext;
n cin natural) return string;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_d (2 of 3) [10/14/2000 12:55:53 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_d

end text package;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_d (3 of 3) [10/14/2000 12:55:53 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_e
Appendi x E Sinpl e_i o package
The sinple_io package is the sinplified |I/O package used by the first year students.
It attenpts to provide facilities simlar to that found in the Turbo Pascal
envi ronment .
with text _io;
package sinple io is

data_error: exception renames text _io.data_error;

procedure get line(item: out integer);

procedure get line(file :in out text _io.file_type;
item: out integer);

procedure get line(item: out float);

procedure get line(file :in out text _io.file_type;
item: out float);

procedure get line(item: out string);

procedure get line(file :in out text io.file_type;
item: out string);

procedure get line(item: out character);

procedure get line(file :in out text io.file_type;
item: out character);

procedure get(item: out character)

renanes text _io.get;
procedure skip line(spacing :in text_io.positive count:=1)
renanes text _io.skip_ |ine;
function end of file return bool ean

renanes text _io.end of file;

function end of line return bool ean
renanes text _io.end _of |ine;

procedure put(item:in integer

width :in natural := 0);
procedure put(file :in out text io.file_ type;
item:in integer;

width :in natural := 0);
default _fore :natural := 6;
default _aft :natural := 2;
default _exp :natural := O;

procedure put(item:in float;
fore :in natural
aft :in natura
exp :in natura

.= default _fore;
default_aft;
defaul t _exp);

procedure put(file :in out text io.file_ type;
item:in float;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_e (1 of 2) [10/14/2000 12:55:54 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_e

fore :in natural := default fore;
aft :in natural default _aft;
exp :in natural defaul t _exp);

procedure put(item:in string;
width :in natural := 0);

procedure put(item:in character);

procedure new line(line_count:in positive := 1);

-- The follow ng subprograns are used for screen and
keyboard contro

subtype row range is integer range 0..23;

subtype colum_range is integer range 0..79;

procedure nove(row :in row.range;
col :in colunn_range);
procedure hone;
-- noves the cursor to row range' first, colum_range' first

procedure cl ear_screen
-- clears the screen and sends the cursor home
subtype col or_range is integer range 30..37;

bl ack . constant col or_range : = 30;
red .constant color_range := 31
green .constant col or_range : = 32;
yell ow :constant col or_range := 33;
bl ue .constant col or_range : = 34;
magenta :constant col or_range := 35;
cyan . constant col or_range : = 36;
white .constant col or_range : = 37;

procedure text _color(color :color_range);

function current _text _color return col or_range;
-- what is the current color used for displaying text?

procedure get_cursor_pos(row : out row_range;
col : out columm_range);
-- where is the cursor currently positioned?

procedure wait for_keypress;
-- waits until the user hits a single key

function read_key return character;
-- returns the key the user types w thout needing
-- the user to press the return key.

end sinple_io;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_e (2 of 2) [10/14/2000 12:55:54 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_f

Appendi x F GNAT Ada

The Gnat (GNU Ada Transl ator) project has developed a fully fl edged Ada conpil er that
will

work with the GNU linker. This will allow the conpiler to be ported to any target
that the GNU conpiler/linker systemis currently available for. The conpiler is

i mpl ementing the 1995 revision to the | anguage, and so provi des support for object
ori ented programm ng, enhanced concurrency support as well as numerous other

features such as child and private child packages.

The Gnat Ada conpiler does away with the traditional library inplenentation of

nost Ada systens and presents a nore traditional environment. Source code is

compiled into a .o and a .ali file. The .0 represents the translation of the
instructions, the .ali file contains information about the relationship of the source to
ot her conponents in the system

Gnat Ada source code must be in a file that has the sane nane as the conpilation
unit name, with either a .ads (for specifications) or a .adb (for bodies).

Packages with child units (such as unix.file) should have the dot replaced with a '-',
and the usual .ads or .adb suffix appended.

For exanpl e the foll owi ng programnust be placed into a file called deno. adb.

with sinple_io; use sinple_io;
procedure deno is

begi n
for i in 1..10 |oop
put ("hello world");
new | i ne;
end | oop;
end;

To conpile this you type in the follow ng...
gcc -c¢ fred. adb
Typi cal questions now asked at this stage...

Do you nean that the C conpiler actually conpiles this progranf
Does this nean that the code is conpiled to C?

The answer to both of these questions is NO

gcc is not a conpiler, it is a programthat inspects the file suffix (e.g. .c, .adb
. ads,

.c++) and then invokes the appropriate conpiler. The gnat (GNu Ada Transl ator)
conpiles the programinto the standard GNU i nternedi ate code representation

which is then taken by the code generator specific for the conputer you are

runni ng, and produces a nornal '.0' object file.

Now that that's out of the way...

To |ink you program..

gnhat bl denvo. al i

It doesn't natter how many ot her procedures/packages you with, you don't need to
specify themin the |ink option.

However if you want to link in some C routines, then you nay have to do the
following (this exanple is taken from an exanple using the C curses library)...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_f (1 of 2) [10/14/2000 12:55:55 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_f

gnat bl deno.ali -Icurses

Sharing software

The Gnat conpiler |ooks for the environnent variabl es ADA | NCLUDE PATH

and ADA OBJECT PATH. Any directory in these path variables will be searched
for source code and object code, respectively.

In this way a group can share sone commonly devel oped routi nes.

Compi | er source code (and source to all Ada standard packages)

Currently on Arcadia/Yallara the source for the conpiler and all the Ada standard
packages are in the directory

[opt / gnu/ adai ncl ude

Some of these nanes have been 'crunched' (i.e. reduces to 8.3 DCS fil enane
conventions) so it is not always i mediately obvious where a package spec.
resi des. For exanple the text _io package can be found in the file

a-textio.ads (ada.text _io package specification)

O her packages of interest are...

i nterfac. ads package Interface

i -c.ads package Interface.C

i -cpoint. ads package Interface. C Pointers

i-cstrin. ads pacakge Interface.C Strings

a- cal end. ads package Cal endar

a-finali.ads package Ada. Finalization (for destructors
etc)

a-string. ads package Ada. Strings

a- strbou. ads package Ada. Strings. Bounded

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_f (2 of 2) [10/14/2000 12:55:55 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_g

Appendi x G RM T Ada resources

RMT currently has the Gnat Ada conpiler installed on Arcadia and
Yal | ara Sun conputers.

A public directory
/ publ i c/ ada

cont ai ns vari ous Ada resources.
These i ncl ude

ada-lref.ps qui ck reference sheets on Ada syntax, attributes, library

ada- synt ax. ps packages etc.

sour ces directory included in all search paths with sone common
code

sour ces/ uni x Unix "mni" binding, giving Ada access to sel ected Unix
services

sources/uni x-file
sour ces/ uni x- process

The directory
{opt /I ocal / gnu/ adai ncl ude

contains the Gnat inplenentation of all the standard Ada services, such as package
Cal endar, Direct 10O Text |0 etc.

The Gnat Ada conpiler for other conputers can be found in the /public/ada directory
on Yallara. Ports to OS/2, Linux and DCOS are present.

RM T s PC network al so has the GNAT Ada conpiler in the directory
g: \ pub\ ¢cs100\ gnat

In this directory are all the files you should need for running Ghat on a DCS
conmputer, and is better maintained than the DOS distribution on Yallara.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_g [10/14/2000 12:55:56 PM]

Dale Stanbrough

Go to the Tutorial Allocation System

Go to the Tutorial Allocation Admin
System (for Lecturers)

Dale Stanbrough

Emall; dale@rmit.edu.au

Phone: 9925 6130 (Bundoora) Phone: 9925 3266 (City)

Room 251.2.29, Bundoora East Campus
Room 10.7.36, City Campus

Consultation times:

City Monday, 3.30 - 5.20pm
BundooraFriday 9 - 10.30

Academic:

1st semester subjects
» CS280 Software Engineering |
» (CS582 Software Engineering 2
2nd semester subjects
« (CS280 Software Engineering |

« CS504 Concurrent Computing
o (CS825 Software Engineering for Grad. Dips.
« AV530 Ada programming

How to write unmaintainable code. Definately everthing every poor programmer does :-)

http://goanna.cs.rmit.edu.au/~dale/index.html (1 of 2) [10/14/2000 12:59:49 PM]

http://goanna.cs.rmit.edu.au/~dale/tutorial_allocations/index.html
http://goanna.cs.rmit.edu.au/~dale/tutorial_allocations/admin.html
http://goanna.cs.rmit.edu.au/~dale/tutorial_allocations/admin.html
mailto:dale@rmit.edu.au
http://goanna.cs.rmit.edu.au/~dale/cs280/index.html
http://goanna.cs.rmit.edu.au/~dale/cs582/index.html
http://goanna.cs.rmit.edu.au/~dale/cs280/index.html
http://goanna.cs.rmit.edu.au/~dale/cs504/index.html
http://goanna.cs.rmit.edu.au/~dale/cs825/index.html
http://goanna.cs.rmit.edu.au/~dale/av530/index.html
http://mindprod.com/unmain.htm

Dale Stanbrough

- [- & = [t -
s ¥ #
5 % % * %
H .- H
4 4 4 4
H } H ¥ y H ¥ H }
" "
5 T X ¥ LR L & 5 T
[]] []
i ' i ., & " i '
¥ ¥
5 % * % %
H .- H
4 4 4 4
¥ i i H ¥ i ¥ i i
(! T (! i (5 T (! T
[i | [i
i ' i ' i . i '
¢ ¥ ¥ ¢
5 & 4 e &
H .- H
4 + & 4
¥ i i 3 ¥ H ¥ i i
(¥ T 5 T (S L (¥ T
[i] [i
i . i - i - i .
¢ ¥ ¥ ¢
5 4 & - 4
& + & &
¥ H i H ¥ H ¥ H i
(" " 5 T () L (" "
] i |] i
[* - i - ¥ -, [* -
¢ ¥ ¥ ¢
5 % + 4 %
4 4 4 4
¥ 3 i > ¥ H ¥ 3 i
(" L (! T () L) (" L
] i |] i
[* ~ i ~ [* ~ [* ~

http://goanna.cs.rmit.edu.au/~dale/oldstuff_index.html
http://goanna.cs.rmit.edu.au/~dale/ada.html
http://goanna.cs.rmit.edu.au/~dale/family.html

	goanna.cs.rmit.edu.au
	http://goanna.cs.rmit.edu.au/~dale/ada/aln.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/index.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/1_history.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/2_sample_programs.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/3_lexical_conventions.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/3_lexical_conventions_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/5_control_structures.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/5_control_structures_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/6_arrays.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/6_arrays_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/7_records.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/7_records_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/12_files.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/12_files_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/13_access_types.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/13_access_types_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_OO.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_concurrency.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_Concurrency_support.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/16_interfaces.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/16_interfaces_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_b
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_c
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_d
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_e
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_f
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_g
	Dale Stanbrough

