
Quick Ada

● 1 The history of Ada

● 2 Sample programs

● 3 Lexical conventions, contents

● 4 Basics types of Ada, contents

● 5 Control Structures, contents

● 6 Arrays, contents

● 7 Records, contents

● 8 Subprograms contents

● 9 Packages, contents

● 10 Generics, contents

● 11 Exceptions, contents

● 12 Files, contents

● 13 Access types, contents

● 14 Object Oriented features of Ada

● 15 Concurrency support, contents

● 16 Language interfaces, contents

● 17 Idioms, contents

● 18 Designing Ada programs, contents

● Appendix A Text_IO package

● Appendix B Sequential_IO package

● Appendix C Direct_IO package

RMIT specific information

● Appendix D Text_package package

● Appendix E Simple_io package

● Appendix F GNAT Ada

● Appendix G RMIT Ada resources

Copyright Dale Stanbrough
They may be used freely, but they must not be resold, either in part or in whole, without permisssion.
Email: dale@rmit.edu.au

http://goanna.cs.rmit.edu.au/~dale/ada/aln.html [10/14/2000 12:54:39 PM]

mailto:dale@rmit.edu.au

The postscript files for the notes... (and don't i just wish they were in one file!).

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18

http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/index.html [10/14/2000 12:54:42 PM]

http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript1.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript2.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript3.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript4.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript5.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript6.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript7.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript8.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript9.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript10.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript11.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript12.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript13.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript14.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript15.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript16.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript17.ps.gz
http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/PostScript18.ps.gz

1 The history of Ada

Overview
An understanding of the reasons why Ada was developed and the history of its development gives an
appreciation of the language and its future.

History of Ada.
In 1974 the US Department of Defence (DoD) realised that it was spending too much time, effort and
money developing and maintaining embedded computer systems (systems stuck in hardware e.g. missile
guidance systems).

At this time over 450 different languages or language extensions were in use. This increased the time and
costs for developing new systems and in continually retraining people to become familiar with existing
systems. Maintenance was also hampered by the lack of standardisation of support tools (editors,
compilers etc). All these factors led to the DoD realising it needed a single powerful language that could
be used by all embedded computer suppliers.

The developement work began in 1975 with the DoD producing a list of language requirements which
was widely circulated; however no existing language specified the criteria so in 1977 DoD requested
proposals for a new language. Unlike committee languages such as COBOL, the new language was the
subject of a competition and extensive industry and academic review.

Of numerous entries four were selected for further refinement. This was later cut down to two competing
entries from which one was finally selected from the company Cii-Honeywell Bull. This language was
christened Ada. The design team was led by Jean Ichbiah who had overall control over the language.

In 1983 the language became an ANSI standard ANSI/MIL-STD-1815A. It became an ISO standard the
following year. The language is defined in a reference manual often referred to as the LRM. References
to this manual occur often in books on the language, and in many compiler error messages. This book is
recommended for any Ada site; although hard to read it is the final authority for any Ada question (an
ongoing group has been formed to clarify any inconsistancies detected in the language).

The language has since undergone revision, with ISO standardisation of the new standard achieved in
early 1995. This new Ada fixes many of the flaws in the original language, and extends it in many useful
ways.

To prevent the proliferation of various imcompatable versions of Ada the Ada Joint Program Office (the
body set up for control of the language) took a very novel position - they trademarked the name Ada.
You were not allowed to market "Ada" compilers unless they have passed a compliance test. This has
subsequently been relaxed, the protected term now being `Validated Ada'.
The resulting Ada validation certificate is limited in duration and has an expiry date. Once it expires the

http://goanna.cs.rmit.edu.au/~dale/ada/aln/1_history.html (1 of 2) [10/14/2000 12:55:02 PM]

compiler can no longer be marketed as a `Validated Ada' compiler. In this way the AJPO has ensured
that all currently marketed compilers comply with the current standards.

The aim is to ensure that any Ada program can be compiled on any system - in this regard the AJPO has
succeeded better than many other language groups.

Design Goals
From the Ada LRM:
"Ada was designed with three overriding concerns: program reliability and maintenance, programming as
a human activity, and efficiency"

Of note is the sentence, also from the LRM:

"Hence emphasis was placed on program readability over ease of writing".

These design goals can be seen in the language. It has strong typing and enforcable abstractions which
have shown to increase reliability and ease maintenance.

It eschews cryptic syntax for a more verbose English style for the sake of readability (readability,
programming as a human activity). Also almost all constructs can be efficiently implemented.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/1_history.html (2 of 2) [10/14/2000 12:55:02 PM]

2 Sample programs

Overview
This chapter shows a few simple programs to give the 'feel' of an Ada program.

Simple programs
One of Ada's major philosophies is encapsulation. All of the standard I/O routines come presupplied in packages that can be
included in a program. The following examples use the text_io package.

with Ada.Text_IO; use Ada.Text_IO;
 -- a package containing the"put_line" procedure

procedure hello is -- candidate for the "main" procedure.
begin
 put_line("hello");
end;

Unlike C which has a function main, and Pascal which has a program, any parameterless procedure can be a "main" routine.
The procedure thus designated is chosen at link time.

with Ada.Text_IO; use Ada.Text_IO;
with Hello;
 -- include our previous procedure

procedure your_name is
 name :string(1..100); -- 100 character array
 last :natural; -- can only contain natural integers
begin
 put("Hello what is your name? ");
 get_line(name,last);

 for i in 1..10 loop -- i is implicity declared
 Hello;
 put_line(" there " & name(1..last));
 -- & string concatenation
 -- name(1..last)- array slice
 end loop; -- control structure labelled
end;

Inputting numbers requires the use of a package devoted to the task. A package to do this exists with all Ada implementations.
Other simpler packages are often created within a site (see package simple_io in the appendices).

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO

procedure Age is

 Age :integer range 0..120;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/2_sample_programs.html (1 of 2) [10/14/2000 12:55:02 PM]

begin
 Put("hello, how old are you ? ");
 Get(Age); -- might cause an exception if value entered
 --is outside range

 if Age < 18 then
 put_line("ha! you're just a baby");
 elsif Age < 60 then -- note spelling of elsif
 put_line("working hard?");
 else
 put_line("Now take it easy old fella!");
 end if;

exception
 when constraint_error =>
 put_line("sorry only ages 0..120 are accepted");
end age; -- procedure name is optional at end;

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/2_sample_programs.html (2 of 2) [10/14/2000 12:55:02 PM]

3 Lexical conventions

Overview
The lexical conventions describe the allowable character sequences that are used to create identifiers,
numbers and the special values used in the language. Implementations must support 200 characters
lexical elements at the least.

Identifiers
Can be of any length (but can be restricted by an implementation).

Can only contain characters, digits and underscores

Must start with a character

Are case insensitive

E.g.

Apple, apple, APPLE -- same identifier
Max_Velocity_Attained
Minor_Number_ -- illegal, trailing underscore
Minor__Revision -- illegal, consecutive underscores

Literals
Literals are the typed representation of the values stored in the program.

Numeric literals can be broken up with non consecutive underscores as desired.

E.g. 5_101_456 is the number 5101456
3.147_252_6

Numeric literals cannot end or start with an underscore.

Exponential notation is available for floats and integers

E.g. 2E6, 9E+4

Numeric literals can be represented in different bases (2-16).

E.g. 2#1011#, 10#45#, 16#Fe23#, 2#11100.11001#

http://goanna.cs.rmit.edu.au/~dale/ada/aln/3_lexical_conventions.html (1 of 3) [10/14/2000 12:55:04 PM]

Float literals must have a digit either side of the radix point

E.g. 3.14, 100.0

Thus the numbers 100. or .034 are not valid float numbers.

Character literals are surrounded by single quotes

E.g. 'a', 'b'

String literals are surrounded by double quotes

E.g. "Ada", "literal", "embedded ""strings""!"

String literals cannot contain the tab character. String values can contain them, this can be achieved by
either concatenating strings and characters together, or directly inserting the character into the string.

Comments
Comments are introduced by the -- symbol and extend to the end of the line.

Reserved Words

abort else new return
abs elsif not reverse
abstract* end null
accept entry select
access exception separate
aliased* exit of subtype
all or
and for others tagged*
array function out task
at terminate
 generic package then
begin goto pragma type
body private
 if procedure
case in protected* until*
constant is use
 raise
declare range when
delay limited record while
delta loop record while

http://goanna.cs.rmit.edu.au/~dale/ada/aln/3_lexical_conventions.html (2 of 3) [10/14/2000 12:55:04 PM]

digits renames
do mod requeue* xor

Reserved words followed by an asterisk have been introduced in Ada95.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/3_lexical_conventions.html (3 of 3) [10/14/2000 12:55:04 PM]

3 Lexical conventions

Overview1.

Identifiers2.

Literals3.

Comments4.

Reserved Words5.

1.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/3_lexical_conventions_ToC.html [10/14/2000 12:55:04 PM]

4 Basics types of Ada

Overview
This chapter introduces some of the types available in Ada as well as the operations available on and attributes of those types.

Types and subtypes

All types
 Elementary
 Scalar
 Discrete
 Universal_integer -- all integer
literals
 Root_integer -- Ada95 only
 Signed integer
 Modular integer -- Ada95 nsigned types
 Enumeration
 User defined
 Character
 Boolean
 Real
 Universal_real -- all real literals
 Root_real -- Ada95 only
 Floating point
 Fixed point
 ordinary fixed point
 decimal fixed point -- Ada 95 only
 Access
 Access-to-object
 Access-to-subprogram -- Ada 95 only

 Composite
 Array
 String
 Other array
 Untagged record
 Tagged record -- Ada95
 Task
 Protected -- Ada95

Scalar types
The predefined package Standard contains declarations for the standard types such as integer, float, character and boolean, as well as
(notionally) defining the operations available on them.

All numeric literals belong to the class universal_integer or universal_float. Many of the attributes of the language (discussed later)

http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types.html (1 of 7) [10/14/2000 12:55:07 PM]

also return a universal value. These universal types are compatable with any corresponding integer, float or fixed type.

E.g.

Max_Customers : constant := 10_000; -- 10_000 is a "universal integer"
 -- It is not of type "integer"

Subtypes can be created in Ada by restricting an existing type, by defining a new type based on an existing type or by enumerating
the possible values of the type. A discussion of how to create these new types follows a look at the predefined types and their
attributes.

The following operations are defined for all scalar types.

=, /= Equality, inequality
<, <=, >, >=
in, not in Range membership text

Integer types
The following are examples of integer declarations. Here the standard predefined integer type is used.

Count : Integer;
X,Y,Z : Integer;
Amount : Integer := 0;
Unity : constant Integer := 1;
Speed_Of_Light : constant := 300_000; -- type universal_integer
A_Month : Integer range 1..12;

subtype Months is Integer range 1..12; -- a restricted integer
-- subtypes are compatable with their base type (here integer)
-- i.e. variables of type month can be mixed with integer variables

type File_Id is new Integer; -- a new integer family derived
 -- from type integer;

type result_range is new Integer range 1..20_000;
-- a derived type with a constraint

type other_result_range is range 1..100_000;
-- a type derived from root_integer
-- the compiler chooses an appropriate sized integer to suit the range.

The following operators are also defined for all integer types.

+,-,*,/
** Exponentiation (integer exponent only)
mod Modulus
rem Remainder
abs Absolute value

Floating point types
The following are examples of floating point declarations. Floating point numbers have a relative error.

x : float;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types.html (2 of 7) [10/14/2000 12:55:07 PM]

a,b,c : float;
pi : constant float := 3.14_2;
Avogadro : constant := 6.027E23; -- type universal_float

subtype temperatures is float range 0.0..100.0;
type result is new float range 0.0..20_000.0;

type Velocity is new Float;
type Height is new Float;
-- can't accidentally mix velocities and heights without an explicit
-- type conversion.

type Time is digits 6 range 0.0..10_000.0;
-- six decimal digits of accuracy required, in this range.

type Degrees is digits 2 range -20.00..100.00;
-- two decimal digits of accuracy required.

The following operators are also defined for all float types.

+,*,/,-
** Exponentiation (integer exponent only)
abs Absolute value

Fixed point types
The following are examples of fixed point declarations. Fixed point numbers have a bounded error, the absolute value of which is
called the delta of the type.

type Volt is delta 0.125 range 0.0 .. 255.0;

type Fraction is delta System.Fine_Delta range -1.0..1.0; -- Ada95
 -- Fraction'last = 1.0 - System.Fine_Delta

type Money is delta 0.01 digits 15; -- decimal fixed point
subtype Salary is Money digits 10;

The last example shows the usefulness of fixed point types - the ability to specify exactly how accurate the type should be. This
allows control over facilities such as errors in rounding expressions, for example.

Enumeration types
An enumeration type is defined by listing all the possible values of the type.

type Computer_Language is (Assembler, Cobol, Lisp, Pascal, Ada);
type C_Letter_Languages is (Cobol, C);

Values of this type can be defined as follows:

a_language : computer_language;
early_language : computer_language := cobol;
first_language : constant computer_language := assembler;
example : c_letter_language := cobol;

Note that Ada can distinguish between enumeration literals from different types in most cases by examining the context. If this is not

http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types.html (3 of 7) [10/14/2000 12:55:07 PM]

possible then type qualification must be used.

Enumeration types are useful to encode simple control codes used internally in a program.

There are two predefined enumerated types in the package STANDARD, the type character and the type boolean.

Booleans
The two values of boolean variables is true and false.

The following opeartors can be used with boolean types

and or not xor /= = 'and then' 'or else'

Ada will not allow an unparenthesied expression to contain both and's and or's. This decreases the likelihood of misreading the intent
of a complicated boolean expression.

E.g.

(a < b) and (b > c) or (d < e) -- illegal
((a < b) and (b > c)) or (d < e) -- ok

Usually when evaluating a boolean expression, the compiler is free to rearrange the evaluation of the terms as it sees fit. Both terms
will be evaluated. For example in the following either term may be evaluated first.

if a < b and c > d then ...

However in some instances we wish to evaluate the terms in a defined order, and stop evaluations as soon as the value of the
expression can be determined.

For example

if a /= 0 and then b/a > 5.0 then . . .

Here we see if a is non zero before further evaluation.

The 'or else' statement is similar, only evaluation stops as soon as a term evaluates to true. This can be useful, for example, in a
recursive search of a tree.

E.g.

return Present(Node.Left, Key) or else Present(Node.Right, Key);

Character
Ada83 initially had 7 bit characters. This restriction was eased before Ada95 arrived, but is still enforced by older compilers such as
the Meridian Ada compiler. This creates problems when attempting to display graphic characters on a PC; generally you have to use
integers to display characters above Ascii 127, using special routines supplied by the compiler vendor.

Ada95's Character type is based on Latin-1 and provides for 256 character positions. Ada95 also supports wide characters (ISO
10646 Basic Multilingual Plane (BMP)) and so all modern compilers can cope with 8 bit characters.

The 7 bit character set is described in the obsolecent package Standard.Ascii. The 8 bit character set is described in the package
Standard. The package Ada.Characters.Latin_1 provides usable names for the characters.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types.html (4 of 7) [10/14/2000 12:55:07 PM]

Subtypes
We can restrict the range of values a variable can take by declaring a subtype with a restricted range of values (this corresponds to
Pascal's user defined types). Any attempt to place an out-of-range value into a variable of a subtype results in an exception (program
error). In this way program errors can be discovered. The syntax for a subtype declaration is

subtype Name is Base_Type;
subtype Name is Base_Type range lowerbound . . upperbound;

Examples of declaring subtypes are given below.

type Processors is (M68000, i8086, i80386, M68030, Pentium, PowerPC);
subtype Old_Processors is Processors range M68000..i8086;
subtype New_Processors is Processors range Pentium..PowerPC;

subtype Data is Integer;
subtype Age is Data range 0 . . 140;
subtype Temperatures is Float range -50.0 .. 200.0;
subtype Upper_Chars is Character range 'A' .. 'Z';

Subtypes are compatable with their base types . They can be placed in the same place as any variable of the base type can. Also
variables of different subtypes that are derived from the same base type are compatable.

My_Age : Age;
Height : Integer;

Height := My_Age; -- silly, but never causes a problem.

My_Age := Height; -- will cause a problem if height's
 -- value is outside the range of
 -- my_age (0..140), but still
 -- compilable.

Derived types
When subtypes are created they are still compatable with their base type. Sometimes we may wish to create distinctly new types that
are not associated with the original type at all. This concept of type is very different to that provided by Pascal.

To do this we create a derived type from a parent type using the following syntax

type Name is new Parent_Type;
type Name is new Parent_Type range lower bound . . upper bound;

A derived type is a completely new type and is incompatable with any other type, even those derived from the same parent type.

Derived types should be used when the modelling of a particular object suggests that the parent type is inappropriate, or you wish to
partition the objects into distinct and unmixable classes.

type Employee_No is new Integer;

type Account_No is new Integer range 0..999_999;

Here employee_no's and account_no's are distinct and unmixable, they cannot be combined together without using explicit type
conversion. Derived types inherit any operation defined on the base type. For example if a record was declared that had procedures
push and pop, a derived type could be declared that would automatically have inherit the procedures.

Another important use of derived types is to produce portable code. Ada allows us to create a new level of abstraction, one level

http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types.html (5 of 7) [10/14/2000 12:55:07 PM]

higher than, for example, the abstraction of Integer over a series of bits.

This is specified by using derived types, without a parent type.

type Name is range <some range>;

For example,

type Data is range 0..2_000_000;

Here the compiler is responsible for choosing an appropriately sized integer type. On a PC, it would be a 32 bit size, equivalent to
long_integer. On a Unix workstation it would still be a 32 bit integer, but this would be equivalent to an integer. Letting the compiler
choose frees the programmer from having to choose. Compiling it on a new host does not require changing the source code.

Type conversion
Despite the usefullness of being able to create distinct types, there are still occasions where we wish to convert from one type to
another. One typical instance is to convert from one integer to float, or vice versa.

X : Integer:= 4;
Y : Float;

Y := float(X);
. . .
X := Integer(Y);

This causes the compiler to insert the appropriate code for type conversion (if needed) as part of the translation.

Do not confuse this with unchecked conversions (covered later) which often perform no internal representation transformation.

It needs to be stressed however that types are created distinct for a reason and that attempts to subvert the compiler's checks by
performing type conversions should be either discouraged or performed only when semantically meaningfull.

Type Qualification
In some situations an expression's or value's type can be ambiguous.

For example,

type primary is (red, green, blue);
type rainbow is (red, yellow, green, blue, violet);
...
for i in red..blue loop -- this is ambiguous

Here we need to specify precisely what type is required. This is done with type qualification.

for i in rainbow'(red)..rainbow'(blue) loop
for i in rainbow'(red)..blue loop -- only one qualification needed
for i in primary'(red)..blue loop

Type qualification does not change a value's type. It merely informs the compiler of what type the programmer thinks it should be.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types.html (6 of 7) [10/14/2000 12:55:07 PM]

Attributes
Ada also provides the ability to enquire about a type or object from within the code by using attributes. Some of the attributes for
discrete types are

Integer'first -- the smallest Integer
Integer'last -- the largest integer
Processors'succ(M68000) -- successor of the M68000
Upper_Chars'pred('C') -- the predecessor of 'C' ('B')
Integer'image(67) -- the string " 67" -- space for a '-'
Integer'value("67") -- the integer 67.
Processors'pos(M68030) -- the position of M68030 in the type.
 -- (3, position 0 is first).

An example of the use of an attribute is

subtype Positive is Integer range 1..Integer'last;

Here we achieve a maximal positive integer range without introducing any system dependent features.

In Ada83 non discrete types such as float, fixed and all their subtypes and derived types, the concepts of pred, succ and pos do not
have meaning. In Ada95 they do. All other scalar attributes apply to the real types.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types.html (7 of 7) [10/14/2000 12:55:07 PM]

4 Basics types of Ada

Overview1.

Types and subtypes2.

Scalar types3.

Integer types4.

Floating point types5.

Fixed point types6.

Enumeration types7.

Booleans8.

Character9.

Subtypes10.

Derived types11.

Type conversion12.

Type Qualification13.

Attributes14.

1.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types_ToC.html [10/14/2000 12:55:08 PM]

5 Control Structures

Overview
The control structures of Ada are similar in style to most conventional languages. However some differences
remain.

As usual Ada control structures are designed for maximum readability, all control structures are clearly ended
with an 'end something'.

If statements
All if statements end with an end if statement.

if boolean expression then
 statements
end if;

if boolean expression then
 statements
else
 other statements
end if;

To prevent the common sight of if's marching across the page there is the elsif structure. As many elsifs as
required can used. Note the spelling of elsif carefully.

if boolean expression then
 statements
elsif boolean expression then
 other statements
elsif boolean expression then
 more other statements
else
 even more other statements
end if;

The final else is optional in this form of the if.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/5_control_structures.html (1 of 5) [10/14/2000 12:55:09 PM]

Case statements
The case statement must have an action for every possible value of the case item. The compiler checks that this
is the case. In situations where it is impractical to list every possible value the others case label should be used.

Each choice's value can be either a single value (e.g. 5), a range (1..20) or a combination of any of these,
separated by the character '|' .

Each of the case values must be a static value i.e. it must be able to be computed at compile time.

case expression is
 when choices => statements
 when choices => statements
 . . .
 when others => statements
end case;

Important The others option is mandatory in a case statement unless all possible values of the case selector have
been enumerated in the when statements.

case letter is
 when 'a'..'z'| 'A'..'Z' => put ("letter");
 when '0'..'9' => put ("digit! value is"); put (letter);
 when ''' | '"' | '`' => put ("quote mark");
 when '&' => put ("ampersand");
 when others => put ("something else");
end case;

Each of the case values must be a static value i.e. it must be able to be computed at compile time.

Loops
All Ada looping constructs use the loop/ end loop form. Several variations exist. The exit statement can be used
to break out of loops.

Simple Loops
The simple loop is an infinite loop. It is usually used in conjuction with the exit statement.

loop
 statements
end loop;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/5_control_structures.html (2 of 5) [10/14/2000 12:55:09 PM]

While Loops
The while loop is identical to the Pascal while loop. The test is performed before the loop is entered.

while boolean expression loop
 statements
end loop;

For Loops
The for looping contructs are similar to those in Pascal.

There are several rules that apply to the use of for statements.

l The index in the for loop must be a discrete type - floats are not allowable.

l The index is not explicity declared.

l The index cannot be modified by any statements (read only)

Note that the statements will not be executed if the lower value of the range is higher than the upper value.

Important The index used in the for loop does not need to be declared. It is implicitly declared to be of the same
type as the range.

for index in range loop
 statements
end loop;

for i in 1..20 loop
 put (i);
end loop;

To count backwards...

for index in reverse range loop
 statements
end loop;

for i in reverse 1..20 loop
 put(i);
end loop;

A type can be used as a range.

declare
 subtype list is integer range 1..10;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/5_control_structures.html (3 of 5) [10/14/2000 12:55:09 PM]

begin
 for i in list loop
 put(i);
 end loop;
end;

Here the type list is being used as a range. In a similar manner an enumerated type can be used.

Exit and exit when
The exit and exit when statements can be used to exit loops prematurely. Execution continues with the first
statement following the loop. The two forms have identical effects. The following code segments are identical.

loop
 statements
 if boolean expression then
 exit;
 end if;
end loop;

loop
 statements
 exit when boolean expression;
end loop;

Labeled loops
An exit statement will normally only exit the inner most loop in which it is enclosed. We can label loops and
modify the exit statement accordingly to allow for an escape from a series of nested loops. In all cases the
instruction next executed is that following the loop exited.

outer_loop:
loop
 statements
 loop
 statements
 exit outer_loop when boolean_expression;
 end if;
 end loop;
end loop outer_loop;

Note that the end loop statement is also labelled.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/5_control_structures.html (4 of 5) [10/14/2000 12:55:09 PM]

Goto statement
The goto statement is provided in Ada for use in exceptional situations.

goto label;

<<label>>

The use of goto's is very restrictive and quite sensible. You cannot jump into if statements, loop statements or,
unlike Pascal, out of procedures.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/5_control_structures.html (5 of 5) [10/14/2000 12:55:09 PM]

5 Control Structures

Overview1.

If statements2.

Case statements3.

Loops4.

Simple Loops5.

While Loops6.

For Loops7.

Exit and exit when8.

Labeled loops9.

Goto statement10.

1.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/5_control_structures_ToC.html [10/14/2000 12:55:10 PM]

6 Arrays

Overview
Most languages provide arrays of one sort of another. Those provided by Ada are most similar to Pascal's, with the inclusion of
several very handy features.

Unconstrained arrays, dynamic arrays and array attributes are some of the extras offered.

Simple arrays
Generally when declaring an array, a type definition would be created first, and an array would be declared using this definition.

type Stack is array (1..50) of Integer;
Calculator_Workspace : stack;

type stock_level is Integer range 0..20_000;
type pet is (dog,budgie,rabbit);
type pet_stock is array(pet) of stock_level;

store_1_stock:pet_stock;
store_2_stock:pet_stock;

In general the declaration of an array has this form:

type array_name is array (index specification) of type;

Some points to note:

* The index specification can be a type (e.g. pet).

* The index specification can be a range (e.g. 1..50).

Index values must be of a discrete type.

Anonymous arrays
Arrays can also be declared directly, without using a predefined type.

no_of_desks : array(1..no_of_divisions) of integer;

This is known as an anonymous array (as it has no explicit type) and is incompatable with other arrays - even those declared exactly
the same. Also they cannot be used as parameters to subprograms. In general it is better to avoid them.

Accessing and setting arrays
To access an element of an array

if store_1_stock(dog) > 10 then ...

It is instructive to note that accessing an Ada array is indistinguishable from calling a function in all respects.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/6_arrays.html (1 of 5) [10/14/2000 12:55:11 PM]

To store a value into an array...

store_2_stock(rabbit) := 200;

Array aggregates
The values of an array can all be assigned at once, using an aggregate. An aggregate must specify a value for every array element.

store_1_stock := (5,4,300);

The values in the aggregate are assigned in order to the values in the array.

It is also possible to use a named version of the aggregate where the individual elements of the array are named.

store_1_stock := (dog => 5, budgie => 4, rabbit => 300);

It is illegal to combine both notations in the one aggregate.

store_1_stock := (5,4,rabbit=>300); -- illegal

Aggregates can also be used in declarations in exactly the same manner, using either notation.

store_1_stock:pet_stock := (5,4,300);

A discrete range can also be included in the aggregate.

store_1_stock := (dog..rabbit=>0);

The others option is particuarly useful in setting all elements of an array to a given value. In these situations type qualification is
often required.

new_shop_stock:pet_stock := (others := 0);

Consider the following declarations:

declare
 type numbers1 is array(1..10) of integer;
 type numbers2 is array(1..20) of integer;
 a :numbers1;
 b :numbers2;
begin
 a := (1,2,3,4, others => 5);
end;

The Ada language doesn't like this; if you mix the others option with either positional or named association then you have to qualify
it with a type mark:

a: = numbers1'(1,2,3,4, others => 5);

Constant arrays
Constant arrays can be defined. In this case all elements should be initialised through the use of an aggregate when declared.

type months is (jan, feb,mar,....,dec);
subtype month_days is integer range 1..31;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/6_arrays.html (2 of 5) [10/14/2000 12:55:11 PM]

type month_length is array (jan..dec) of month_days;

days_in_month:constant month_length := (31,28,31,30,...,31);

Array attributes
Attributes associated with arrays are as follows.

array_name'first -- lower bound of the array
array_name'last -- upper bound of the array

array_name'length -- the number of elements in the array
 -- array_name'last-array_name'first +1

array_name'range -- the subtype defined by
 -- array_name'first . . array_name'last

If the array is multi dimensional then the index should be specified e.g. array_name'range(n) supplies the range for the nth index.

This facility is very useful for stepping through arrays

for i in array_name'range loop
 ...
end loop

This guarantees that every element will be processed.

Unconstrained array types
Unconstrained array types allow us to declare array types that are identical in all respects to normal array types except one - we don't
declare how long they are.

The declaration of an unconstrained array defines a class of arrays that have the same element type, the same index type and the same
number of indices.

subtype positive is integer range 1..integer'last;
type string is array (positive range <>) of character;

The <> represents a range that has to be specified when a variable of type string is declared (filling in the blank when declaring a
variable).

The type string can be used to define a large class of character arrays, identical except in the number of elements in the array.

To create an actual array, we have to provide a index constraint for the type.

My_Name : String (1..20);

Here the index constraint is the range 1..20. The advantage of this is that all strings declared are of the same type, and can thus be
used as parameter to subprograms. This extra level of abstraction allows for more generalised subprograms.

To process every element of an a variable that is derived from an unconstrained array type requires the use of array attributes such as
a'range, a'first etc. as we cannot be sure what index values incoming arrays may have, such as below.

My_Name : String (1..20);
My_Surname : String (21..50);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/6_arrays.html (3 of 5) [10/14/2000 12:55:11 PM]

Unconstrained arrays are typically implemented with an object that stores the bounds, as well as a pointer to the actual array.

Standard array operations
There are several operations that can be applied to arrays as a whole and not just the individual components.

Assignment
An entire array can be assigned the value of another array. Both arrays must be of the same type. If they are of the same
unconstrained type then they both must have the same number of elements.

declare
 my_name :string(1..10) :="Dale ";
 your_name :string(1..10) :="Russell ";
 her_name :string(21..30) :="Liz ";
 his_name :string(1..5) :="Tim ";
begin
 your_name := my_name;
 your_name := her_name; -- legal, both have same number of
 -- elements
 his_name := your_name; -- will cause an error, same type but
-- different length
end;

Test for equality, inequality
The tests for equality and inequality are available for (almost) every Ada type. Two arrays are equal if each element of the array is
equal to the corresponding element of the other array.

if array1 = array2 then....

Concatenation
Two arrays can be concatenated using the & operator.

declare
 type vector is array(positive range <>) of integer;

 a : vector (1..10);
 b : vector (1..5):=(1,2,3,4,5);
 c : vector (1..5):=(6,7,8,9,10);
begin
 a := b & c;
 Put_Line("hello" & " " & "world");
end;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/6_arrays.html (4 of 5) [10/14/2000 12:55:11 PM]

Ordering operations
The operators <,<=,>,>= can all be applied to one dimensional arrays. They are of most benefit when comparing arrays of characters.

"hello" < "world" -- returns true

Dynamic arrays
The length of an array can be determined at run time, rather than being specified by the programmer when writing the program.

declare
 x : Integer := y --y declared somewhere else
 a : array (1..x) of integer;
begin
 for i in a'range loop
 ...
 end loop;
end;

procedure demo(item :string) is
 copy :string(item'first..item'last) := item;
 double:string(1..2*item'length) := item & item;
begin
 ...

Note that this does not easily allow the user's input to decide the size of the array, and should not be thought of as a device for
achieving this. The second example is much more typical of it's use.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/6_arrays.html (5 of 5) [10/14/2000 12:55:11 PM]

6 Arrays

Overview1.

Simple arrays2.

Anonymous arrays3.

Accessing and setting arrays4.

Array aggregates5.

Constant arrays6.

Array attributes7.

Unconstrained array types8.

Standard array operations9.

Assignment10.

Test for equality, inequality11.

Concatenation12.

Ordering operations13.

Dynamic arrays14.

1.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/6_arrays_ToC.html [10/14/2000 12:55:12 PM]

7 Records

Overview
Once again Ada provides the same facilities as other languages, plus a few extra. Records can have aggregates, discriminants which
allow for variant records, variable sized records and initialized variables.

Simple records
In general the declaration of an record has this form:

type record name is
 record
 field name 1: type A;
 field name 2: type B;
 ...
 field name n: type N;
 end record;

For example:

type bicycle is
 record
 frame :construction;
 maker :manufacturer;
 front_brake :brake_type;
 rear_brake :brake_type;
 end record;

Accessing and setting fields
Accessing fields of a record is identical to that in pascal and C, i.e. the name of the variable is followed by a dot and then the field
name.

expensive_bike :bicycle;

expensive_bike.frame := aluminium;
expensive_bike.manufacturer := cannondale;
expensive_bike.front_brake := cantilever;
expensive_bike.rear_brake := cantilever;

if expensive_bike.frame = aluminium then ...

As with arrays records can be assigned an aggregate, a complete set of values for all record elements.

expensive_bike:=(aluminium,cannondale,canitlever,cantilever);

Alternatively the aggregate can use positional notation where each element of the record is named.

expensive_bike := (
 frame => aluminium,

http://goanna.cs.rmit.edu.au/~dale/ada/aln/7_records.html (1 of 4) [10/14/2000 12:55:13 PM]

 manufacturer => cannondale,
 front_brake => cantilever,
 rear_brake => cantilever
);

Both notations can be mixed in the one aggregate with the proviso that all positional values precede named values.

Aggregates can also be used in declarations in exactly the same manner, using either notation.

expensive_bike :bicycle := (aluminium,cannondale,cantilever,cantilever);

The same value can be assigned to different fields by using the '|' character.

expensive_bike := (
 frame => aluminium,
 manufacturer => cannondale,
 front_brake | rear_brake => cantilever
);

Default values
Fields in records can be given default values that are used whenever a record of that type is created (unless it is initialised with
different values).

type bicycle is
 record
 frame:construction := CromeMolyebdenum;
 maker :manufacturer;
 front_brake :brake_type := cantilever;
 rear_brake :brake_type := cantilever;
 end record;

Constant records
Just like normal variables constant records can be created. In this case all fields should be initialised through the use of an aggregate
or default field values.

my_bicycle :constant bicycle
 := (hi_tensile_steel,
 unknown,
 front_brake => side_pull,
rear_brake => side_pull);

The fields in a constant record cannot be assigned a value, nor can the record be reassigned a new value.

Discriminants
Ada allows records to contain discriminants. These extra fields help to customise the record further. They give an extra level of
abstraction when modelling data; records can be of the same type yet still be different in size or the number of fields.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/7_records.html (2 of 4) [10/14/2000 12:55:13 PM]

Variant records
One of the uses of discriminants allows for variant records. In this case the record contains some fields whose existance is dependent
upon the value of the discriminant.

For example the discriminant in the following record is the variable vehicle_type

type vehicle is (bicycle, car, truck, scooter);

type transport (vehicle_type: vehicle:= car) is
 record
 owner :string(1..10);
 description: string(1..10);
 case vehicle_type is
 when car =>
 petrol_consumption:float;
 when truck =>
 diesel_consumption:float;
 tare:real;
 net:real;
 when others => null;
 end case;
 end record;

The discriminant can be supplied when a record is being declared.

my_car:transport(car);
my_bicycle:transport (vehicle_type => bicycle);

When the discriminant has the value car, the record contains the fields owner, description and petrol_consumption. Attempting to
access fields such as tare and net is illegal and will cause a constraint error to be generated (this can be caught and handled using
exceptions).

Constrained records
The records above are said to be constrained, that is the discriminant can never change. The my_bicycle record does not have the
fields tare, net petrol_consumption etc. nor does the compiler allocate room for them.

We can declare the records without setting an initial value for the discriminant, in which case the record is said to be unconstrained.
In this case the discriminant can take on any value throughout its life. Obviously in this case the compiler has to allocate enough
room for the largest record possible.

Aggregates for records with discriminants must include the value of the discriminant as the first value.

 my_transport:transport;

begin
 my_transport := (car,"dale ","escort ",30.0);

Unconstrained records
We can create records that do not have a fixed discriminant, it can change throughout the life of the record. However to do this the
discriminant of the record must have a default value.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/7_records.html (3 of 4) [10/14/2000 12:55:14 PM]

type accounts is (cheque, savings);
type account (account_type: accounts:= savings) is
 record
 account_no :positive;
 title :string(1..10);
 case account_type is
 when savings => interest_rate;
 when cheque => null;
 end case;
 end record;

Here the account record discriminant has a default value of savings.

We can declare a record

household_account:account;

which is created as a savings account. We can change the record type later...

household_account:= (cheque,123_456,"household ");

Other uses of discriminants
As well as being used as a case selector in a record, discriminants can also be used to specify the length of arrays that are components
of the record.

type text (length:positive:=20) is
 record
 value:string(1..length);
 end record;

In this case the length of the array is dependent upon the value of the discriminant. As described above the record can be declared
constrained or unconstrained.

This text record is the usual implementation used for variable length strings and text processing.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/7_records.html (4 of 4) [10/14/2000 12:55:14 PM]

7 Records

Overview1.

Simple records2.

Accessing and setting fields3.

Default values4.

Constant records5.

Discriminants6.

Variant records7.

Constrained records8.

Unconstrained records9.

Other uses of discriminants10.

1.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/7_records_ToC.html [10/14/2000 12:55:14 PM]

8 Subprograms

Overview
Sub programs, covering both procedures and functions, are the basis of all programs in Ada. Ada provides
features which will be new to Pascal and C programmers. Overloading, named parameters, default parameter
values, new parameter modes and return values of any type all make Ada sub programs significantly different.

Procedures
Procedures in Ada are similar to those in Pascal. A procedure can contain return statements.

procedure Demo(x:integer; y:float) is
 declarations;
begin
 statements;
end demo;

Procedures are called in the normal Pascal style:

demo(4, 5.0);

Functions
Functions are very similar to procedures except that they also return a value to the calling sub program. The use
of return statements is very similar to C. Functions can have as many return statements as required. A function
returning a variable of a given type can be used anywhere a variable of that type can be used.

function Even(Number : Integer) return boolean is
begin
 if Number mod 2 = 0 then
 return true;
 else
 return false;
 end if;
end;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (1 of 9) [10/14/2000 12:55:17 PM]

Subprograms in general
Ada has been designed with separate compilation very much in mind. To this end we can produce just a
specification of a subprogram and submit this to the compiler. Once compiled and the description stored in an
attribute file, it can be checked for compatibility with other procedures (and packages) when they are compiled.
By producing a large number of procedure stubs we can pre test the design of a system and pick up any design
errors before any more work is done.

A procedure specification for the above procedure would be:

procedure demo(x:integer; y:float);

If we wish to use a seperately compiled subprogram we can with it in another subprogram.

with demo;
procedure use_demo is

begin
 ...
 demo(4,5);
end use_demo;

A function specification may appear as:

function Even(Number : Integer) return Boolean;

Like Pascal and unlike C, a subprogram can contain nested subprograms within them that are not visible outside
the subprogram.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Display_Even_Numbers is

 -- declarations
 x:integer;

 function even (number:integer) return boolean is
 begin
 return number mod 2 = 0;
 end even;

begin
 for i in 1..10 loop
 if even(i) then
 put(i);
 new_line;
 end if;
 end loop;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (2 of 9) [10/14/2000 12:55:17 PM]

end display_even_numbers;

Parameter modes
Ada provides three parameter modes for procedures and functions.

o in

o in out

o out

These modes do not correspond directly to any modes in other languages, they will be discussed below. The
following should be noted.

o All parameters to subprograms are by default in.

The parameter passing mechanism is by copy-in, copy-out for in/out scalars. The language specifies that any other
types can be passed by copy-in/copy-out, or by reference.

Ada95 mandates that limited private types (see later) are passed by reference, to avoid problems with the breaking
of privacy.

In mode
Parameters supplied with this mode are like value parameters in Pascal, and normal parameters in C with the
exception that they cannot be assigned a value inside the subprogram. The formal parameter (that in the sub
program) is a constant and permits only reading of the value of the associated actual parameter.

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Demo(x : in integer; y : in integer) is
begin
 x := 5; -- illegal, in parameters are read only.
 put(y);
 get(y); -- also illegal
end demo;

In out mode
This mode corresponds directly to the var parameters of Pascal. Actual parameters can be used on either the left
or the right hand side of statements in procedures. These parameters are effectively read/write.

procedure Demo(x : in out integer;
 y : in integer) is

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (3 of 9) [10/14/2000 12:55:17 PM]

 z:constant integer:=x;

begin
 x := z*y; -- this is ok!
end demo;

Out mode
The formal parameter is a variable and may be assigned values, however it's initial value is not necessarily
defined, and should not be relied upon.

procedure demo(x:out integer;
 y:in integer) is

 z : integer := x; -- not wise, X not initialised
begin
 x := y;

end demo;

Caution - out mode parameters that aren't initialized!

procedure Location(
 target : in key;
 position : out Small_Integer_Range;
 found : out boolean) is

Here if the target is not found, then if position is not assigned a value, the copy out parameter mode causes the
unitialised value to be placed into the awaiting actual parameter, the associated range check may cause a
constraint error.

E.g.

declare
 The_Position : Small_Integer_Range;
begin
 Location(Some_Key, The_Position, Result);
 ...

If result = false, a constraint error may be generated when the procedure returns.

Named parameters
Normally the association between the formal (defined in the sub program specification) and actual parameters
(supplied in the sub program call) is on a one to one basis i.e. it is positional. The first formal parameter is
associated with the first actual parameter, etc.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (4 of 9) [10/14/2000 12:55:17 PM]

To enhance the readability of sub program calls (Ada is designed to be readable) we can associate the name of the
formal parameter and the actual parameter. This feature makes sub program calls immensely more readable.

procedure demo(x:integer; y:integer); -- procedure specification

...
demo(x=>5, y=> 3*45); -- when calling, associate formal
 -- and actual parameters.

Lining up the parameters vertically can also be an aid to readability.

demo(x => 5,
 y => 3*45);

Because the association is made explicit (instead of the implicit association with positional parameters) there is no
need to supply them in the same order as in the sub program specification. There is no restriction on the order in
which named parameters are written.

demo(y => 3*45, x => 5); -- the order of named parameters
 -- is irrelavent

Mixing positional and named parameters
Positional parameters and named parameters can be mixed with the one proviso:
positional parameters must precede the named parameters.

procedure square(result : out integer;
 number :in integer) is
begin
 result:=number*number;
end square;

could be called in the following manners:

square(x,4);
square(x,number => 4);
square(result => x,number => 4);
square(number => 4, result => x);

square(number => 4, x) -- illegal as positional follows named.

Default parameter values
A default value can be be given for any in parameters in the procedure specification. The expression syntax is the
same as that for pre initialised variables and is:

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (5 of 9) [10/14/2000 12:55:17 PM]

with Ada.Text_IO; use Ada.Text_IO;
procedure print_lines(no_of_lines: integer:=1) is

begin
 for count in 1 . . no_of_lines loop
 new_line;
 end loop;
end print_lines;

This assigns a value for no_of_lines if the procedure is called without a corresponding parameter (either
positional or named).

E.g. the procedure could be called as

print_lines; -- this prints 1 line.
print_lines(6); -- overrides the default value of 1.

Similarly if a procedure write_lines was defined as

with Ada.Text_IO; use Ada.Text_IO;

procedure write_lines(letter :in char:='*';
 no_of_lines:in integer:=1) is

begin
 for i in 1 . . no_of_lines loop
 for i in 1 . . 80 loop
 put(letter);
 end loop;
 new_line;
 end loop;
end write_lines;

then it could be called as

write_lines; -- default character, default
 -- no. of lines.
write_lines('-'); -- default no. of lines.
write_lines(no_of_lines => 5); -- default character
write_lines('-',5) -- specifying both.

Local subprograms
So far the subprograms presented have all been independent compilation units. It is possible to embed
subprograms in another subprogram such that only one compilation unit is constructed. These local subprograms
can only be referenced from the surrounding subprogram. This is identical to the features provided by Pascal.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (6 of 9) [10/14/2000 12:55:17 PM]

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure ive_got_a_procedure is

 x :integer:=6;
 y :integer:=5;

 procedure display_values(number:integer) is
 begin
 put(number);
 new_line;
 end display_values;

begin
 display_values(x);
 display_values(y);
end ive_got_a_procedure;

In this example the scope of procedure display_values is limited to inside the procedure ive_got_a_procedure - it
can't be 'seen' or called from anywhere else.

Separate compilation
In the previous example if any change is made to any of the code then both procedures must be resubmitted to the
compiler (because they are in the one source file). We can separate the two components into seperate files while
still retaining the limited scope of procedure display_values. This is a little like the #include directive in C, but the
files are now independent compilation units.

In the first file...

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Ive_got_a_procedure is

 x :integer:=6;
 y :integer:=5;

 procedure display_values(number:integer) is separate;

begin
 display_values(x);
 display_values(y);
end ive_got_a_procedure;

In the second file...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (7 of 9) [10/14/2000 12:55:17 PM]

separate(Ive_got_a_procedure) -- note no trailing semicolon

procedure display_values(number:integer) is
begin
 put(number);
 new_line;
end display_values;

Apart from being in another file (and being a seperate compilation unit) the code is identical in all respects to the
previous version. However if the inner subprograms change then only they have to be submitted to the compiler.
This also allows a program to be broken up into several pieces, which can ease the job of understanding it.

Overloading
Finding new names for functions that do the same thing to variables of different types is always a problem. The
procedure insert is a good example. To give programmers a bit more breathing space, Ada allows sub programs to
have the same name, it only insists that they are distinguishable. This is called overloading.

Subprogram overloading
Two sub programs with the same name are distinguishable if their profile is different. The profile consists of the
number of parameters, thier type and, if it is a function, the return type.

So long as the compiler can tell which sub program you requested by matching the profile of the call to the
specifications of the sub programs you have supplied, it's happy; otherwise you'll get an ambiguous reference
error.

procedure Insert(Item : Integer); -- Two procedures with the
procedure Insert(Item : Float); -- same name, but different.
 -- profiles.

The procedures Put and Get in the package Ada.Text_IO are examples of overloaded subprograms.

Operator overloading
In languages such as Pascal the + operator is overloaded. Sometimes it is used to add integers, sometimes reals,
sometimes strings. It is quite obvious that this one operator is used to represent very different code.

Ada allows programmers to overload operators with thier own code. One restriction on this overloading of the
operator name, is as expected, that the functions are distinguishable from the originals supplied, i.e. its profile is
unique. Even this problem can be overcome by specifying the package name (see the next section).

Overloaded operators cannot be seperate compilation units. - they must be contained in another unit such as a
procedure, function or package.

Consider an example where we wish to provide facilities to add two vectors together.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (8 of 9) [10/14/2000 12:55:17 PM]

procedure add_demo is
 type Vector is array (positive range <>) of Integer;
 a : Vector(1..5);
 b : Vector(1..5);
 c : Vector(1..5);

 function "+"(left,right:vector) return vector is

 result : Vector(left'first..left'last);
 offset : constant Natural := right'first-1;

 begin
 if left'length /= right'length then
 raise program_error; -- an exception,
 -- see later
 end if;

 for i in left'range loop
 result(i):=left(i) + right(i - offset);
 end loop;
 return result;
 end "+";

begin
 a:=(1,2,3,4,5);
 b:=(1,2,3,4,5);
 c:= a + b;
end add_demo;

This example uses most features discussed in the last few chapters.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html (9 of 9) [10/14/2000 12:55:17 PM]

8 Subprograms

Overview1.

Procedures2.

Functions3.

Subprograms in general4.

Parameter modes5.

In mode6.

In out mode7.

Out mode8.

Named parameters9.

Mixing positional and named parameters10.

Default parameter values11.

Local subprograms12.

Separate compilation13.

Overloading14.

Subprogram overloading15.

Operator overloading16.

1.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms_ToC.html [10/14/2000 12:55:17 PM]

9 Packages

Overview
Although its roots are in Pascal, Ada still borrowed heavily from other languages and was influenced by the
latest in software engineering techniques discussed in the 1970's. Undoubtedly the major innovation from
that period is the concept of packages. Separation of the specifications from the implementation of 'objects'
results in far more flexible code. The containment of the data structures behind a wall of functional interfaces
results in much more maintainable systems. This chapter discusses Ada's implementation of packages.

Packages are not about how a program will run, but about how it is constructed and how it is to be
understood and maintained.

Package specifications
The package specification of an Ada package describes all the subprogram specifications, variables, types,
constants etc that are visible to anyone who 'withs' the package into thier own code.

The following is an example of a package specification.

package odd_demo is

 type string is array (positive range <>) of character;

 pi :constant float:=3.14;

 x: integer;

 type a_record is
 record
 left:boolean;
 right:boolean;
 end record;

 -- note that the following two subprograms are
 -- specifications only,the body of the subprograms are
 -- in the body of the package

 procedure insert(item:in integer; success:out boolean);
 function present(item:in integer) return boolean;

end odd_demo;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (1 of 9) [10/14/2000 12:55:19 PM]

The items described in the package specification are often described as resources. We can access these values
by 'with'ing the package in our code and then using the package name, a dot, and the name of the resource
wanted, whether it is a type declaration, a function or a variable name.

with odd_demo;

procedure odder_demo is

 my_name :odd_demo.string;
 radius :float;
 success :boolean;
begin
 radius := 3.0*odd_demo.pi;
 odd_demo.insert(4, success);
 if odd_demo.present(34) then ...
end odder_demo;

It should be noted that accessing resources in a package is textually identical to accessing the fields in a
record.

As accessing the resources of a package using the full dot notation can be cumbersome, the use clause may
be employed. When a package is 'use'd in this way the resources are available as though they were declared
directly in the code.

with odd_demo; use odd_demo;

procedure odder_demo is

 my_name : string(1..10);
 radius : float;
 success : boolean;
begin
 radius:=3.0*pi;
 insert(4, success);
 if present(34) then ...

end odder_demo;

If two packages are with'ed and use'd in the one compilation unit (e.g. subprogram or another package) then
there is the possibility of a name clash between the resources in the two packages. In this case the ambiguity
can be removed by reverting to dot notation for the affected resources.

--*****************************
package no1 is
 a,b,c:integer;
end no1;

--*****************************

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (2 of 9) [10/14/2000 12:55:19 PM]

package no2 is
 c,d,e:integer;
end no2;

--*****************************
with no1; use no1;
with no2; use no2;

procedure clash_demo is
begin
 a:=1;
 b:=2;
 c:=3; -- ambiguous, are we referring to no1.c or
 -- no2.c?
 no1.c:=3; -- remove abiguity by reverting to dot
 -- notation
 no2.c:=3;
end;

Another problem encountered is when local resources 'hide' the resources in a use'd package. In this case the
ambiguity can still be removed by using dot notation.

package no1 is
 a:integer;
end no1;

with no1; use no1;
procedure p is
 a:integer;
begin
 a:=4; -- once again this is ambiguous
 p.a:= 4; -- remove abiguity by using procedure name in
 -- dot notation
 no1.a:=5; -- dot notation for package
end p;

Package body
The package body is where all the implementation details for the services specified in the package
specification are placed. As in the specification the package body can contain type declarations, object
(variable) declarations, subprograms etc.

The format of a package body is

package body odd_demo is

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (3 of 9) [10/14/2000 12:55:19 PM]

 type list is array (1..10) of integer;
 storage_list :list;
 upto :integer;

 procedure insert(item :in integer;
 success :out boolean) is
 begin

 end insert;

 function present(item:in integer) return boolean is

 begin

 end present;

begin -- initialisation statements for the whole package
 -- These are run _before_ the main program!
 for i in storage_list'range loop
 storage_list(i):=0;
 end loop;
 upto:=0;
end odd_demo;

The resources in the body of the package are unavailable for use by any other package. Any attempt to
reference them will result in a compiler error.

The variables declared in the package body retain their value between successive calls to the public sub
procedures. As a result we can create packages that store information for later use.

The begin/end at the end of the package contain initialisation statements for the package. These are executed
before the main procedure is run. This is true for all packages. The order in which different package's
initialisation statements are run is not defined.

All the resources specified in the package specification are available in the package body without the use of a
with clause.

Private types
So far all the types declared in the package specification have been completely visible to the user of the
package.

Sometimes when creating packages we want to maintain total control over the manipulation of objects. For
instance in a package that controls accounts in general ledger, we only want to provide the facilities to make
withdrawals, deposits and creation of accounts. No other package needs to know or should have access to the
representation details of the account object.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (4 of 9) [10/14/2000 12:55:19 PM]

In Ada packages type declarations (and also constants) can be declared private.

package accounts is
 type account is private; -- declaration comes later

 procedure withdraw(an_account:in out account;
 amount :in money);

 procedure deposit(an_account:in out account;
 amount :in money);
 function create(initial_balance:money) return account;
 function balance(an_account:in account) return integer;

private -- this part of the package specification
 -- contains the full description.
 type account is
 record
 account_no :positive;
 balance :integer;
 end record;
end accounts;

Outside the package the only operations that can be performed on a private type are assignment, tests for
equality and those operations defined by subprograms in the package specification.

Full details of the representation details are available in the package body. Any routine in the package body
can access and modify the private type as though it were not private - the privacy of an object applies only
outside the package.

It may seem a contradiction to put the private specifications in the package specifications - the public part of
the package when you are trying to hide the representation details of an object. This is required for programs
that allocate an object of that private type- the compiler then knows how much space to allocate.

Although the reader of the package specifications can see what the representation of the private type really is,
there is no way he or she can make explicit use of the knowledge.

Objects can be created outside a package even if of a private type.

E.g.

with accounts; use accounts;

procedure demo_accounts is
 home_account :account;
 mortgage :account;
 this_account :account;
begin
 mortgage := accounts.create(initial_balance => 500.00);
 withdraw(home_account,50);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (5 of 9) [10/14/2000 12:55:19 PM]

 . . .
 this_account:=mortgage; -- can assign private types.

 -- comparing private types.
 if this_account = home_account then
 . . .
end;

Limited private types
A private type can be made even more private by removing the ability to compare and assign the values
outside the package. You generally then have to provide a function to test equality (you can overload the
equality operator =, this implicity overloads /= as well). Also you may have to create a procedure to perform
assignments.

Q Why do we need private types?

A Consider the following:

type text (maximum_length:positive:=20) is
 record
 length: index:=0;
 value :string(1. . maximum_length);
 end record;

In this record the length field determines the number of characters in the field value that have meaning. Any
characters from position length+1 to maximum_length are ignored by us when using the record. However if
we ask the computer to compare two records of this type, it does not know the significance of the field
length; it will compare the length field and all of the value field. Clearly in this situation we need to write a
comparison function.
Ada95 allows the programmer to override the equality operator for all types.

Deferred constants
In some package specifications we may wish to declare a constant of a private type. In the same manner as
declaring a private type (and most forward references) we give an incomplete declaration of the constant - the
compiler expects the rest to follow in the private section of the package specifications.

package coords is
 type coord is private;
 home: constant coord; -- the deferred constant!

private
 type coord is record
 x :integer;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (6 of 9) [10/14/2000 12:55:19 PM]

 y :integer;
 end record;

 home:constant coord:=(0,0);
end coords;

Child units (Ada95)
It was found in large system developments that a single package specification could grow extraordinarily
large, with subsequent costs in recompilation of compilation units that depend on it if it were to change. To
remedy this situation, the concept of child compilation units was conceived. Child units allow a logically
single package to be broken into several physically distinct packages and subprograms. As well as solving the
problem of large recompilations, they also provide a convenient tool for providing multiple implementations
for an abstract type and for producing self contained subsystems, by using private child units.

Extending an existing package
A package that consists of a set of declarations may need to be extended at some time. For example a stack
package may need the addition of a peek facility. If this package is heavily "withed" by many other units,
then modifying the specification to include this extra features could result in a large recompilation despite the
fact that most clients would not be using the new feature.

A child package can be declared that logically extends the package, but in a physically separate manner.

For example

package stacks is
 type stack is private;
 procedure push(onto:in out stack; item:integer);
 procedure pop(from :in out stack; item: out integer);
 function full(item:stack) return boolean;
 function empty(item:stack) return boolean;
private
 -- hidden implementation of stack
 ...
 -- point A
end stacks;

package stacks.more_stuff is
 function peek(item:stack) return integer;
end stacks.more_stuff;

The package stacks.more_stuff is a child packge of stacks. It has the visibility of all the declarations
preceeding point A, that is the parent package presents the same visibility to a child package as it does to its
body. The child package can see all of its parents private parts. The package bodies would be compiled

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (7 of 9) [10/14/2000 12:55:19 PM]

separately.

The clients who wish to use the function peek can simply have a with clause for the child package,

with stacks.more_stuff;

procedure demo is
 x :stacks.stack;
begin
 stacks.push(x,5);
 if stacks.more_stuff.peek = 5 then

end;

'With'ing the child package automatically causes the parent package to be 'with'ed, and its parent package to
be 'with'ed, and so on. However the use clause does not act in this way. Visibiliy can only be gained on a
package by package basis. This is no doubt a pragmatic decision based on what most organisations would
prefer (as indicated by existing use of the 'use' clause).

with stacks.more_stuff; use stacks; use more_stuff;

procedure demo is
 x :stack;
begin
 push(x,5);
 if peek(x) = 5 then

end;

A package can have child functions and procedures. Rules for use of these are easily inferred.

Private child units
Private child units allow a child unit to be created that is only visible within the hierachy of the parent
package. In this way facilities for a subsystem can be encapsulated within its a hidden package, with the
compilation and visibility benefits that this entails.

Because they are private, a child package's specification is allowed to advertise, in its specification, private
parts of its parents. This would not normally be allowed as it would allow the breaking of the hidden
implementation of a parent's private parts.

private package stacks.statistics is
 procedure increment_push_count;
end;

The procedure stack.statistics.increment_push_count could be called from within the implementation of the
stacks package; this procedure is not available to any clients external to this package hierachy.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (8 of 9) [10/14/2000 12:55:19 PM]

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html (9 of 9) [10/14/2000 12:55:19 PM]

9 Packages

Overview1.

Package specifications2.

Package body3.

Private types4.

Limited private types5.

Deferred constants6.

Child units (Ada95)7.

Extending an existing package8.

Private child units9.

1.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages_ToC.html [10/14/2000 12:55:20 PM]

10 Generics

Overview
Code reuse has been one of the great programming hopes for many years. Although suitable in the area of
mathematical routines (where the functions are well defined and stable) trying to develop libraries in other areas
has met with very limited success, due to the inevitable intertwining of process and data types in procedures. Ada
has attempted to free us from this problem by producing code that does not rely as much on the specific data types
used, but on their more general algorithmic properties.

As described by Naiditch, generics are like form letters; mostly they are complete letters with a few blanks
requiring substitution (eg name and address information). Form letters aren't sent out until this information is
filled in. Similarly generics cannot be used directly, we create a new subprogram or a package by 'instantiating' a
generic and then using the instantiated compilation unit. When a generic is instantiated we have to supply
information to fill in the blanks, such as type information, values or even subprograms.

Generics
In Ada a program unit (either a subprogram or a package) can be a generic unit.

This generic unit is used to create instances of the code that work with actual data types. The data type required is
passed in as a parameter when the generic unit is instantiated. Generics are usually presented in two parts, the
generic specification and then the generic package.

Once they are compiled the generics are stored in the Ada library and can be with'ed (but never use'd) by other
compilation units. These other units, whether they be subprograms, packages or generics, can be with'ed and
instantiated (the process of creating a usable subprogram or package by supplying generic parameters). The
instatiated subprogram or package can be stored in the Ada library for later use.

The following is the instantiation of the generic package integer_io. Int_io is now available to be with'ed (and
use'd) by any program.

with text_io; use text_io;
package int_io is new integer_io(integer);

The package can be instantiated with other types as well.

with text_io; use text_io;
with accounts; use accounts;

package account_no_io is new integer_io(account_no);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics.html (1 of 6) [10/14/2000 12:55:22 PM]

Generic subprograms
The following is a compilation unit. Once it is compiled it is available to be 'with'ed (but not 'use'd) from the Ada
library. It includes the keyword generic, a list of generic parameters and the procedure specification.

generic
 type element is private; -- caution private here means
 -- element is a parameter to
 -- the generic sub program

procedure exchange(a,b :in out element);

The body of the generic procedure is presented as a seperate compilation unit. Note that it is identical to a
non-generic version.

procedure exchange(a,b :in out element) is
 temp :element;
begin
 a:=temp;
 a:=b;
 b:=temp;
end exchange;

The code above is simply a template for an actual procedure that can be created. It can't be called. It is equivalent
to a type statement - it doesn't allocate any space, it just defines a template for the shape of things to come. To
actually create a procedure:

procedure swap is new exchange(integer);

We now have a procedure swap that swaps integers. Here "integer" is called a generic actual parameter.
"Element" is called a generic formal parameter.

procedure swap is new exchange(character);
procedure swap is new exchange(element => account); -- named association

You can create as many of these as you like. In this case the procedure name is overloaded and as normal the
compiler can tell which one you call by the parameter type.

It can be called (and behaves) just as though it had been defined as

procedure swap(a,b :in out integer) is
 temp:integer.
begin
 . . .
end;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics.html (2 of 6) [10/14/2000 12:55:22 PM]

Generic packages
Packages can be generics as well.

The following generic package specification is fairly standard:

generic
 type element is private; -- note that this is a
 -- parameter to the generic
package stack is
 procedure push(e: in element);
 procedure pop(e: out element);
 function empty return boolean;
end stack;

The accompanying package body would be

package body stack is
 the_stack :array(1..200) of element;
 top :integer range 0..200:=0;

 procedure push(e:in element) is

 procedure pop(e:out element) is
 ...

 function empty return boolean is
 ...

end stack;

Quite simply you replace any instance of the data type to be manipulated with that of the generic type name.

How would you create a generic unit and test it?

- Create it using a specific type and translate it to use generic parameters.

Generic parameters
There are three types of parameters to generics

Type parameters

Value and object parameters

Subprogram parameters

So far we have only seen type parameters.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics.html (3 of 6) [10/14/2000 12:55:22 PM]

Type parameters
Despite the alluring appeal of generics we are still restricted by the very nature of the tasks we are attempting to
accomplish. In some generics we may wish to provide a facility to sum an array of numbers. Quite clearly this is
only appropriate for numbers, we can't add records together. To provide protection from someone instantitating a
generic with an inappropriate type, we can specify the category of types that can be used when instantiating.

The compiler can also check that we don't perform any inappropriate actions on a variable inside the code e.g. it
wont allow us to find the 'pred of a record.

A list of the various type restrictions is given below.

type T is private -- very few restrictions
type T is limited private -- fewer restrictions,
type T is (<>) -- T has to be a discrete type
type T is range <> -- T must be an integer type
type T is digits <> -- T must be a floating point type
type T is delta <> -- T must be a fixed point - not
 -- discussed

type T is array(index_type) of element_type
 -- The component type of the actual array must match the
 -- formal array type. If it is other than scalar then
 -- they must both be either constrained or
 -- unconstrained.

type T is access X -- T can point to a type X (X can be
 -- a previously defined generic parameter.

To understand the rule governing instantiation of array type parameters consider the following generic package

generic
 type item is private;
 type index is (<>);
 type vector is array (index range <>) of item;
 type table is array (index) of item;
package P is . . .

and the types:

type color is (red,green.blue);
type Mix is array (color range <>) of boolean;
type Option is array (color) of boolean;

then Mix can match vector and Option can match table.

package R is new P(item => boolean,

http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics.html (4 of 6) [10/14/2000 12:55:22 PM]

 index => color,
 vector => mix,
 table => option);

Value parameters
Value parameters allow you to specify a value for a variable inside the generic:

generic
 type element is private;
 size: positive := 200;

package stack is

 procedure push...
 procedure pop...
 function empty return boolean;

end stack;

package body stack is

 size:integer;
 theStack :array(1..size) of element;
 . . .

You would instantiate the package thus:

package fred is new stack(element => integer, size => 50);

or

package fred is new stack(integer,1000);

or

package fred is new stack(integer);

Note that if the value parameter does not have a default value then one has to be provided when the generic is
instantiated.

Value parameters such as string can also be included.

generic
 type element is private;
 file_name :string;

package

http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics.html (5 of 6) [10/14/2000 12:55:22 PM]

Note that the file_name parameter type (string) is not constrained. This is identical to string parameters to
subprograms.

Subprogram parameters
We can pass a subprogram as a parameter to a generic.

Why? If you have a limited private type you can pass tests for equality and assignment in as subprogram
parameters.

E.g.

generic

 type element is limited private;
 with function "="(e1,e2:element) return boolean;
 with procedure assign(e1,e2:element);

package stuff is . . .

To instantiate the generic

package things is new stuff(person,text."=",text.assign);

Other forms allow for a default subprogram if none is given.

with procedure assign(e1,e2:element) is myAssign(e1,e2:person);

Or you can specify the computer makes a default selection of procedure based on the normal subprogram
selection rules:

with function "="(e1,e2:element) return boolean is <>;

If no function is supplied for the "=" function then the default equal function will be used according to the type of
element (i.e. if element is integer the normal integer "=" will be used).

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics.html (6 of 6) [10/14/2000 12:55:22 PM]

10 Generics

Overview1.

Generics2.

Generic subprograms3.

Generic packages4.

Generic parameters5.

Type parameters6.

Value parameters7.

Subprogram parameters8.

1.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics_ToC.html [10/14/2000 12:55:23 PM]

11 Exceptions

Overview
Exceptions are described in the Ada Language Reference Manual as errors or other exceptional conditions that
arise during normal program execution. Exception handling is the process of catching these errors at run time
and executing appropriate code to resolve the error, either by correcting the cause of the problem or by taking
some remedial action.

Predefined exceptions
There are five exceptions predefined in the language. They are described below.

The exception CONSTRAINT_ERROR is raised whenever an attempt is made to violate a range constraint.

procedure constraint_demo is

 x :integer range 1..20;
 y :integer;

begin
 put("enter a number "); get(y);
 x:=y;
 put("thank you");
end constraint_demo;

If the user enters a number outside the range 1..20, then x's range constraint will be violated, and a
constraint_exception will occur. The exception is said to have been 'raised'. Because we have not included any
code to handle this exception, the program will abort, and the Ada run time environment will report the error
back to the user. The line 'put("thank you");' will not be executed either - once an exception occurs the
remainder of the currently executing block is abandoned.

This error also occurs when an array index constraint is violated.

procedure constraint_demo2 is

 x :array (1..5) of integer:=(1,2,3,4,5);
 y :integer :=6;

begin
 x(y):= 37;
end constraint_demo2;

In this example the constraint exception will be raised when we try to access a non existant index in the array.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html (1 of 8) [10/14/2000 12:55:24 PM]

The exception NUMERIC_ERROR is raised when a numeric operation cannot deliver a correct result (e.g. for
arithmetic overflow, division by zero, inability to deliver the required accuracy for a float operation).
NUMERIC_ERROR has been redefined in Ada95 to be the same as CONSTRAINT_ERROR

procedure numeric_demo is

 x :integer;
 y :integer;

begin
 x:=integer'last;
 y:=x+x; -- causes a numeric error
end numeric_demo;

The exception PROGRAM_ERROR is raised whenever the end of a function is reached (this means that no
return statement was encountered). As well it can be raised when an elaboration check fails.

procedure program_demo is

 z :integer;

 function y(x :integer) return integer is
 begin
 if x < 10 then
 return x;
 elsif x < 20 then
 return x
 end if;
 end y; -- if we get here, no return has been
 -- encountered

begin
 z:= y(30);
end program_demo;

The exception STORAGE_ERROR is raised whenever space is exhausted, whether during a call to create a
dynamic object or when calling a subprocedure (and stack space is exhausted).

The exception TASKING_ERROR is raised when exceptions arise during intertask communication; an
example is task that attempts to rendezvous with a task that has aborted.

Handling exceptions
So far the code seen has not processed the exceptions. In these cases the programs are aborted by the run time
code. To make exceptions useful we have to be able to write code that is run whenever an exception occurs.

The exception handler is placed at the end of a block statement, the body of a subprogram, package, task unit

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html (2 of 8) [10/14/2000 12:55:24 PM]

or generic unit.

To handle a constraint error consider the following code.

declare

 x:integer range 1..20;

begin
 put("please enter a number ");
 get(x);
 put("thank you");
exception
 when constraint_error =>
 put("that number should be between 1 and 20");
 when others =>
 put("some other error occurred");
end;

If the user enters a number between 1 and 20 then no error occurs and the message "thank you " appears.
Otherwise the message "that number ..." appears and the block terminates.

If we want the user to continue to enter in numbers until there is no constraint error then we can write the
following:

loop
 declare
 ...
 begin
 ...
 get(x);
 exit;
 exception
 when constraint_error =>
 put("that number ...
 end;
end loop;

This highlights the point the instruction executed after an exception is that following the block in which the
exception was handled.

Exceptions can be raised by the programmer simply by using the raise statement.

raise numeric_error;

The exception raised is indistinguishable from a genuine numeric_error.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html (3 of 8) [10/14/2000 12:55:24 PM]

Exception propagation
If an exception is not handled in the subprocedure in which it was raised, the exception is propagated to the
subprocedure that called it. A handler for the exception is searced for in the calling subprocedure. If no handler
is found there then the exception is propagated again. This continues until either an exception handler is found,
or the highest level of the current task is reached, in which case the task is aborted. If there is only one task
running (typical for student projects) then the Ada runtime environment handles the exception and the program
is aborted.

procedure exception_demo is

 procedure level_2 is
 -- no excpetion handler here
 begin
 raise constraint_error;
 end level_2;

 procedure level_1 is
 begin
 level_2;
 exception
 when constraint_error =>
 put("exception caught in level_1");
 end level_1;

begin
 level_1;
exception
 when constraint_error =>
 put("exception caught in exception_demo");
end exception_demo;

If this program was run the only output would be "exception caught in level_1". The exception is handled here
and does not propagate any further. If we want to we can place a raise statement in the exception handler - this
has the effect of propagating the exception up to the calling subprogram. In this way an exception can be
viewed by each subprocedure in the call hierachy, with each performing whatever action it deems necessary.

....
exception
 when constraint_error =>
 package_disabled:=true;
 raise; -- re raise the current exception,
 -- allow other procedures to have a go
 -- at processing the exception.
end;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html (4 of 8) [10/14/2000 12:55:24 PM]

The raise statement is very useful when used in the others section of an exception handler. In this case the
appropriate exception is still raised and propagated.

User defined exceptions
Ada gives the user the ability to define their own exceptions. These are placed in the declarative part of the
code. They can be placed whereever a normal declaration is placed (e.g. even in package specifications). The
format for the declaration of an exception is

my_very_own_exception :exception;
another_exception :exception;

The use of exceptions is the subject of much debate about whether it is a lazy way of programming, without
thinking too much about the problem and likely error conditions, or whether it is a valid form of control
structure that can be used to some effect.

Problems with scope
Handling user exceptions is identical to that of the predefined exceptions except for the problem of scoping.
Consider the following example.

with text_io; use text_io;

procedure demo is

 procedure problem_in_scope is
 cant_be_seen :exception;
 begin
 raise cant__be_seen;
 end problem_in_scope;

begin
 problem_in_scope;
exception
 when cant_be_seen =>
 put("just handled an_exception");
end demo;

This example is illegal. The problem is that the scope of an_exception is limited to procedure exception_raiser.
It's name is not defined outside of this procedure and thus it cannot be explicity handled in procedure demo.

The solution is to use the others clause in the outer procedure's exception handler.

with text_io; use text_io;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html (5 of 8) [10/14/2000 12:55:24 PM]

procedure demo is

 procedure problem_in_scope is
 cant_be_seen :exception;
 begin
 raise cant_be_seen;
 end problem_in_scope;

begin
 problem_in_scope;
exception
 when others =>
 put("just handled some exception");
end demo;

Another problem arises when one procedure's exception hides another exception due to scoping rules.

with text_io; use text_io;

procedure demo is
 fred :exception;

 procedure p1 is
 begin
 raise fred;
 end p1;

 procedure p2 is
 fred :exception; -- a local exception
 begin
 p1;
 exception
 when fred =>
 put("wow, a fred exception");
 end p2;

begin
 p2;
exception
 when fred =>
 put("just handled a fred exception");
end demo;

The output of this procedure is "just handled a fred exception". The exception handled in p2 is simply a local
exception. This is similar to the handling of scope with normal variables.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html (6 of 8) [10/14/2000 12:55:24 PM]

Procedure p2 could be rewritten as

procedure p2 is
 fred :exception;
begin
 p1;
exception
 when fred =>
 -- the local exception
 put("wow, an_exception");

 when demo.fred =>
 -- the more 'global' exception
 put("handeled demo.fred exception");
end p2;

Suppression of exception checks
Exceptions are generated because extra code that is inserted inline detects some erroneous condition, or
through some hardware checking mechanisms such as software interrupts or traps.

Accordingly it is possible to suppress the insertion of these checks into the code. The method that Ada uses is
the pragma SUPPRESS. However it should be noted that through use of program analysis by the compiler, a
good number of checks can automatically be removed at compile time.

The pragma can be placed in the code where the suppression is required. The suppression extends to the end of
the current block (using normal scope rules).

It has a large range of options to enable suppression of various checks on either a type basis, an object basis or
a functional basis. The versatility of the pragma is dependent upon the implementation. As well various
implementations are free to implement (or ignore) any pragma suppress feature.

The exception CONSTRAINT_ERROR can be raised by failing several suppressable checks

pragma suppress (access_check);
pragma suppress (discriminant_check);
pragma suppress (index_check);
pragma suppress (length_check);
pragma suppress (range_check);
pragma suppress (division_check);
pragma suppress (overflow_check);

The exception PROGRAM_ERROR has only one suppressable check

pragma suppress (elaboration_check);

The exception STORAGE_ERROR has only one suppressable check

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html (7 of 8) [10/14/2000 12:55:24 PM]

pragma suppress (storage_check);

Applying suppression of checks
We can suppress the checking of exceptions on individual objects.

pragma suppress (index_check, on => table);

It can also relate to a single type.

type employee_id is new integer;
pragma suppress (range_check, employee_id);

The use of a pragma would be as follows. In this case the scope of the pragma is till the end of the block.

declare
 pragma suppress(range_check);
 subtype small_integer is integer range 1..10;
 a :small_integer;
 x :integer:=50;
begin
 a:=x;
end;

This code would cause no constraint error to be generated.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html (8 of 8) [10/14/2000 12:55:24 PM]

11 Exceptions

Overview1.

Predefined exceptions2.

Handling exceptions3.

Exception propagation4.

User defined exceptions5.

Problems with scope6.

Suppression of exception checks7.

Applying suppression of checks8.

1.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions_ToC.html [10/14/2000 12:55:25 PM]

12 Files

Overview
Conceptually similar to most extended Pascals file i/o, Ada provides a simple yet effective collection of file packages. These can be
discarded and replaced by any other file package, with of course a subsequent decrease in portability. Most of the facilities provided
would not be used in high performance applications directly, but may form the basis of such a file system.

The I/O packages
So far all the I/O performed has been on directed to the standard input/output. All of the facilities provided have come from the
TEXT_IO package (even the generic packages integer_io and float_io). This package provides facilities for file manipulation of
textual files (files of characters) and provides facilities such as close, delete, reset,open, create etc.

Two other standard I/O packages are for storing files that consist of the one type of fixed length object, such as records, arrays,
floating point numbers etc. These are the generic packages sequential_io and direct_io.

The Text_IO package
The text i/o package's main data type is the FILE_TYPE. This is the internal representation of the file. When a file is opened or
created an association is made between the name and the FILE_TYPE. The object of type FILE_TYPE is used from then on to
reference the file.

The procedure create creates a file and writes some data to it.

with text_io; use text_io;
with int_io; use int_io;

procedure demo_file_io is
 my_file :text_io.file_type;

begin
 create(file => my_file,
 mode => out_file,
 name => "data.dat");

 put(file => my_file,
 item => "numbers and their squares");

 for i in 1..10 loop
 put(my_file,i);
 put(my_file," ");
 put(my_file,i*i);
 new_line(my_file);
 end loop;
 close(my_file); -- required, Ada may not close your
 -- open files for you
end demo_file_io;

The following program reads data from one file and writes it to another, a character at a time. It should be noted that the concept of
'end of line' is different to that provided by Unix and Dos. In those systems there is simply a character that marks the end of the line

http://goanna.cs.rmit.edu.au/~dale/ada/aln/12_files.html (1 of 5) [10/14/2000 12:55:27 PM]

which is processed as a normal character; in Ada and Pascal there is the concept of a line terminator that is not a character in the file.
To read pass this terminator you need to perform a skip_line. Similarly to partition the output file into lines, the command new_line
has to be given.

-- program to read a file a character at a time, and to write
-- it out a character at a time

with text_io; use text_io;

procedure read_write is

 input_file :file_type;
 output_file :file_type;
 char :character;

begin
 open(input_file,in_file,"input.dat");
 create(output_file,out_file,"output.dat");

 while not end_of_file(input_file) loop
 while not end_of_line(input_file) loop
 get(input_file,char);
 put(output_file,char);
 end loop;
 skip_line(input_file);
 new_line(output_file);
 end loop;
 close(input_file);
 close(output_file);
end read_write;

There are various procedures to perform file manipulation. These are

Create - Creates a file with the given name and mode. Note that if the file

- has a null string, then the file is temporary and is deleted later.

Open - Opens an existing file with the given name and mode.

Delete - Deletes the appropriate file. It is an error to delete an open file.

Reset - Returns the read (or write) position to the start of the file.

As well there are functions that report on the status of the file system.

End_of_File - Returns true if we are at the end of the current file.

End_of_Line - Returns true if we are at the end of the current text line.

Is_open - Returns true if the given file is open.

Mode - Returns the mode of the given file.

Name - Returns the name (string) of the current file.

There are various other routines, it is best to examine the specifications of the package text_io (appendix B) to get a clear idea of the
package.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/12_files.html (2 of 5) [10/14/2000 12:55:27 PM]

Use of text files
Ada's text_io facilities rely on the exception mechanism to report errors in the creation and opening of files. For example attempting
to create a file that already exists causes an exception, as does attempting to open a file that does not.

To get around this circularity the following procedure robust_open could be used. This attempts to open the file, if it fails due to the
file not being there, it attempts to create it instead.

The code is, of course, subject to race conditions. This program could be interrupted after an attempt open the file, and before the
create is attempted; a second process could conceivably create the file in this time.

--
-- Attempts to open the specified file.
-- If it doesn't work then it creates it instead

with text_io; use text_io;
procedure robust_open(the_file :in out file_type;
 mode :in file_mode;
 name :in string) is
begin
 open(the_file,mode,name);

exception
 when name_error =>
 create(the_file,mode,name);
end robust_open;

Another utility, the boolean function file_exists, allows students to check if the file exists. An exception (use_error) is raised if the is
already open.

--
-- Returns true if the file specified in 'name' exists.
-- This works by attempting to open the file. If this
-- suceeds then the file is there.

with text_io; use text_io;

function file_exists(name :string) return boolean is
 the_file:text_io.file_type;
begin
 open(the_file, in_file, name);

 -- yes it worked, close the file and return true
 close(the_file);
 return true;

exception
 when name_error =>
 -- couldn't open the file, assume it's not there.
 return false;
end file_exists;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/12_files.html (3 of 5) [10/14/2000 12:55:27 PM]

Ada95 Text_io enhancements
The mode append_file has been added to the allowable modes for text files. As well the concept of a standard error file (c.f. Unix/C)
has been added. The procedures flush have been added to enable flushing of text file buffers.

Improvements in character handling include look ahead, and get_immediate, with various options.

Generic packages for the I/O of the new modular and decimal types have been included - their specifications conform to that of the
other numeric generic I/O packages.

The sequential_io package
Most large systems do not utilise text as the basis for their files. The files are usually composed of composite objects, and typically
they are records. The sequential_io generic package allows us to create files whose components are any type (they must however be
constrained).

The basics of the sequential_io generic package are identical to the text_io package, except that the procedures get and put are now
read and write, and the procedures deal in terms of the type the package was instantiated with. Similarly the concepts of line has
dissapeared, so that the function end_of_line and the procedures skip_line and new_line have also gone.

Use of the package is demonstrated below.

with sequential_io; -- generic package
with personnel_details; use person_details;
 -- has record type 'personnel'

with produce_retirement_letter;

procedure sequential_demo is

 package person_io is new sequential_io(personnel);
 data_file :person_io.file_type;

 a_person :personnel;

begin
 person_io.open(data_file,in_file,"person.dat");

 while not person_io.end_of_file(data_file) loop
 person_io.read(data_file,a_person);

 if a_person.age > 100 then
 produce_retirement_letter(a_person);
 end if;
 end loop;

 close(data_file);
end sequential_demo;

No direct access of the file is possible. The file is opened at the start and processed until you get to the end, you reset or close the file.

Ada95 has added the file mode append_file to the specifications of sequential_io.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/12_files.html (4 of 5) [10/14/2000 12:55:27 PM]

The direct_io package
The direct io package builds on top of the sequential io package by providing the ability to seek directly to a given record, to
determine the size of the file, to determine the current index and to be able to open the file with a new mode - inout_file (read/write).

These facilities should make it possible, in conjuction with a suitable indexing package, to provide very high level file processing
packages.

The following code demonstrates the use of direct files. For brevity it assumes that the employee records are stored on the basis of
their employee numbers.

with direct_io; -- generic package
with personnel_details; use personnel_details;
 -- has record type 'personnel'
 -- has procedure display_personnel, etc

with int_io; use int_io;
with display_menu;

procedure direct_demo is

 package person_io is new direct_io(personnel);
 data_file :person_io.file_type;
 a_person :personnel;
 option :integer;
 employee_no :integer;

begin
 person_io.open(data_file,inout_file,"person.dat");

 loop
 display_menu;
 get_option(option);

 case option is
 when 1 =>
 get(employee_no);
 set_index(positive_count(employee_no));
 read(data_file,a_person);
 display_person(a_person);
 when 2 =>
 get(employee_no);
 set_index(positive_count(employee_no));
 read(data_file,a_person);
 get_new_details(a_person);
 write(data_file,a_person);
 when 3 =>
 exit;
 when others =>
 put("not a great option!");
 end case;
 end loop;
 close(data__file);
end direct_demo;

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/12_files.html (5 of 5) [10/14/2000 12:55:27 PM]

12 Files

Overview1.

The I/O packages2.

The Text_IO package3.

Use of text files4.

Ada95 Text_io enhancements5.

The sequential_io package6.

The direct_io package7.

1.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/12_files_ToC.html [10/14/2000 12:55:28 PM]

13 Access types

Overview
Access types (and the objects they access) are used to create dynamic data structures. It should be noted that access types
are not necessarily implemented as pointers are in other languages (e.g. the address of the object in question), although in
many cases they are. They can be used to create dynamic data structures such as linked lists, trees, graphs etc.

Access types
Access types allow for the dynamic referencing and allocation of objects in Ada.

To specify an access type consider the following:

type person is
 record
 name :string(1..4);
 age :0.. 150;
 end record;

fred :person

type person_ptr is access person;
someone :person_ptr;

To dynamically create an object that someone will point at:

someone:= new person;

An object referred to by someone can be referenced in exactly the same way as an explicity declared object.

E.g.

fred.name := "fred";
someone.name:= "jim ";

A special value called null is used to indicate that the access object does not reference any valid objects. An access object
is always initialised to null.

Given the following declarations

declare
 x :person_ptr := new person;
 y :person_ptr := new person;

begin
 x := ("fred",27);
 y := ("anna",20);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/13_access_types.html (1 of 4) [10/14/2000 12:55:29 PM]

 x := y; -- *
 y.all := ("sue ",34);
 put(x.name);
end;

This will output the string "sue ". When the line highlighted with a star is executed, the value of the access object y is
assigned to x, not the object that y was accesses. Both x and y both refer to the same object, so a change to the object that y
refers to implicity changes the object x refers to.

If we wish to change a field of the object refered to by x

x.name := y.name;

Access objects x and y still point to distinct objects. Both access objects are implicitly dereferenced in this example.
Because of the implicit derefence, we need a special syntax to denote the entire object the access object accesses. Ada has
the reserved word all for this purpose.

x.all := y.all; -- all field in object referred to by y now
 -- in the object referred to by y. They are
 -- still distinct objects.

A comparison of Pascal, C and Ada pointer/access syntax.

 Pascal C Ada
Access a^.fieldname *a.fieldname a.fieldname
 a->fieldname

Copying pointer b := a; b = a; b := a;

Copying accessed b^ := a^; *b = *a; b.all := a.all
object

Ada95. Typically all access objects are allocated from a storage pool (heap) (see below). However it is possible to create
an access type to other objects, so long as they are declared aliased, and the access type is declared to point at 'all' objects.

procedure demo is
 type ptr is access all integer;
 a :aliased integer;
 x, y :ptr;
begin
 x := a'access;
 y := new integer;
end;

Scope rules ensure that there cannot be any dangling references to objects. The attribute Unchecked_Access can be used to
create access values in an unsafe manner.

Access types to subprograms
A feature not available in Ada83, access types to subprograms allow for functional parameterisation such as used in
Fortran mathematical libraries, as well as ad-hoc late binding. As for the rest of Ada, this is type safe.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/13_access_types.html (2 of 4) [10/14/2000 12:55:29 PM]

An example from the LRM (3.10).

type Message_Procedure is access procedure (M:in String := "Error!");
procedure Default_Message_Procedure (M :in String);
Give_Message : Message_Procedure := Default_Message_Procedure'Access;
...
procedure Other_Procedure (M :in String);
...
Give_Message := Other_Procedure'Access;
...
Give_Message.("File not found");
Give_Message.all;

Self referencing data structures
To define a structure that refers to itself requires normally requires making references to data structures that don't as yet
exist. Ada circumvents this problem by allowing for incomplete type declarations. These simply specify the name of a type
that is yet to be defined. The compiler expects that the full definition will be given before the end of the source file.

type element; -- incomplete type definition.

type ptr is access element;

type element is -- full definition of the type.
 record
 value:integer;
 next:ptr;
 end record;

Initialisation of objects
When an object is dynamically allocated its value can be set in the same statement as its creation. This simply uses a
qualified (type name specified) aggregate.

E.g.

head := new element'(40,head); -- insertion at the head
 -- of a linked list.

The same thing can be done using named aggregates.

head := new element'(value => 40; next => head);

Garbage collection
There is no language requirement for deallocated memory to be put back into use for later allocation. You should consult
your compiler reference manual for details.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/13_access_types.html (3 of 4) [10/14/2000 12:55:29 PM]

If you want to deallocate memory (similar to free system call in Unix), then you can instantiate the generic procedure
Unchecked_Deallocation (child of package Ada in Ada95). It is called unchecked because it does no live object analysis
before deallocation.

generic
 type Object(<>) is limited private;
 type Name is access Object;
procedure Ada.Unchecked_Deallocation(X: in out Name);
pragma Convention(Intrinsic, Ada.Unchecked_Deallocatoin);

This would be instantiated as follows...

procedure Free is new Ada.Unchecked_Deallocation(object => node,
 name => ptr);

Free could then be called as follows...

head := new node;
...
free(head);

Storage Pools
Ada95 allows a storage pool to be specified from which allocated memory comes from. Different access types can share a
pool, typically most user defined access types share the one program wide pool. By extending the abstract type
Root_Storage_Pool, defined in packge System.Storage_Pools, users can write their own storage pool type, and then
associate it with an access type via the Storage_Pool attribute.

For example (from LRM, 13.11)

Pool_Object : Some_Storage_Pool_Type;

type T is access <something or other>;
for T'Storage_Pool use Pool_Object;

Storage pools allow for the possibility access types that are smaller than for a default access type that accesses a default
pool.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/13_access_types.html (4 of 4) [10/14/2000 12:55:29 PM]

13 Access types1.

Overview2.

Access types3.

Access types to subprograms4.

Self referencing data structures5.

Initialisation of objects6.

Garbage collection7.

Storage Pools8.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/13_access_types_ToC.html [10/14/2000 12:55:30 PM]

14 Object Oriented features of Ada

Overview
The type system of Ada that existed in Ada83 has been extended to include support for object oriented
programming. Rather than an extension that would be discordant with what existed, the object oriented
facilities extend the existing type system to allow for type extension. These provide all the classical object
oriented facilities such as inheritance, dynamic dispatching, polymorphism, with the usual Ada features of
readability and safety.
Types are for many purposes similar to classes.

The following object diagram is implemented using Ada.

Inheritance (Ada83)
Inheritance can be split into two distinct concepts, inheritance of operations (methods) and inheritance and
further addition of attributes (type extension). Ada 83 supported inheritance of operations. If a new type is
derived from a base type, then the derived type inherits the operations available from the parent. For example,

type person is
 record
 name :string(1..10);
 dob :date;
 salary :float := 0.0; -- :-(
 end record;

procedure employ(someone:in out person);
procedure dismiss(someone:in out person);

type manager is new person;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_OO.html (1 of 9) [10/14/2000 12:55:32 PM]

-- derived type manager inherits the operations of person,
-- and can add new operations of its own.

procedure allocate_master_key(someone:in out manager);

This model of inheritance does not allow for extension of types, that is we cannot add in extra attributes. The
procedures (or functions) that take a parameter of a type are said to be the operations on the type and are
equivalent to methods in other OO languages.

Inheritance (Ada95)
Ada95 has extended the notion of type derivation to support conventional object oriented programming. A new
type, the tagged record, has been introduced to represent a type that can be extended (inherited). The syntax for
a tagged type is

type person is tagged
 record
 name :string(1..10);
 dob :date;
 salary :float := 0.0;
 end record;

A tagged record is treated like a conventional record in most situations. Field accessing, and setting is just as
normal.

jane :person := ("Jane ", (6,10,1978), 210.0);

Operations on the type are written just as before...

procedure employ(someone:in out person);
procedure dismiss(someone:in out person);
procedure pay_rise(someone:in out person);

If we want to extend the type, we follow a notation similar to the type derivation common in Ada...

type manager is new person with
 record
 master_key_code :string(1..10);
 end record;

The "with record" part indicates the extension to the base type (in this case "person").

New operations for the manager can be added, just as in Ada83...

procedure allocate_master_key(
 someone:in out manager;
 code :in string);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_OO.html (2 of 9) [10/14/2000 12:55:32 PM]

We may even want to override an inherited operation...

procedure pay_rise(someone:in out manager);

We can now write a different algortihm for pay_rise's for manager's compared to person's.

How do I set all of this up?
In Ada, the package concept is simply used for encapsulating the declaration of a type, and it's operations. The
package is used to hide the implementation details, and as an aid to recompilation (we can split a program up
into smaller chunks, which individually are quick to compile). A very common convention is to place one type
and it's operations into one package.

The above example would thus be placed into two packages...

with dates; use dates; -- definition of type date

package persons is
 type person is tagged
 record
 name :string(1..10);
 dob :date;
 salary :float := 0.0;
 end record;

 procedure employ(someone:in out person);
 procedure dismiss(someone:in out person);
 procedure pay_rise(someone:in out person);
end persons;

The declaration of the derived type would be placed in a second package...

with persons; use persons;

package managers is
 type manager is new person with
 record
 master_key_code :string(1..10);
 end record;
 procedure allocate_master_key(
 someone:in out manager;
 code :in string);
 procedure pay_rise(someone:in out person);
end managers;

For tagged types, the operations on the type that are included in the same package as the type declaration (as
all of the above are) have a special status - they are called the primitive operations of the type - and are all
potentially dispatching calls. This will be described in further detail later.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_OO.html (3 of 9) [10/14/2000 12:55:32 PM]

Using tagged types
Using these types is quite simple. You just declare variables as you would have before...

with text_io; use text_io;
with persons; use persons;
with dates; use dates;
with managers; use managers;

procedure demo is
 me :person;
 him :manager;

begin
 me.name := "Santa ";
 me.dob := (29,11,1962);

 him.name := "Rudolph "; -- inherited field
 him.dob := (28, 6, 1962); -- inherited field
 employ(him); -- inherited operation

 -- new method for type manager
 allocate_master_key(him, code => "XYZ398");

 pay_rise(him); -- Manager version
 pay_rise(me); -- Person version

end;

Null records and extensions
A type may need to be created that has no fields (attributes), only operations (methods). This can be achieved
by specify an empty record when declaring a type.

type root is tagged
 record
 null;
 end record;

Ada has a special syntax for null records being used with tagged types:

type root is tagged null record;

This can now be used as the basis of further derivations.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_OO.html (4 of 9) [10/14/2000 12:55:32 PM]

Operations on the type can be added as normal within a package specification...

procedure do_something(item :root);

More typically a new type may be derived from an existing type without the need for new attributes, but with
the need for new subprograms.

The syntax for such an extension would be...

type director is new manager with null record;

procedure pay_rise(someone :in out director);

A director has no new components added, but can has yet another method for allocating a pay_rise.

Abstract types and subprograms
Sometimes we wish to create an artificial type that we never expect to use, but serves as the "root" of a tree of
types. These are called abstract types. They may also include abstract subprograms , which do not have a body
and must be overridden by a derived type. This forces all descendants of a type to support a common
functionality.

An abstract type has the following syntax...

package Sets is
 type Set is abstract tagged null record;

 function Empty return Set is abstract;
 function Empty(Element:Set) return boolean is abstract;
 function Union(left, right:set) return Set is abstract;
 function Intersection(left, right:set) return Set is abstract;
 procedure Insert(Element:natural; into:Set) is abstract;
end Sets;

This implementation of a set of natural numbers is taken from the Ada Language Reference Manual. Note that
you cannot declare a variable of type Set because it is an abstract type. E.g.

with Sets; use Sets;

procedure wont_compile is
 my_set :Set; -- illegal, abstract type
begin
 null;
end;

However a derived type may or may not be abstract...

with Sets;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_OO.html (5 of 9) [10/14/2000 12:55:32 PM]

package quick_sets is

 type bit_vector is array(0..255) of boolean;
 pragma pack(bit_vector);

 type quick_set is new Sets.set with
 record
 bits:bit_vector := (others => false);
 end record;

 -- advertise concrete implementations
 function Empty return quick_set;
 function Empty(Element:quick_set) return boolean;

 etc. etc.

Class wide types
For any given tagged type, there is an associated class wide type, that encompasses the tagged type and all
types derived from it. Ada has used the word "class" differently to most object oriented languages. It is perhaps
used in a more traditional English sense, as a collection of similar types.

For example in the type family (inheritance hierachy)

vehicle
 motorised
 truck
 car
 train
 unmotorised
 bicycle

the type vehicle'class refers to all the types above. Motorised'class refers to the classes
motorised, truck, car and train.

This can be used to allow for dynamic selection of the appropriate operation.

Assume that the following procedure was defined in package persons.

procedure reward_good_work(someone:in out person) is
begin
 print_certificate(someone.name);
 pay_rise(someone);
end;

If we call this with a manager as a parameter, then the procedure persons.pay_rise will be called, not

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_OO.html (6 of 9) [10/14/2000 12:55:32 PM]

managers.pay_rise.

A solution to this problem is to accept as a parameter any variable in the class wide type. This is done as
follows...

procedure reward_good_work(someone:in out person'class) is
begin
 print_certificate(someone.name);
 pay_rise(someone);
end;

If the following declarations are made...

me :person;
him :manager;

and then...

reward_good_work(me); -- calls persons.pay_rise
reward_good_work(him); -- calls managers.pay_rise

Here the pay_rise procedure called depends on the specific type passed in as a parameter. This is called
dynamic dispatching - deciding which procedure to dispatchi to (or call) at run time (dynamically). Passing in
a manager object results in a call to the manager's pay_rise routine. Passing in a person object results in a call
to the person's pay_rise routine.
What pay_rise routine would be called if a Director object was passed in?

In fact all the primitive operations of type are potentially dispatching calls, given the right circumstances. The
example using a class wide type is one example. Another (closely related) example is the use of class wide
access (pointer) types.

What you can't do with a class wide type (such as person'class) is create an array of them. This is because each
object is potentially a different size - arrays require all elements to be the same size. Similar considerations
apply for any place where a declaration must be of a fixed size (constrained, in Ada parlance).

Class wide pointers
Most pointers in Ada are restricted to pointing at just a single type. For example...

type node;
type ptr is access node;
type node is record
 item :integer;
 next :ptr;
 end record;

Here variables of type ptr are restricted to always pointing at variables of type node.

With the concept of class wide types in Ada, comes the concept of a pointer that can point to any item within

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_OO.html (7 of 9) [10/14/2000 12:55:32 PM]

an inheritance hierachy.
This is achived by...

type person_ptr is access person'class;
who :person_ptr;

who' can now point at any object from the derivation tree rooted at person, i.e. person, manager, director, and
quite importantly, any future types included in the inheritance hierachy.
For example we could make 'who' point at...

who := new person;
who := new manager;
who := new director;

Interestingly, we could create an array of class wide access types...

type person_list is array(1..10) of person_ptr;
people :person_list;
...
people(1) := new person;
people(2) := new manager;
people(3) := new person;
people(4) := new director;

-- initialise the variables appropriately.
...

for i in people'range loop
 exit when people(i) = null;

 -- now dispatch to the appropriate routine...
 pay_rise(people(i).all);
end loop;

Class wide pointers can be used to build hetrogeneous data structures, that is those were the components are
not all the same type (they must however be in the same class).

Private tagged types
A type can be declared private to help enforce information hiding (especially of the exact details of its
representation, e.g. is it an array, or a linked list?). Similarly tagged types can be made private.

type person is tagged private;

The private section of the package must complete the declaration (provide what is called a full view of the
type)...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_OO.html (8 of 9) [10/14/2000 12:55:32 PM]

type person is tagged record...

A type extension can also have a private extension if desired...

type manager is new person with private;

This gives sufficient flexibility for most purposes.

Generic type parameters
Tagged types can now be specified as generic type parameters (they can still be passed as actuals to the normal
private or limited private type parameters). The syntax is as follows...

generic
 -- actual must be a tagged type
 type T is tagged private;

 -- actual must be direct descendent of S
 type T is new S;

 -- actual must be derived from S somewhere
 type T is new S with private;

package some_interesting_pacakge is...

Multiple Inheritance
Ada95 does not directly support MI. It provides features that can be used to build MI "by hand" with a bit of
extra work. The options are generics (to extend a type with a set of new features), access discriminants (to
allow a type to point at it's containing object, and therefore allow delegation) and another one that I can't quite
remember now.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_OO.html (9 of 9) [10/14/2000 12:55:32 PM]

15 Concurrency support

Overview
Ada is one of the few mainstream languages that supports concurrency from within the language. This has the benefit of
stable semantics, and therefore portability between computers. The task and rendezvous mechanism of Ada83 has been
enhanced through the introduction of protected objects and greater considertion for real time systems.

Tasks
An Ada program consists of at least one, and possible more tasks, which run concurrently. The tasks run independently of
each other, communication/synchronisation is achieved by high level concepts such as the rendezvous or with protected
objects. With an abstraction level higher than simple semaphores, the rendezvous and protected objects come supplied with a
range of options for guards (as Dijkstra postulated), timeouts and (in Ada95) to selectively requeue clients and abort
operations.

The death of a task does not necessarily affect the operation of other tasks, except if they attempt to communicate with it.
There is no specialised task, even the main procedure of the Ada program can end, with other tasks continuing.

The rendezvous
As one mechanism for tasks to safely communicate and synchronise with each other, the rendezvous is conceptually simple.
Tasks publish entry points at which they are prepared to wait for other tasks. These entry points have a similar semantics to
procedures; they can have parameters of in, inout and out mode, with default parameter values. A task wishing to rendezvous
with a second task simply makes a procedure-like rendezvous call with an entry; Either is held up until they can both
communicate. The rendezvous is non symmetrical - one task is viewed as a server and cannot initiate a rendezvous.

procedure demo is
 task single_entry is
 entry handshake;
 end task;

 task body single_entry is
 begin
 delay 50.0;

 accept handshake;

 delay 1.0;
 end;
begin
 for i in 1..random(100) loop
 delay(1.0);
 end loop;
 handshake;
end;

When this program is run the task single_entry is started. If succeful the parent task is also activated. If 'random' returns a
value less than 50, then after the initial delay the main task waits for the second task, and vice versa if it returns greater than
50. Once the two tasks have rendezvoused, they depart on their separate ways. The main task finishes, the second task
continues until it too finishes. The program then terminates.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_concurrency.html (1 of 6) [10/14/2000 12:55:34 PM]

The same program can be modified to include parameters in the entry call. In this example, the two tasks swap duration times
for the delay statements. However they may still not finish together as the quicker task to the rendezvous will still have to
wait for the second task.

procedure demo is
 x :duration := duration(random(100));
 y :duration;

 task single_entry is
 entry handshake(me_wait: in duration; you_wait: out duration);
 end task;

 task body single_entry is
 a :duration := duration(random(100));
 b :duration;
 begin
 delay a;

 accept handshake(me_wait:in duration; you_wait: out duration) do
 b := me_wait;
 you_wait := a;
 end handshake;

 delay b;
 end;
begin
 delay(x);
 handshake(x,y);
 delay(y);
end;

A task can have several rendezvous'. If it waits for a rendezvous and there is no possible task that can rendezvous with, then it
will abort with a tasking_error exception.

Rendezvous' can be treated in a manner very similar to procedure calls. They can be in loops, if statements, subprograms etc.
Typically however they are structured in a high level loop; this allows a client architecture in which after servicing a
rendezvous, and performing some processing, it goes back and waits for another rendezvous.

procedure demo is
 type service is (increment, decrement, quit);
 task single_entry is
 entry accept_command(which : service);
 end task;

 task body single_entry is
 command :service;
 i :integer;
 begin
 loop
 accept accept_command(which :service) do
 command := which;
 end accept_command;

 case command is
 when increment => i := i + 1;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_concurrency.html (2 of 6) [10/14/2000 12:55:34 PM]

 when decrement => i := i - 1;
 when quit => exit;
 end case;
 end loop;
 end;

begin
 -- stuff, depending perhaps upon user input.
end;

This situation can be impoved having multiple entry points, and making use of the select statement in conjunction with the
accept statement.

procedure demo is
 task multiple_entry is
 entry increment;
 entry decrement;
 end multiple_entry;

 task body multiple_entry is
 i : integer;
 begin
 select
 accept increment;
 i := i + 1;
 or
 accept decrement do
 i := i - 1;
 end decrement
 or
 terminate;
 end select;
 end;
begin
 -- rendezvous'
end;

The select statement allows the task to wait on several different entry points. This example shows the increment entry without
any associated processing. The decrement entry forces the calling task to wait while the decrement takes place. The terminate
alternative causes task multiple_entry to finish if it is uncallable from any other task.

The select statement can have a selective wait, unconditional alternative, a terminate or none of these. The previous example
showed the terminate. The unconditional alternative is shown below.

procedure demo is
 task multiple_entry is
 entry increment;
 entry decrement;
 end multiple_entry;

 task body multiple_entry is
 i : integer;
 begin
 select
 accept increment;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_concurrency.html (3 of 6) [10/14/2000 12:55:34 PM]

 i := i + 1;
 or
 accept decrement do
 i := i - 1;
 end decrement
 else
 perform_some_processing;
 end select;
 end;
begin
 -- rendezvous'
end;

In this example, the task stops only briefly to inspect if another task is waiting to rendezvous. If not it goes off and does some
processing.

The selective wait allows the task to wait for a given time, after which it gives up and continues on with other actions.

procedure demo is
 task multiple_entry is
 entry increment;
 entry decrement;
 end multiple_entry;

 task body multiple_entry is
 i : integer;
 begin
 select
 accept increment;
 i := i + 1;
 or
 accept decrement do
 i := i - 1;
 end decrement
 or
 delay 3.0; -- not a normal delay statement!
 perform_some_processing;
 end select;
 end;
begin
 -- rendezvous'
end;

Here the task will wait for at least 3.0 seconds for another task. If none comes along it will call perform_some_processing.

Similarly the client task can either wait unconditionally for a rendezvous, it can not wait at all (impatient), or it can specify a
time out after which it will give up on a rendezvous.

Task types
All of the above tasks are of an anonymous type. Ada allows you to create a task type (via a special and non consistent syntax
from all other type declarations) and to declare objects of the type. They can be declared dynamically (through an allocater) as
well as local variables. They can be composed into other objects - you could have an array of tasks, or a record, a component
of which, is a task.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_concurrency.html (4 of 6) [10/14/2000 12:55:34 PM]

Problems with the rendezvous mechanism
The rendezvous mechanism is a synchronisation as well as a communication mechanism. Tasks that should normally run
asynchronously and which want to pass data between them are required to stop and "have a chat", instead of simply leaving
the data for the other task. The solution to this problem is usually to creat an intermediary task that manages the data flow,
and, the designer hopes, is always available to respond to a rendezvous from either task. It sits between the two tasks, acting
as an emissary for both.

Protected Objects
A simpler solution can be provided in Ada95 which has a concept of a protected object or type. Protected objects provide for
task safe access to data via entries and guards, without the overhead of a separate task being created. The subprograms and
entries inside a protected object are executed in the context of the calling task. As with tasks types you can create arrays of
protected type, and compose other objects from them.

All the examples in this section come from Introducing Ada9x, John Barnes.

An example of a protected entry follows

protected Variable is
 function Read return item;
 procedure Write(New_Value:item);
private
 Data :item;
end Variable;

protected body Variable is
 function Read return item is
 begin
 return Item;
 end;

 procedure Write(New_value :item) is
 begin
 data := New_Value;
 end;
end Variable;

Functions are only allowed read access to the data, procedures can manipulate them in any way they wish. Procedure calls are
exclusive, that is only one task can access a procedure at any one time. Multiple reads can occur concurrently.

Another example is a semaphore, to provide exclusive access to resources.

protected type Counting_Semaphore (Start_count :Integer := 1) is
 entry Secure;
 procedure Release;
 function Count return integer;
private
 Current_count :integer := start_count;
end;

protected body counting_semaphore is
 entry Secure when Current_count > 0 is
 begin

http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_concurrency.html (5 of 6) [10/14/2000 12:55:34 PM]

 Current_Count := Current_count + 1;
 end;

 procedure Release is
 begin
 Current_Count := Current_count + 1;
 end;

 function Count return integer is
 begin
 return current_count;
 end;
end Counting_semaphore;

When called the barrier on the entry is queued. If it is false, the task is queued, pending it becoming true.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_concurrency.html (6 of 6) [10/14/2000 12:55:34 PM]

15 Concurrency support1.

Overview2.

Tasks3.

The rendezvous4.

Task types5.

Problems with the rendezvous mechanism6.

Protected Objects7.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_Concurrency_support.html [10/14/2000 12:55:35 PM]

16 Language interfaces

Overview
No matter how good a new language is, there is usually a great deal of investment in existing programs. The
designers of Ada realised this and provide a standard mechanism to interface with other language. The facilites
provided are optional, and just which languages are supported depend on the compiler vendor. Considerably
more support has been built into Ada95. Consult your compiler's reference manual for full details.

Interfacing with foreign languages (Ada83)
Assume you are on a Unix system and you wish to make use of the kill command. You should perform the
following.

function kill(pid :in integer;
 sig :in integer) return integer;

pragma interface(C,kill);

The first parameter to pragma interface is the language of the called routine, the second the name the routine is
known by in Ada.

Another example for a package is

package MATHS is
 function sqrt(x:float) return float;
 function exp (x:float) return float;
private
 pragma interface(fortran,sqrt);
 pragma interface(fortran,exp);
end MATHS;

The pragma interface cannot be used with generic subprograms.

Interfacing with foreign languages (Ada95)
Ada95 makes extensive use of the predefined libraries to enable data type translation between Ada and foriegn
languages. Together with the pragmas import, export and convention they allow Ada systems to be easily used
in a multi-language environment.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/16_interfaces.html (1 of 5) [10/14/2000 12:55:36 PM]

Pragma Import
The pragma Import allows the inclusion of foreign language entities within an Ada program, such as variables or
procedures/functions. The code below shows an example of the use of pragma import for the Unix function
read.

Pragma Import consists of three parameters,
- the language convention (only Ada and Instrinsic must be supported)
- Ada

- Instrinsic

- C

- Fortran

- Cobol

- any other implementation defined value

- the Ada name for the object
- the foreign langauge name for the object, as a string.

--
procedure read(file_descriptor :in integer;
 buffer :in out string;
 no_bytes :in integer;
 no_read : out integer) is

 function read(file_descriptor :integer;
 buffer :system.address;
 no_bytes:integer) return integer;

 pragma import(C, read, "read");
begin
 no_read := read(file_descriptor,
 buffer(buffer'first)'address,
 no_bytes);
end;

The interface packages
The interface package hierachy consists of packages designed to ease the interfacing of Ada with other
langauges. The standard suggests interfaces for C, COBOL and Fortran.
The package hierachy is

package Interfaces

http://goanna.cs.rmit.edu.au/~dale/ada/aln/16_interfaces.html (2 of 5) [10/14/2000 12:55:36 PM]

package Interfaces.C
package Interfaces.C.Pointers
package Interfaces.C.Strings
package Interfaces.COBOL
package Interfaces.Fortran

The packages give sufficient power to deal with most foreign language interfacing issues.

One area in which Ada has problems interfacing to other languages is functions that contain non homogenous
variable length parameter lists, such as printf. Such functions are inherently type unsafe, and there is no
satisfactory way to handle such situations.

Ada can, however, handle functions where the argument types are homogenous; this is achieved through the use
of unconstrained array types.

A simple example would be a C function...

void something(*int[]);

it could be accessed as follows...

type vector is array(natural range <>) of integer;

procedure something(item :vector) is

 function C_Something(address:system.address);
 pragma import(C, C_something, "something);

begin
 if item'length = 0 then
 C_something(system.null_address);
 else
 C_something(item(item'first)'address);
 end if;
end;

A larger and more complex example is given below for the Unix C function execv. The added complication is
caused by the necessity of translation from Ada strings to C style character arrays (and is not necessarily as good
as it could be. See the LRM for more information on using interfaces.c child family).

The C function is defined as...

int execv(const char *path, char *const argv[]);

you need to declare a few things...

--
type string_ptr is access all string;
type string_array is array(natural range <>) of string_ptr;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/16_interfaces.html (3 of 5) [10/14/2000 12:55:36 PM]

function execv(path :string;
 arg_list :string_array) return interfaces.c.int;

-- execv replaces the current image with a new one.
-- A list of arguments is passed as the command line
-- parameters for the called program.
--
-- To call this routine you can...
--
-- option2 :aliased string := "-b";
-- option3 :aliased string := "-c";
-- option4 :string := "Cxy";
-- result :interfaces.C.int;
-- ...
-- result := execv(path => "some_program",
-- -- build up an array of string pointers...
-- argv => string_array'(new string'("some_program"),
-- new string'("-a"),
-- option2'Unchecked_access,
-- option3'Unchecked_access,
-- new string'('-' & option4));
--
-- Any mixture of dynamic string allocation and
-- 'Unchecked_access to aliased variables is allowed. Note however that
-- you can't do "some_string"'access, as Ada requires a name,
-- not a value, for the 'access attribute to be applied to.
--

This function could be implemented as follows. Note that the address of the first item in the array is passed, not
the address of the array. Arrays declared from unconstrained array types often have a vector which includes
extra information such as the lower and upper bounds of the array.

function execv(path :string;
 argv :string_array)return interfaces.C.int is

 Package C renames Interfaces.C;
 Package Strings renames Interfaces.C.Strings;

 C_path :constant Strings.chars_ptr(1..path'length+1)
 := Strings.New_string(path);

 type char_star_array is array(1..argv'length + 1) of
 Strings.char_array_ptr;

 C_argv :char_star_array;
 index :integer;
 result :C.int;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/16_interfaces.html (4 of 5) [10/14/2000 12:55:36 PM]

 --
 function C_execv(path :Strings.Char_ptr;
 C_arg_list:Strings.Char_ptr)
 return C.int;
 pragma import(C, C_execv, "execv");
 --
begin

 -- set up the array of pointers to the strings

 index := 0;
 for i in argv'range loop
 index := index + 1;
 C_argv(index) := Strings.New_String(argv(i).all));
 end loop;

 -- append C style null to the end of the array of addresses

 C_argv(C_argv'last) := Strings.Null_Ptr;

 -- pass the address of the first element of each
 -- parameter, as C expects.

 result := C_execv(C_path(1)'address, C_argv(1)'address));

 -- Free up the memory as obviously this didn't work
 for i in argv'range loop
 Strings.free(argv(i));
 end loop;

 Strings.free(C_path);

 return result;
end execv;

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/16_interfaces.html (5 of 5) [10/14/2000 12:55:36 PM]

16 Language interfaces1.

Overview2.

Interfacing with foreign languages (Ada83)3.

Interfacing with foreign languages (Ada95)4.

Pragma Import5.

The interface packages6.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/16_interfaces_ToC.html [10/14/2000 12:55:37 PM]

17 Idioms

Overview
Using a language effectively requires more than a knowledge of it's syntax and semantics. An acquaintaince with
common problems, and the various methods to solve these problems can simplify the process of writing programs,
and in this respect Ada is no exception. This chapter is involved in exposing some of the more common idioms of
programming in Ada.

Introduction
Abstraction is one of the most important part of programming, and it should always be considered when
programming solutions. You must always make an effort to distinguish what service a type is providing and how it is
implemented. You expose the what, but try to hide the how.

Similarly a knowledge of how to hide things in Ada is important. Ada provides for (predominantly) orthogonal
concepts of type/behaviour, and modularity/controlling visibility. The semantics of a program (how it runs, what it
does) are independent of whether you design the program carefully for modularity and robustness in the face of
change. Clearly though it is more often than not worth the effort to design a system competently.

Abstraction
Abstractions allow us to present only that which we want the user to be concerned with, and not giving access to
information which is irrelavent. For example in the all too often used stack example, the user should not be too
concerned with whether the implementation uses arrays or linked lists.

A rough stab at an abstraction could be...

package stacks is

 max :constant := 10;
 subtype count is integer range 0..max;
 subtype index is range 1..max;

 type list is array(index) of integer;

 type stack is
 record
 values : list;
 top : count;
 end record;

 overflow :exception;
 underflow :exception;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (1 of 23) [10/14/2000 12:55:42 PM]

 procedure push(item :in out stack; value :in integer);
 procedure pop(item :in out stack; value : out integer);

 function full(item :stack) return boolean;
 function empty(item :stack) return boolean;

 -- return an empty initialized stack
 function init return stack;

end;

Here however the details of the implementation are rather obvious; the how tends to get in the way of the what. This
can be changed simply by moving whatever is not relavent into the private section...

package stacks is

 type stack is private;
 -- This is called a partial view of the type stack
 -- It makes info about its implementation inaccessable.

 overflow :exception;
 underflow :exception;

 procedure push(item :in out stack; value :in integer);
 procedure pop(item :in out stack; value : out integer);

 function full(item :stack) return boolean;
 function empty(item :stack) return boolean;

 -- return an empty initialized stack
 function init return stack;

private
 -- full view of the type, along with other private details.
 max :constant := 10;
 subtype count is integer range 0..max;
 subtype index is range 1..max;

 type list is array(index) of integer;

 type stack is
 record
 values : list;
 top : count;
 end record;
end;

Although the programmer who uses your abstraction can see all the details if they have access to the code, they can't
write their programs to rely on this information. Also the separation clearly enforces the notion of what is important
for the abstaction, and what is not.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (2 of 23) [10/14/2000 12:55:42 PM]

Alternatively we could change the private section to reflect a linked list implementation...

package stacks is

 type stack is private;
 -- make info about its implementation inaccessable.
 -- this is called a partial view of the type stack

 overflow :exception;
 underflow :exception;

 procedure push(item:in out stack; value:in integer);
 procedure pop(item:in out stack; value : out integer);

 function full(item:stack) return boolean;
 function empty(item:stack) return boolean;

 -- return an empty initialized stack
 function init return stack;

private
 type stack;

 type ptr is access stack;

 type stack is record
 value :integer;
 next :ptr;
 end;
end;

A user program could then use either package as follows...

with stacks; use stacks;

procedure demo is
 a :stack := init;
 b :stack := init;
 temp :integer;
begin
 for i in 1..10 loop
 push(a,i);
 end loop;

 while not empty(a) loop
 pop(a, temp);
 push(b, temp);
 end loop;
end;

The concept of being able to substitute a different implementation, or more precisely, only relying on the public

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (3 of 23) [10/14/2000 12:55:42 PM]

interface, is a very important design principle for building robust systems.

(Note that these two implementations aren't quite identical. Consider the case where we have

with stacks; use stacks;

procedure not_quite_right is
 a, b:stack
begin
 push(a,1);
 push(a,2);

 b := a;
end;

An array implementation will work correctly when copied, but a linked list implementation will only copy the head
pointer. Both a and b will then point to the same linked list. The solution to this is presented later on. For the
examples presented here on, assume that this problem has been fixed).

Creating abstractions from other abstractions (code
reuse)

Private inheritance
It is important to establish the difference between what services a type provides, and how it implements that service.
For example a list abstraction (that has appropriate routines, and itself may be implemented as a linked list, or an
array) can be used to implement a queue abstraction. The queue abstraction will have only a few operations:

add_to_tail
remove_from_head
full
empty
init

We want to ensure there is a clear distinction between the abstraction and the implementation in our program.
Preferably the compiler should check and ensure that no-one makes the mistake of calling routines from the
implementation, rather than the abstraction.

Below is an example package which can lead to problems.

package lists is

 type list is private;

 procedure add_to_head(item:in out list; value :in integer);
 procedure remove_from_head(item:in out list; value :out integer);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (4 of 23) [10/14/2000 12:55:42 PM]

 procedure add_to_tail(item:in out list; value:in integer);
 procedure remove_from_tail(item:in out list; value: out integer);

 function full(item: list) return boolean;
 function empty(item:list) return boolean;

 function init return list;

private
 type list is... -- full view of type.
end;

with lists; use lists; -- abstraction of lists

package queues is

 type queue is new list;
 -- inherits operations from the list type
 -- i.e. the following are "automagically" (implicity) declared
 --
 -- procedure add_to_head(item:in out queue; value :in integer);
 -- procedure remove_from_head(
 -- item :in out queue;
 -- value : out integer);
 -- etc.

end queues;

Here type queue inherits all of the operations of the list type, even those that aren't appropriate, such as
remove_from_tail. With this implementation of queue, clients of the abstraction could easily break the queue, which
should only allow insertion at the tail, and removal from the head of the list.

For example a client of the queues package (something that "with queues"), could easily do the following

with queues; use queues;

procedure break_abstraction is
 my_Q :queue;
begin
 add_to_head(my_Q, 5);
 add_to_tail(my_Q, 5);

 -- queues should only add at the tail, remove from the head,
 -- or vice-versa
end;

What we need to do is advertise a different abstraction, but reuse the list abstraction privately.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (5 of 23) [10/14/2000 12:55:42 PM]

with lists; -- this is only used in the private section.

package queues is
 type queue is private;

 procedure remove_from_head(item:in out queue; value :out integer);
 procedure add_to_tail(item:in out queue; value:integer);

 function full(item: queue) return boolean;
 function empty(item:queue) return boolean;

 function init return queue;

private
 type queue is new lists.list;

end;

package body queues is

-- Perform a type conversion (from queue to list), and then call
-- the appropriate list routine.

use lists;
--
procedure remove_from_head(item:in out queue; value :out integer) is

begin
 lists.remove_from_head(list(item), value);
end;

--
function full(item: queue) return boolean is

begin
 return lists.full(list(item));
end;

...

function init return queue is
begin
 return queue(lists.init);
end;

end;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (6 of 23) [10/14/2000 12:55:42 PM]

Another example
Let's say we wish to create a stack package, but we don't want to recode all of the routines. We may already have a
linked list implementation that could form the basis of the storage for the stack. The list package stores integers.

Assume the package lists is defined as follows...

package lists is

 type list is private;

 underflow :exception;

 procedure insert_at_head(item:in out list; value :in integer);
 procedure remove_from_head(item:in out list; value:out integer);

 procedure insert_at_tail(item:in out list; value :in integer);
 procedure remove_from_tail(item:in out list; value: out integer);

 function full(item:list) return boolean;
 function empty(item:list) return boolean;

 -- returns an empty initialized list
 function init return list;

private
 ...
end;

We can then make use of Ada's ability to hide the full view of a type in the private section. Here we declare a brand
new type (as far as the client is concerned), which is actually implemented as a derived type. The client can't "see"
this - the "under the hood" details remain well hidden.

We implement the stack as...

with lists;

package stacks is

 type stack is private;

 underflow :exception;

 procedure push(item:in out stack; value:in integer);
 procedure pop(item:in out stack; value : out integer);

 function full(item:stack) return boolean;
 function empty(item:stack) return boolean;

 -- return an empty initialized stack
 function init return stack;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (7 of 23) [10/14/2000 12:55:42 PM]

private
 -- create a new type derived from an existing one.
 -- This is hidden from the clients of the type
 type stack is new lists.list;

 -- stack inherits all the operations of type list.

 -- They are _implicity_ declared as
 --
 -- procedure insert_at_head(item:in out stack; value :in integer);
 -- procedure remove_from_head(item :in out stack;
 -- value: out integer);
 -- ...
 -- function full(item:stack) return boolean;
 -- function empty(item:stack) return boolean;
 -- function init return stack;

end;

We now have to relate the implicity declared routines to those that are advertised publically. This is done by a simple
"call through" mechanism.

package body stacks is

procedure push(item:in out stack; value:in integer) is
begin
 insert_at_head(item, value);
end;
-- you can make it more efficient by...
pragma inline(push);

procedure pop(item:in out stack; value : out integer) is
begin
 remove_from_head(item, value);
exception =>
 when lists.underflow =>
 raise stacks.underflow;
end;

...
end stacks;

This is ok for publically advertised routines that have different names from the implicity declared routines (those
inhertied from type list).

However in the package specification there are two functions full which have the profile

function full(item:stack) return boolean;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (8 of 23) [10/14/2000 12:55:42 PM]

One is explicity declared in the public section, one implicity declared in the private section. What's going on? The
first function specification in the public part of the package is only a promise of things to come. It is an as-yet
unrealised function. It will be completed in the package body. As well we have another (implicity) declared function
which just happens to have the same name and profile. You still have to describe to the Ada compiler how you are
going to implement the function declared in the public part of the package. The Ada compiler can see that both
functions have the same name and profile, but it does not assume that public function should be implemented by the
private function.

For example imagine that integer_lists.full always return false, to indicate that the linked list was never full, and
could always grow. As the implementor of the stack package you may have decided that you wanted to enforce a
limit on the stack, so that it would only contain 100 elements at most. You would then write the function stacks.full
accordingly. It would be incorrect for the implementation of function full to default back to the linked list
implementation.

So far so good. How do I write the function full?
Because of the visibility rules of Ada, the explicit public declaration completely hides the implicity declared private
one, and so is not accessable at all. The only solution is to call on the function in the list package, which you have to
do explicity.

package body stacks is

function full(item:stack) return boolean is
begin
 -- call the original full in the other package.

 return lists.full(lists.list(item));
 -- type conversion of parameter

end;

...
end stacks;

This seems all terribly obtuse and annoying. Why does Ada force this upon you? The reason you are encountering
this sort of problem is because of the nature of constructing programs with independent name spaces (different
scopes where identical names do not clash with each other). Ada is merely providing a solution to a problem that is
an inevitable consequence of name spaces. The alternative, of having to work with a language in which there can be
no names the same is worse than this solution. So don't shoot the messenger just because you don't like the message
:-).

This is a very important point to note. Don't go on unless you understand this point.

The full package body for stacks would be

use lists;

package body stacks is

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (9 of 23) [10/14/2000 12:55:42 PM]

procedure push(item:in out stack; value:in integer) is
begin
 insert_at_head(item, value);
end;

procedure pop(item:in out stack; value : out integer) is
begin
 remove_from_head(item, value);

exception =>
 when lists.underflow =>
 raise stacks.underflow;
end;
-- note how the exception advertised in the other package
-- is "translated" to an exception defined within this package.

function full(item:stack) return boolean is
begin
 return lists.full(list(item));
end;

function empty(item:stack) return boolean is
begin
 return lists.empty(list(item));
end;

-- return an empty unitialized stack
function init return stack is
begin
 return stack(lists.init);
end;

end stacks;

Creating abstractions by using generic abstractions
Often a generic package that implements a suitable data structure can be used to implement another abstraction. This
is very similar to the section presented previously.

Assume the package generic_lists is defined as...

generic
 type element is private;

package generic_lists is

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (10 of 23) [10/14/2000 12:55:42 PM]

 type list is private;

 underflow :exception;

 procedure insert_at_head(item:in out list; value :in element);
 procedure remove_from_head(item:in out list; value:out element);

 procedure insert_at_tail(item:in out list; value :in element);
 procedure remove_from_tail(item:in out list; value: out element);

 function full(item:list) return boolean;
 function empty(item:list) return boolean;

 -- returns an empty initialized list
 function init return list;

private
 ...
end;

We can instantiate this generic to create a new package that will store the integers for us. The question is "where do
we want to instantiate it, such that it won't get in the way of the abstraction, or cause other developement
problems?". The solution to this (as it is to a lot of these type of questions) is in the private section of the package.

We can then use the generic as follows...

with generic_lists;

package stacks is

 type stack is private;

 underflow :exception;

 procedure push(item:in out stack; value:in integer);
 procedure pop(item:in out stack; value : out integer);

 function full(item:stack) return boolean;
 function empty(item:stack) return boolean;

 -- return an empty initialized stack
 function init return stack;

private

 -- Instantiate the generic to create a new package.
 package integer_lists is new generic_lists(integer);

 type stack is new integer_lists.list;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (11 of 23) [10/14/2000 12:55:42 PM]

 -- stack inherits all the operations of type list, as before.

end;

The package body is the same as previously described.

Here we can enforce privacy, without changing what the type does for a client.

Abstractions from composition
Abstractions can be implemented by using composition (composing new abstractions by putting existing abstractions
together, typically in a record) and by forwarding subprogram calls onto the appropriate component object. (This is
all pretty simple stuff!).

with lists; use lists;

package queues is

 type queue is private;

 procedure remove_from_head(item:in out queue; value :out integer);
 procedure add_to_tail(item:in out queue; value:integer);

 function full(item: queue) return boolean;
 function empty(item:queue) return boolean;

 function init return queue;
private
 -- a queue is composed from the following items...

 type queue is record
 values:list;
 no_of_elements:integer;
 end record;
end;

package body queues is

procedure remove_from_head(item:in out queue; value:out integer) is
begin
 remove_from_head(item.values, value);
 item.no_of_elements := item.no_of_elements - 1;
end;

procedure add_to_tail(item:in out queue; value:integer) is
begin

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (12 of 23) [10/14/2000 12:55:42 PM]

 add_to_tail(item.values, value);
 item.no_of_elements := item.no_of_elements + 1;
end;

procedure reset (item: in out queue) is ...

function full(item: queue) return boolean is
begin
 return full(item.values);
end;

function empty(item:queue) return boolean is
begin
 return item.no_of_elements = 0;
end;

end;

In this example calls on a queue are "forwarded" onto the list component, which is responsible for implementing
some aspect of the queue abstraction (in this case a major part!).

Abstracting common functionality - families of
abstractions
Both implementations of the stack described above provided a common set of routines, that is push, pop etc. In Ada
we can state the commonalities using a common type. The common type will describe what routines are to be
provided, and their profiles, but not actually describe how to implement them. Type derived from this type are forced
to implement each subprogram in its own way. This is called an abstract type. It is an abstraction abstraction!

The reason we go to all of this trouble is to tell the clients of the stack that no matter what implementation they
choose, they can be sure of getting at least the functionality described by the abstract type.

package stacks is

 type stack is abstract tagged null record;
 -- An abstract type with no fields, and no "real" operations.
 -- Ada required the "tagged" description for abstract types

 underflow :exception;
 overflow :exception;

 procedure push(item:in out stack; value:in integer) is abstract;
 procedure pop(item:in out stack; value : out integer) is abstract;

 function full(item:stack) return boolean is abstract;
 function empty(item:stack) return boolean is abstract;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (13 of 23) [10/14/2000 12:55:42 PM]

 function init return stack is abstract;

end;

Here we have made the type abstract - this package just provides a series of subprogram that must be implemented
by someone else. We could also have made the type private...

package stacks is

 type stack is abstract tagged private;

 -- subprograms
 ...

private

 type stack is abstract tagged null record;

end;

Either in the same package (or more typically in another package) we can extend the type, and create a real type that
implements the abstract type...

with lists;
with stacks;

package unbounded_stacks is

 type bounded_stack is new stacks.stack with private;
 -- bounded_stack is derived from the empty stack record,
 -- with some extra bits added on that are described
 -- in the private section.

 procedure push(item:in out unbounded_stack; value:in integer);
 procedure pop(item:in out unbounded_stack; value : out integer);

 function full(item:unbounded_stack) return boolean;
 function empty(item:unbounded_stack) return boolean;

 -- return an empty initialized unbounded_stack
 function init return unbounded_stack;

private

 -- Extend the empty stacks.stack record with one
 -- 'more' field.
 -- All calls will have to be forwarded onto the
 -- internal linked list.

 type unbounded_stack is new stacks.stack with
 record

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (14 of 23) [10/14/2000 12:55:42 PM]

 values:lists.list;
 end record;

end;

As described in the section on composition, you will have to forward calls onto the linked list within the
unbounded_stack. The package body would therefore be...

package body unbounded_stacks is

 procedure push(item:in out unbounded_stack; value:in integer) is
 begin
 lists.insert_at_head(item.values, value);
 end;

 procedure pop(item:in out unbounded_stack; value : out integer) is
 begin
 lists.remove_from_head(item.values, value);
 exception
 when lists.underflow =>
 raise stacks.underflow;
 end;

 ...
end unbounded_stacks;

Packaging
In Ada, types and packages are almost completely independent of each other. This allows you to devise a solution to
a problem in terms of types and operations, and later decide on how these parts should be split into pieces to meet the
software engineering requirements of ease of modification, encapsulation, modularisation, reduced recompilation
costs, namespace management etc.

This has been demonstrated already, in the choice to hide implementation details in the various packages above.
However Ada also provides further choices that can be made in this regard.

Namespace management
In language such as C, there is only one namespace. There is no hierachy of names; no ability to 'hide' or qualify a
name. A good analogy is the first version of the Mac OS, which had no directories. All filenames had to be different,
and could not conflict with predefined system filenames. The solution typically adopted in C to resolve this problem
is to prepend some form of semantic information in the name. For example all posix thread routines are prepended
with 'pthread_'.

Ada83 solved this problem by allowing packages which contain their own namespace, in which locally defined
names don't conflict with other names (the analogy is for one level of subdirectories (actually not quite accurate, as a
package can contain other entities...)).

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (15 of 23) [10/14/2000 12:55:42 PM]

Ada95 however expands the namespace concept with the inclusion of child packages to allow for truly hierachic
namespaces. Child packages are typically used to model some form of hierachy present in the problem domain. For
example a unix binding may implement packages

unix -- can be an empty "place holder" package
unix.file -- file routines
unix.process -- process operations

Alternatively the package hierachy can be used to reflect the inhertiance hierachy of an object oriented type. Note
however the package hierachy does not define the inhertiance hierachy - the type declarations do that.

The example given earlier of an abstract stack, and a concrete implementation of an unbounded stack is a good
example of how we could have chosen a different organisation, without affecting the meaning of the abstraction.

with stacks; use stacks;
with lists;

package stacks.unbounded is

 type unbounded_stack is new stack with private;
 -- partial view of the bounded_stack

 -- override the primitive operations with concrete services

 procedure push(item:in out bounded_stack; value:in integer);
 procedure pop(item:in out bounded_stack; value : out integer);

 function full(item:bounded_stack) return boolean;
 function empty(item:bounded_stack) return boolean;

 function init return unbounded_stack;

private
 ...
end;

We could create another type, bounded_stack, and decide to put it into the package stacks.bounded.

package stacks.bounded is
 type bounded_stack is new stacks.stack with private;
 ...
end;

Handling dynamic structures properly
As discussed earlier in the implementation of a stack with a linked list, making a copy of such a type through an
assignment statement doesn't quite work. The problem is that copying often only copies a pointer to the head of a list
(or tree) and does not copy the entire list. Another problem is that the space allocated to a linked list is often not
recovered when an object goes out of scope.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (16 of 23) [10/14/2000 12:55:42 PM]

An example which highlights these problems is...

with lists; use lists;

procedure bad_voodoo is

 a, b:list;
 result :integer;

 procedure loose_memory is
 c :list;
 begin
 insert_at_head(c, 1);
 insert_at_head(c, 2);
 end; -- when you get to here, c goes out of scope
 -- and you lose the memory associated with the nodes!
begin
 insert_at_head(a, 1);
 insert_at_head(a, 2);
 insert_at_head(b, 3);
 insert_at_head(b, 4);

 b := a;
 -- b and a now point to the same list, and all of b's nodes
 -- have been lost!

 remove_from_tail(a, result);
 -- affects both a and b

end;

In Ada95 you can solve these problems by providing special routines that are "automagically" called when a values
are being copied, when they go out of scope, or when they are initialized. For this to happen, the object in question
must be derived from a special type called Controlled, defined in package Ada.Finalization.

The three routines automagically called are called Initialize, Adjust and Finalize. They are called in the following
contexts...

with lists; use lists;

procedure demo is
 a :list; -- Initialize(a);
 b :list := Init; -- Initialize not called
begin
 insert_at_head(a, 1);
 insert_at_head(a, 2);

 insert_at_head(b, 3);
 insert_at_head(b, 4);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (17 of 23) [10/14/2000 12:55:42 PM]

 a --> | 2 |-->| 1 |--> null
 b --> | 4 |-->| 3 |--> null

 b := a;

 --
 Finalize(b);
 Free b's nodes, before it is overwritten

 a --> | 2 |-->| 1 |--> null
 b --> null

 Copy a to b.
 Now they _both_ point at the same list

 a --> | 2 |-->| 1 |--> null
 b ----^

 Adjust(b);
 b has to duplicate the list it currently
 points at, at then point at the new list.

 a --> | 2 |-->| 1 |--> null
 b --> | 2 |-->| 1 |--> null
 --

end; Finalize(a), Finalize(b).
 Delete the memory associated with both a and b.

 a --> null
 b --> null

Here we finally give the full details for package List. The code for it looks like...

with Ada.Finalization;

package lists is

 type List is private;

 underflow :exception;

 procedure insert_at_head(item:in out list; value :in integer);
 procedure remove_from_head(item:in out list; value:out integer);

 procedure insert_at_tail(item:in out list; value :in integer);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (18 of 23) [10/14/2000 12:55:42 PM]

 procedure remove_from_tail(item:in out list; value: out integer);

 function full(item:list) return boolean;
 function empty(item:list) return boolean;

 -- returns an empty initialized list
 function init return list;

private

 -- Normal stuff for the list

 type Node;
 type Ptr is access Node;

 type Node is record
 Value :Integer;
 Next :ptr;
 end record;

 -- Only the head of the list is special...

 type List is new Ada.Finalization.Controlled with
 record
 Head :Ptr;
 end record;

 -- No need for Initialize (pointers are automatically set to null)

 -- procedure Initialize(item:in out list);

 procedure Adjust(item:in out list);

 procedure Finalize(item:in out list);

end;

Note that the routines were declared in the private section. This prevents clients from calling them when it is
inappropriate.

The package body would be implemented as follows...

with unchecked_deallocation;

package body lists is

-- routine for deallocating nodes
procedure free is new unchecked_deallocation(node,ptr);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (19 of 23) [10/14/2000 12:55:42 PM]

--
-- Implement all the other stuff (insert_at_head, remove_from_head...)

...

--
-- given a ptr to a list, this will allocate a new
-- identical list

function Copy_List(item:ptr) return ptr is

begin
 if item = null then
 return null;
 else
 return new node'(item.value,Copy_List(item.next));
 end if;
end;

--
-- In the assignment b := a, b has just been
-- overwritten by the contents of a. For a linked
-- list this means that both a and b point at the
-- same object. Now have to make a physical copy
-- of the items pointed at by b, and replace the head
-- ptr with a pointer to the copy just made

procedure Adjust(item:in out list) is

begin
 item.head := Copy_List(item.head);
end;

--
-- delete all the memory in the about to be
-- destoyed item

procedure Finalize(item:in out list) is
 upto:ptr := item.head;
 temp :ptr;
begin
 while upto /= null loop
 temp := upto;
 upto := upto.next;
 free(temp);
 end loop;

 item.head := null;
end;

end;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (20 of 23) [10/14/2000 12:55:42 PM]

The use of controlled types gives a good degree of control over dynamic objects. It simplifies the life of a client of
the type as it relieves them of the worry of having to manage the types memory. It also allows for easy substitution
of dynamic and non dynamic solutions to problems.

Typically once the 3 routines (initialize, adjust, finalize) have been written, the rest of the services can be written
without regard to these features.

Enforcing initialization
In C++ you can enforce the initialization of all objects by supplying a class with a constructor, which is called when
an object is created. The same effect in Ada is achieved by assigning a value the result of calling a function.

For example

package stacks is
 type stack is tagged private;

 function init return stack;

 -- other operations
 ...
private
 type list is array(1..10) of integer;
 type stack is record
 values :list;
 top :integer range 0..10;
 end record;
end;

with stacks; use stacks;
procedure main is
 a : stack := init;
 b : stack;
begin
 null;
end;

In this example the object a is properly initialized to represent an empty stack. You can only use functions provided
in the package; you can't set it any other way, because the type is private. However as can be seen, the object b has
not been initialized. The language has not enforced an initialization requirement.

The only way to do this is through the use of record discriminants. The partial view of the type is declared to have
discriminants, even if the full view does not. As the number of fields that a record has may depend on a discriminant,
and because Ada likes constrained objects (one's whose size is known) the combination of discriminant and private
type causes the compiler to enforce all objects of the type to be initialized.

package stacks is
 type stack(<>) is private;
 -- declare that stack _may_ have discriminant...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (21 of 23) [10/14/2000 12:55:42 PM]

 function init return stack;

 -- other operations
 ...
private
 type list is array(1..10) of integer;

 -- ...even if you have no intention of it having such
 type stack is record
 values :list;
 top :integer range 0..10;
 end record;
end;

with stacks; use stacks;
procedure main is
 a : stack := init;
 b : stack;
 -- now this is illegal. You _must_ call a function
 -- to initialize it.
begin
 null;
end;

This is all quite non intuitive, and rather counter to the Ada notion of readability (IMHO). Certainly C++ manages
this is a more programmer friendly way.

Mutually Recursive types
Sometimes there is a need for two (or more) types that are mutually recursive, that is they have pointers that point at
each other. An example is a doctor and a patient, who wish to maintain pointers at each other. Unless you wish to
place them together in the same package, Ada does not properly support you. The best you can do if you want to
retain separate compilation, is to define two base types, then join them together later in other packages.

package doctors_and_patients is
 type doctor is abstract tagged null record;
 type doctor_ptr is access all doctor'class;

 type patient is abstract tagged null record;
 type patient_ptr is access all patient'class;
end;

with doctors_and_patients; use doctors_and_patients;
package doctors is
 type doc is new doctor with private;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (22 of 23) [10/14/2000 12:55:42 PM]

 -- subprograms
 ...
private
 type doc is new doctor with
 record
 pat:patient_ptr;
 ...
 end record;
end;

-- similarly for patient type

If you can forsee all operations required, or at least those required by each other, you can place them in package
doctors_and_patients. Futher operations can be added along with subsequent type declarations (for example type
doc).

It's probably worth point out here that package bodies can see into package specs, so...

with doctors; use doctors;
package body patients is

 -- The patients body can access the doctor's services
 -- declared in the doctor's spec

 ...

end patients;

with patients; use patients;

package body doctors is

 -- The doctors body can access the patients services
 -- declared in the patient's spec

end doctors;

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html (23 of 23) [10/14/2000 12:55:42 PM]

17 Idioms

Overview1.

Introduction2.

Abstraction3.

Creating abstractions from other abstractions (code reuse)4.

Private inheritance5.

Another example6.

So far so good. How do I write the function full?7.

Creating abstractions by using generic abstractions8.

Abstractions from composition9.

Abstracting common functionality - families of abstractions10.

Packaging11.

Namespace management12.

Handling dynamic structures properly13.

Enforcing initialization14.

Mutually Recursive types15.

1.

to the index...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms_ToC.html [10/14/2000 12:55:43 PM]

18 Packages and program design
When a program starts to get large it needs to broken up into smaller pieces, to make it easier to understand, distribute the
work, quicker to fix, isolate changes etc.

But how to do this? Typical introductory programming courses teach programming with a large main procedure, and
perhaps a couple of packages.

So how do you progress from this initial stage to a more mature view of system developement? One way is to show a simple
mapping (or transformation) of a program to a functionally equivalent program with a number of packages.

The following attempts to show how an existing Ada program may be broken up into smaller pieces.

Consider the following program...

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is

 -- constants-------------------------------------
 Max_Bookings : constant := 20;
 Max_Name_Length : constant := 40;
 No_Cars : constant := 10;

 -- types---

 subtype Name_Array is String(1..Max_Name_Length);
 subtype Registration is String(1..6);

 type Date is
 record
 Day : Positive;
 Month : Positive;
 Year : Positive;
 end record;

 type Booking is
 record
 On : Date;
 Name : Name_Array;
 Car : Registration;
 end record;

 type Booking_Array is array (1..Max_Bookings) of Booking;

 -- Variables------------------------------------

 Bookings : Booking_Array;
 ...other variables...

 -- Procedures & Functions-----------------------

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (1 of 14) [10/14/2000 12:55:48 PM]

 -- Part of booking system for after a date
 function After(A, B : Date) return Boolean is...

 -- display a date in the format dd/mm/yy
 procedure Display(Item : in Date) is...

 procedure Search_For_Empty_Booking(
 Bookings : in out Booking_Array;
 On : in Date;
 Position : out Positive) is...

 procedure Make_Booking(
 Bookings : in out Booking_Array;
 On : in Date;
 Name : in Name_Array;
 Success : out Boolean) is...

 procedure Menu(Option : out positive) is...

begin
 loop
 ...
end;

Figure 1. Sample program.

Here the code makes use of different types, and has numerous procedures. We can imagine, for example, that the procedure
Make_Booking calls Search_For_Empty_Booking, which in turn calls the function After to check if the requested booking
is after another booking.

When we look at the code there does not seem to be much cohesion - declarations of types, constants and subprograms are
in their own little sections. This is one way to split a program up into pieces, but it is not a very good way.

Another way to split it up is to note that we can see that somethings "belong" together. For example the type date is closely
related to the function After and procedure Display. What we can do is group these routines more closely together.

(Imagine that there are others programs being developed, and that they also had a need of these routines. It would be silly to
have programmers recode these routines. Reuse of the code would be cheaper - but it is not easy in this situation. If someone
copies the code by doing "cut and paste" then any bug fixes made to the date routines will only occur in one program. It
would be better if we made these routines available in one place for all programs).

The first thing we should think about is grouping these items together...

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (2 of 14) [10/14/2000 12:55:48 PM]

Figure 2. Like types and procedures grouped together.

This does not change how the program runs, only how it is layed out.

You can see that the bookings require the definition of a date to be available, in fact they have to preceede the definition of
the booking. The date definitions do not require any previous declarations.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (3 of 14) [10/14/2000 12:55:48 PM]

Figure 3. Overview of program structure.

From this we can see that it is possible to take these two sections out, and place them into separate files. However we have
to be careful to maintain Bookings visibility of the Date declarations. Likewise the main program has to be able to "see" all
of the booking declarations, and all of the date declarations.

The bookings section only has to be able to "see" the date declarations.

The date section doesn't have to be able to "see" any other declarations.

We are now in a position to place them into separate packages...

Figure 4. Date package

Note that instead of writing out the subprograms in full, we just write them as specifications. The full description of them
(with all the code) is placed in the package body.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (4 of 14) [10/14/2000 12:55:48 PM]

Figure 5. Bookings package

The main procedure can now be...

with Dates; use Dates;
with Bookings; use Bookings;
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is

 Bookings : Booking_Array;

 --Procedures-not-easily-classified---------------
 procedure Menu(Option : out positive) is...

begin
 loop
 ...
end;

Figure 6. Revised program.

When this program is compiled and run, it will execute exactly the same as the very first example. All that is happened is we
have moved code into different places, so as to make it easier to write and maintain. These are software engineering, or
program construction concerns, not issues relating to how the program runs.

However in separating items out, we have had to be very aware of what declarations are dependent on what other
declarations. If we had dates declared after bookings, bookings would not compile. This is called the dependency
relationship and it is a very useful piece of information that tells us a lot about how a program is constructed.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (5 of 14) [10/14/2000 12:55:48 PM]

For example if we found out that a routine in the date package was incorrect, we would need to look at all the routines that
had something to do with dates to see if they were affected, and should also be fixed. In the first example, this may not have
been easy. With the dependency relationships explicity described, it makes it very easy to search through large programs
and find what may be affected by a bug and what isn't.

Also when a maintenance programmer has to change a program, they always have to be aware of the ripple effect - the
possibility that a change in one part of a program may have consequences in other parts that are not anticipated. Dependency
relationships (which are explicitly stated in the with clause) help the programmer understand how a large program is pieced
together.

A "Layered" view of the program
When we think about the dependency relationships in a system, we can see that some packages don't have any
dependencies. Others depend on one or two other packages, and some depend on many. In general we can depict this in a
layered diagram...

Here the procedure main is in the hightest layer, and it depends on services provided by lower layer packages. An item at a
lower layer however, never depends on higher layer items. Designing systems in layers makes the process of abstraction,
and the notion of providing services a fairly natural one.

Interestingly by turning the diagram upside down, you get the same program strucutre as in Figure 2.

Look at putting the pieces into package specs...

When a function such as

 -- Part of booking system for after a date
 function After(A, B : Date) return Boolean;

is called from, say, procedure

 procedure Make_Booking(
 Bookings : in out Booking_Array;
 On : in Date;
 Name : in Name_Array;
 Success : out Boolean);

the procedure doesn't really care how the function is written - what internal variables it has, or the order of if statements etc,
so long as it produces the correct result. All it really cares about is giving two dates, and getting a boolean result. It only
really depends on the specification of the function, and not the body of it.

Ada enforces this distinction when we put things into a package, by allowing only subprogram specifications in the pacakge

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (6 of 14) [10/14/2000 12:55:48 PM]

spec, and the full subprogram in the package body.

Look at putting pieces into a package body

When we examine our main program, we may find that subprograms such as

 procedure Search_For_Empty_Booking(
 Bookings : in out Booking_Array;
 On : in Date;
 Position : out Positive);

are never called from any routine other than the other booking related subprograms. For this reason there is not much point
in making it publically available. We can place it soley in the package body for bookings, and not have any adverse impact
on the system at all.

Designing programs with Direct_IO/Sequential_IO
Many students desiging programs with Direct_IO, or indeed any generic package, often have trouble figuring out where the
instantiation should be placed.

Generally a program can be structured using child packages; the definition of an item is placed in one package, and child
packages are created to contain the I/O facilities for it.

Consider, for example...

package Blahs is
 type Blah is...

end;

If we want a package to perform I/O on this type we can instantiate direct_io as a child package...

with Ada.Direct_IO;
with Blahs;

package Blahs.Direct_IO is new Ada.Direct_IO(Blahs.Blah);

However direct_io (and sequential_io) are extremely low level packages. They offer very little in terms of the functionality
you would really like to have, such as the ability to search for an item, or even delete an item.

If you want to write and retrieve binary data to a file, consider the Direct_IO generic as simply a building block, used to
create more sophisticated services.

(We can make an analogy between direct_io and arrays. Both are very low level concepts, and are generally used to
construct higher level concepts such as hash tables).

In the example below, we create a higher level file abstraction, that supports searching and deletion of items in the file.

with Keys; use Keys;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (7 of 14) [10/14/2000 12:55:48 PM]

package Blahs is
 type Blah is...

 -- routines to help "find" records
 function "="(Left : Blah; Right : Key_Type) return Boolean;
 function "="(Left : Key_Type; Right : Blah) return Boolean;

end;

with Ada.Direct_IO;

package Blahs.IO is
 type File_Type is limited private;

 -- Open a file in r/w mode (you may decide to include a
 -- mode parameter). Also create the file if needed.

 procedure Open(
 File : in out File_Type;
 Name : in String);

 procedure Close(File : in out File_Type);

private

 -- build in support for "deleted" cells in the file
 type Component is
 record
 Item : Blah;
 Deleted : Boolean := true;
 end record;

 package Blahs_Direct_IO is new Ada.Direct_IO(Component);

 -- provide a shorter renaming for the package
 package BDIO renames Blahs_Direct_IO;

 -- Completion of the private type advertised above
 type File_Type is new BDIO.File_Type;

end;

At this point, we have a file type that can be used in further child packages to build several different I/O facilities. The
package has been instantiated in the private section for two reasons.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (8 of 14) [10/14/2000 12:55:48 PM]

1. It prevents packages outside the Blahs.IO hierachy from accessing the low level routines in Blahs_Direct_IO, that are of
no concern to them. We can force them to use the high level routines we will provide.

2 It allows child packages to 'see' the Blahs_Direct_IO package, and therefore to be able to call on these routines.

The package body would look like...

package body Blahs.IO is

 -- Forward the call to the blah_direct_io package

 procedure Open(
 File : in out File_Type;
 Name : in String) is
 begin
 BDIO.Open(
 File => BDIO.File_Type(File),
 Mode => BDIO.inout_file,
 Name => Name);

 exception
 when BDIO.Name_Error =>
 BDIO.Create(
 File => BDIO.File_Type(File),
 Mode => BDIO.inout_file,
 Name => Name);
 end;

 procedure Close(File : in out File_Type) is
 begin
 BDIO.Close(BDIO.File_Type(File));
 end;

end;

For example you may want to produce a package with facilities for reading, deleting, searching etc, while another package
could be used to consolidate a file.

with Keys; use Keys;

package Blahs.IO.Advanced_Features is

 procedure Read(
 File : in out File_Type;
 Key : in Key_Type;
 Item : out Blah;
 Found : out Boolean);

 procedure Delete(
 File : in out File_Type;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (9 of 14) [10/14/2000 12:55:48 PM]

 Key : in Key_Type;
 Item : out Blah);

 etc.

end;

package Blahs.IO.Utility_Routines is

 -- Rewrite the file to remove empty cells.
 -- This presumes that free space is not managed in some
 -- more sophisticated manner
 procedure Compact_File(File : in out File_Type);

end;

The package body for these packages can be roughly sketched out as follows. Note that it makes a simplifying assumption
as to how it searches for a key value.

with Keys; use Keys;

package body Blahs.IO.Advanced_Features is

 -- Call on the Read facility from package BDIO
 procedure Read(
 File : in out File_Type;
 Key : in Key_Type;
 Item : out Blah;
 Found : out Boolean) is

 Data : Component;
 use BDIO;
 begin
 for i in 1..BDIO.Size(BDIO.File_Type(File)) loop

 BDIO.Read(BDIO.File_Type(File), Data);

 -- use the "=" operator defined in Blahs to
 -- compare what we have read
 if (not Data.Deleted) and then
 (Data.Item = Key) then

 Found := True;
 Item := Data.Item;
 return;
 end if;
 end loop;

 -- Searched-for data not found.

 return False;
 end;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (10 of 14) [10/14/2000 12:55:48 PM]

 etc.

end;

It is informative to note that if we examine the non private interfaces in this package hierachy, we will see no references to
the generic Direct_IO at all.

package Blahs is
 type Blah is...
end;

package Blahs.IO is
 type File_Type is limited private;
 procedure Open(...
 procedure Close(...
end

package Blahs.IO.Advanced_Features is
 procedure Read(...
 procedure Delete(...
end;

package Blahs.IO.Utility_Routines is
 procedure Compact_File(...
end;

To use these routines you may have code as follows...

with Keys; use Keys;
with Blahs; use Blahs;
with Blahs.IO; use Blahs.IO;
with Blahs.IO.Advanced_Features;use Blahs.IO.Advanced_Features;

procedure Demo is
 Data : Blah;
 File : Blahs.IO.File_Type;
 Key : Key_Type;
 Found : Boolean;

begin
 -- Read some data from the user..
 get(Key);

 Open(File, "my_file.dat");
 Read(File, Key, Data, Found);

 if Found then

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (11 of 14) [10/14/2000 12:55:48 PM]

 -- do whatever
 else
 -- do whatever
 end if;
end;

These child packages can also be written as generic packages, so that this structure can be replicated for different file types.

Private packages
When we develop systems we find that new issues appear as we tackle larger and larger programs. Initially splitting a
program into subprograms makes developement easier. We can place variables that are only used by one subprogram inside
it - hiding it from outside view and interference.

As the number of subprograms grows, however, we find a need to split them up into another level of grouping - the package.
This gives us the opportunity to hide entire subprograms inside package bodies - subprograms that are not meant for other
routines to use.

After the number of packages starts to grow, we turn to child packages to create subsystems, in which a family of logically
related types and functionality is packaged together. Each subsystem provides services to all clients by advertising them in
it's client specifications. Once again however, we find at this high level of abstraction some of the services that are offered
should only be available to those within the subsystem.

Private packages allow you to structure your program with local packages, and prevent offering services to anyone who
wants them. Banks are, of course, more secure if the internal procedures they make use of to deliver services to customers,
are not made available to those same clients. We definately want the same level of security for our subsystems!

How do I know when to use private packages?

Armies during war time generally run on a "needs to know" basis. You only tell people what they need to know. Similarly
when you progressed from to each new level in the diagram above, you dealt with the issue of what to hide on a "needs to
know" basis. If a client doesn't need to know the details of a service then they are hidden from view. This split is based on
the difference between what service is offered, and how it is implemented. You simply need to apply the same knowledge,
only at a higher level.

This may come about from a hierachical object decomposition, where the services provided at a high level analysis provide
the subsystem level interfaces. Further elaboration of the design results in objects which may only be needed to implement
the subsystem services already offered.

A case study

A temporal assertions package (used for making assertions such as "this event must happen within 5 seconds of that event",
or "this event must never occur before that event") has been developed at RMIT. Several concepts emerged from the
analysis of the requirements.

Events Something that occurs at an instant in time
Intervals A duration, marked by a beginning and end event
Predicates A statement involving events, intervals, boolean
 connectives (and, or, not, xor) and special

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (12 of 14) [10/14/2000 12:55:48 PM]

 conditions, such a "must occur before", and
 "must occur at least once"

TriState Logic
 A special form of boolean logic consisting of three
states (false, true, don't know)

As well as these types/concepts discovered at the analysis stage, other types were found at the design stage, such as data
structures to hold the events and predicates that would be declared.

The packages developed for this were...

package Assertion
 declared major types

private package Assertion.Events_Table
 maintains data structure for storing events

package Tri_State
 3 valued boolean logic

Assertion contains most of the code of the program. Package Tri_State, although not involved in any other part of the
system, was felt to be a useful sort of package, and was therefore not declared private.

Package Assertion.Events_Table maintains the data structure for storing the events that clients have declared. As an
alternative it could have been included in the package body of Assertion in a number of different ways.

One technique would be to dump all of the code, data structures and variables in the package body. This would not be
satisfactory as it would make the package body more cluttered.

Another technique would be to place a package inside the package body...

package body Assertion is

 package Events_Table is

 type Event_Table is private;
 procedure Insert(
 Into : in out Event_Table;
 Item : in Event);
 ...
 end Events;

 package body Events_Table is
 procedure Insert(....) is

 end;

 Stored_Events : Events_Table.Event_Table;

 -- rest of Assertion package

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (13 of 14) [10/14/2000 12:55:48 PM]

end Assertion;

Although it fixes the problem of cluttering, it still causes the package to be longer than it needs to be (increased compilation
times), harder to develop (it is harder to make calls on it). As well the structure of the program is harder to understand (the
program structure is easiest to see when we can easily see the packages that make up the program).

For this reason the package was made a private child package of Assertion.

A package because

We need to hide away the low level details of how the table is implemented

A child package because

It needs to see the declarations of type Event in the spec of Assertion

It's name clearly links it into the Assertion subsystem of a program

A Private child package because

No other part of a program, apart from the Assertion subsystem, needs to know the internal details of how events are stored
away.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html (14 of 14) [10/14/2000 12:55:48 PM]

18 Packages and program design1.

A "Layered" view of the program2.

Designing programs with Direct_IO/Sequential_IO3.

Private packages4.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs_ToC.html [10/14/2000 12:55:49 PM]

Appendix A Text_IO package

with Ada.IO_Exceptions;
with System;
with System.Parameters;

package Ada.Text_IO is

 type File_Type is limited private;
 type File_Mode is (In_File, Out_File, Append_File);

 type Count is range 0 .. System.Parameters.Count_Max;

 subtype Positive_Count is Count range 1 .. Count'Last;

 Unbounded : constant Count := 0;
 -- Line and page length

 subtype Field is Integer range 0 .. System.Parameters.Field_Max;

 subtype Number_Base is Integer range 2 .. 16;

 type Type_Set is (Lower_Case, Upper_Case);

 -- File Management --

 procedure Create
 (File : in out File_Type;
 Mode : in File_Mode := Out_File;
 Name : in String := "";
 Form : in String := "");

 procedure Open
 (File : in out File_Type;
 Mode : in File_Mode;
 Name : in String;
 Form : in String := "");

 procedure Close (File : in out File_Type);
 procedure Delete (File : in out File_Type);
 procedure Reset (File : in out File_Type; Mode : in File_Mode);
 procedure Reset (File : in out File_Type);

 function Mode (File : in File_Type) return File_Mode;
 function Name (File : in File_Type) return String;
 function Form (File : in File_Type) return String;

 function Is_Open (File : in File_Type) return Boolean;

 --
 -- Control of default input, output and error files --
 --

 procedure Set_Input (File : in File_Type);
 procedure Set_Output (File : in File_Type);
 procedure Set_Error (File : in File_Type);

 function Standard_Input return File_Type;
 function Standard_Output return File_Type;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a (1 of 8) [10/14/2000 12:55:51 PM]

 function Standard_Error return File_Type;

 function Current_Input return File_Type;
 function Current_Output return File_Type;
 function Current_Error return File_Type;

 type File_Access is access constant File_Type;

 function Standard_Input return File_Access;
 function Standard_Output return File_Access;
 function Standard_Error return File_Access;

 function Current_Input return File_Access;
 function Current_Output return File_Access;
 function Current_Error return File_Access;

 -- Buffer control --

 procedure Flush (File : in out File_Type);
 procedure Flush;

 --
 -- Specification of line and page lengths --
 --

 procedure Set_Line_Length (File : in File_Type; To : in Count);
 procedure Set_Line_Length (To : in Count);

 procedure Set_Page_Length (File : in File_Type; To : in Count);
 procedure Set_Page_Length (To : in Count);

 function Line_Length (File : in File_Type) return Count;
 function Line_Length return Count;

 function Page_Length (File : in File_Type) return Count;
 function Page_Length return Count;

 -- Column, Line, and Page Control --

 procedure New_Line (File : in File_Type; Spacing : in
Positive_Count := 1);
 procedure New_Line (Spacing : in Positive_Count := 1);

 procedure Skip_Line (File : in File_Type; Spacing : in
Positive_Count := 1);
 procedure Skip_Line (Spacing : in Positive_Count := 1);

 function End_Of_Line (File : in File_Type) return Boolean;
 function End_Of_Line return Boolean;

 procedure New_Page (File : in File_Type);
 procedure New_Page;

 procedure Skip_Page (File : in File_Type);
 procedure Skip_Page;

 function End_Of_Page (File : in File_Type) return Boolean;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a (2 of 8) [10/14/2000 12:55:51 PM]

 function End_Of_Page return Boolean;

 function End_Of_File (File : in File_Type) return Boolean;
 function End_Of_File return Boolean;

 procedure Set_Col (File : in File_Type; To : in
Positive_Count);
 procedure Set_Col (To : in Positive_Count);

 procedure Set_Line (File : in File_Type; To : in
Positive_Count);
 procedure Set_Line (To : in Positive_Count);

 function Col (File : in File_Type) return Positive_Count;
 function Col return Positive_Count;

 function Line (File : in File_Type) return Positive_Count;
 function Line return Positive_Count;

 function Page (File : in File_Type) return Positive_Count;
 function Page return Positive_Count;

 -- Characters Input-Output --

 procedure Get (File : in File_Type; Item : out Character);
 procedure Get (Item : out Character);
 procedure Put (File : in File_Type; Item : in Character);
 procedure Put (Item : in Character);

 procedure Look_Ahead
 (File : in File_Type;
 Item : out Character;
 End_Of_Line : out Boolean);

 procedure Look_Ahead
 (Item : out Character;
 End_Of_Line : out Boolean);

 procedure Get_Immediate
 (File : in File_Type;
 Item : out Character);

 procedure Get_Immediate
 (Item : out Character);

 procedure Get_Immediate
 (File : in File_Type;
 Item : out Character;
 Available : out Boolean);

 procedure Get_Immediate
 (Item : out Character;
 Available : out Boolean);

 -- Strings Input-Output --

 procedure Get (File : in File_Type; Item : out String);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a (3 of 8) [10/14/2000 12:55:51 PM]

 procedure Get (Item : out String);
 procedure Put (File : in File_Type; Item : in String);
 procedure Put (Item : in String);

 procedure Get_Line
 (File : in File_Type;
 Item : out String;
 Last : out Natural);

 procedure Get_Line
 (Item : out String;
 Last : out Natural);

 procedure Put_Line
 (File : in File_Type;
 Item : in String);

 procedure Put_Line
 (Item : in String);

 --
 -- Generic packages for Input-Output of Integer Types --
 --

 generic
 type Num is range <>;

 package Integer_Io is

 Default_Width : Field := Num'Width;
 Default_Base : Number_Base := 10;

 procedure Get
 (File : in File_Type;
 Item : out Num;
 Width : in Field := 0);

 procedure Get
 (Item : out Num;
 Width : in Field := 0);

 procedure Put
 (File : in File_Type;
 Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);

 procedure Put
 (Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);

 procedure Get
 (From : in String;
 Item : out Num;
 Last : out Positive);

 procedure Put
 (To : out String;
 Item : in Num;
 Base : in Number_Base := Default_Base);

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a (4 of 8) [10/14/2000 12:55:51 PM]

 end Integer_Io;

 -- Input-Output of Modular Types --

 generic
 type Num is mod <>;

 package Modular_IO is

 Default_Width : Field := Num'Width;
 Default_Base : Number_Base := 10;

 procedure Get
 (File : in File_Type;
 Item : out Num;
 Width : in Field := 0);

 procedure Get
 (Item : out Num;
 Width : in Field := 0);

 procedure Put
 (File : in File_Type;
 Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);

 procedure Put
 (Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);

 procedure Get
 (From : in String;
 Item : out Num;
 Last : out Positive);

 procedure Put
 (To : out String;
 Item : in Num;
 Base : in Number_Base := Default_Base);

 end Modular_IO;

 -- Input-Output of Real Types --

 generic
 type Num is digits <>;

 package Float_Io is

 Default_Fore : Field := 2;
 Default_Aft : Field := Num'Digits - 1;
 Default_Exp : Field := 3;

 procedure Get

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a (5 of 8) [10/14/2000 12:55:51 PM]

 (File : in File_Type;
 Item : out Num;
 Width : in Field := 0);

 procedure Get
 (Item : out Num;
 Width : in Field := 0);

 procedure Put
 (File : in File_Type;
 Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

 procedure Put
 (Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

 procedure Get
 (From : in String;
 Item : out Num;
 Last : out Positive);

 procedure Put
 (To : out String;
 Item : in Num;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

 end Float_Io;

 generic
 type Num is delta <>;

 package Fixed_Io is
 Default_Fore : Field := Num'Fore;
 Default_Aft : Field := Num'Aft;
 Default_Exp : Field := 0;

 procedure Get
 (File : in File_Type;
 Item : out Num;
 Width : in Field := 0);

 procedure Get
 (Item : out Num;
 Width : in Field := 0);

 procedure Put
 (File : in File_Type;
 Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

 procedure Put
 (Item : in Num;
 Fore : in Field := Default_Fore;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a (6 of 8) [10/14/2000 12:55:51 PM]

 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

 procedure Get
 (From : in String;
 Item : out Num; Last : out Positive);

 procedure Put
 (To : out String;
 Item : in Num;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

 end Fixed_Io;

 generic
 type Num is delta <> digits <>;

 package Decimal_IO is

 Default_Fore : Field := Num'Fore;
 Default_Aft : Field := Num'Aft;
 Default_Exp : Field := 0;

 procedure Get
 (File : in File_Type;
 Item : out Num;
 Width : in Field := 0);

 procedure Get
 (Item : out Num;
 Width : in Field := 0);

 procedure Put
 (File : in File_Type;
 Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

 procedure Put
 (Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

 procedure Get
 (From : in String;
 Item : out Num;
 Last : out Positive);

 procedure Put
 (To : out String;
 Item : in Num;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

 end Decimal_IO;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a (7 of 8) [10/14/2000 12:55:51 PM]

 -- Input-Output of Enumeration Types --

 generic
 type Enum is (<>);

 package Enumeration_Io is

 Default_Width : Field := 0;
 Default_Setting : Type_Set := Upper_Case;

 procedure Get (File : in File_Type; Item : out Enum);
 procedure Get (Item : out Enum);

 procedure Put
 (File : in File_Type;
 Item : in Enum;
 Width : in Field := Default_Width;
 Set : in Type_Set := Default_Setting);

 procedure Put
 (Item : in Enum;
 Width : in Field := Default_Width;
 Set : in Type_Set := Default_Setting);

 procedure Get
 (From : in String;
 Item : out Enum;
 Last : out positive);

 procedure Put
 (To : out String;
 Item : in Enum;
 Set : in Type_Set := Default_Setting);

 end Enumeration_Io;

 -- Exceptions

 Status_Error : exception renames IO_Exceptions.Status_Error;
 Mode_Error : exception renames IO_Exceptions.Mode_Error;
 Name_Error : exception renames IO_Exceptions.Name_Error;
 Use_Error : exception renames IO_Exceptions.Use_Error;
 Device_Error : exception renames IO_Exceptions.Device_Error;
 End_Error : exception renames IO_Exceptions.End_Error;
 Data_Error : exception renames IO_Exceptions.Data_Error;
 Layout_Error : exception renames IO_Exceptions.Layout_Error;

private
 -- Implementation defined...
end Ada.Text_IO;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a (8 of 8) [10/14/2000 12:55:51 PM]

Appendix B Sequential_IO package

with IO_exceptions;

generic
 type ELEMENT_TYPE is private;

package SEQUENTIAL_IO is

 type file_type is limited private;
 type file_mode is (in_file,out_file);

-- File management

procedure CREATE (file :in out file_type;
 mode :in file_mode:=out_file;
 name :in string := "";
 form :in string := "");

procedure OPEN (file :in out file_type;
 mode :in file_mode;
 name :in string;
 form :in string := "");

procedure CLOSE (file :in out file_type);
procedure DELETE (file :in out file_type);
procedure RESET (file :in out file_type;
 mode :in file_mode);
procedure RESET (file :in out file_type);

function MODE (file :in file_type) return file_mode;
function NAME (file :in file_type) return string;
function FORM (file :in file_type) return string;

function IS_OPEN(file :in file_type) return boolean;

-- Input and output operations

procedure READ(file :in file_type;
 item :out element_type);
procedure WRITE(file :in file_type;
 item :in element_type);

function END_OF_FILE(file:in file_type) return boolean;

-- Exceptions
status_error :exception renames IO_EXCEPTIONS.status_error;
mode_error :exception renames IO_EXCEPTIONS.mode_error;
name_error :exception renames IO_EXCEPTIONS.name_error;
use_error :exception renames IO_EXCEPTIONS.use_error;
device_error :exception renames IO_EXCEPTIONS.device_error;
end_error :exception renames IO_EXCEPTIONS.end_error;
data_error :exception renames IO_EXCEPTIONS.data_error;

private
-- implementation dependent
end sequential_IO

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_b

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_b [10/14/2000 12:55:51 PM]

Appendix C Direct_IO package

with IO_exceptions;

generic

 type ELEMENT_TYPE is private;
package DIRECT_IO is
type file_type is limited private;

package direct_io is

type file_mode is (in_file, in_out_file, out_file);
type count is range 0.. implementation_defined;
subtype positive_count is range 1..count'last;

-- File management

procedure CREATE(file :in out file_type;
 mode :in file_mode := out_file;
 name :in string := "";
 form :in string := "");

procedure OPEN(file :in out file_type;
 mode :in file_mode;
 name :in string;
 form :in string := "");

procedure CLOSE (file :in out file_type);
procedure DELETE (file :in out file_type);
procedure RESET (file :in out file_type;
 mode :in file_mode);
procedure RESET (file :in out file_type);

function MODE (file :in file_type) return file_mode;
function NAME (file :in file_type) return string;
function FORM (file :in file_type) return string;

function IS_OPEN(file :in file_type) return boolean;

-- Input and output operations

procedure READ(file :in file_type;
 item : out element_type);
procedure READ(file :in file_type;
 item : out element_type;
 from :in positive_count);

procedure WRITE(file :in file_type;
 item :in element_type;
 from :in positive_count);
procedure WRITE(file :in file_type;
 item :in element_type);

procedure SET_INDEX(file :in file_type;
 to :in positive_count);

function INDEX(file :in file_type) return positive_count;

function SIZE(file :in file_type) return count;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_c

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_c (1 of 2) [10/14/2000 12:55:52 PM]

function END_OF_FILE(file:in file_type) return boolean;

-- Exceptions
status_error :exception renames IO_EXCEPTIONS.status_error;
mode_error :exception renames IO_EXCEPTIONS.mode_error;
name_error :exception renames IO_EXCEPTIONS.name_error;
use_error :exception renames IO_EXCEPTIONS.use_error;
device_error :exception renames IO_EXCEPTIONS.device_error;
end_error :exception renames IO_EXCEPTIONS.end_error;

private
--implementation depenedent
end DIRECT_IO;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_c

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_c (2 of 2) [10/14/2000 12:55:52 PM]

Appendix D Text_package package

The text_package package is used by first year students for variable length string
manipulation. It is loosely based on that provided in the LRM.
Equality can be tested by simply using the standard "=" operator because padding
is maintained as spaces in the unused portion of the record.
Ada95 allows the overriding of the "=" operator for all types, and allows the
operands to be of different types, so such padding would not be required.

with text_io;

package text_package is

 max_chars :constant integer := 256;
 subtype length_range is integer range 0..max_chars;
 subtype index_range is length_range range
1..length_range'last;

 type text is
 record
 value :string(index_range);
 length :length_range:=0;
 end record;

-- read a whole line of characters, throw away anything that
doesn't fit.

procedure get_line(item :in out text);

procedure get_line(file :in out text_io.file_type;
 item :in out text
);

-- put the characters in the_text to the screen. do not include a
new_line at
-- the end

procedure put(item :in text);

procedure put(file :in text_io.file_type;
 item :in text);

-- Put the characters in the_text to the screen. Do include a
new_line at the
-- end.

procedure put_line(item :in text);

procedure put_line(file :in text_io.file_type;
 item :in text);

-- get the string inside the text item.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_d

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_d (1 of 3) [10/14/2000 12:55:53 PM]

function to_string(item :in text) return string;

-- return the length of the string

function length(item :in text) return length_range;

-- return true if the string is empty

function empty(item :in text) return boolean;

-- set the value of "the_text" to "a_string". Disregard any
characters that
-- don't fit into the record

 function to_text(item :in string) return text;

-- append a character onto the end of the text
-- disregard anything that doesn't fit in

procedure append(item :in out text;
 add_on :in character);

-- append a string onto the end of the text
-- disregard anything that doesn't fit in

procedure append(item :in out text;
 add_on :in string);

-- append the two text items together
-- disregard anything that doesn't fit in

procedure append(item :in out text;
 add_on :in text);

-- returns the first n characters of the string, the string is
padded out with
-- spaces if item is not long enough
--

function first_n_chars(item :in text;
 n :in natural) return string;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_d

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_d (2 of 3) [10/14/2000 12:55:53 PM]

end text_package;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_d

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_d (3 of 3) [10/14/2000 12:55:53 PM]

Appendix E Simple_io package

The simple_io package is the simplified I/O package used by the first year students.
It attempts to provide facilities similar to that found in the Turbo Pascal
environment.

with text_io;

package simple_io is

 data_error: exception renames text_io.data_error;

 procedure get_line(item : out integer);
 procedure get_line(file :in out text_io.file_type;
 item : out integer);

 procedure get_line(item : out float);
 procedure get_line(file :in out text_io.file_type;
 item : out float);

 procedure get_line(item : out string);
 procedure get_line(file :in out text_io.file_type;
 item : out string);

 procedure get_line(item : out character);
 procedure get_line(file :in out text_io.file_type;
 item : out character);

 procedure get(item : out character)
 renames text_io.get;

 procedure skip_line(spacing :in text_io.positive_count:=1)
 renames text_io.skip_line;

 function end_of_file return boolean
 renames text_io.end_of_file;

 function end_of_line return boolean
 renames text_io.end_of_line;

 procedure put(item :in integer;
 width :in natural := 0);

 procedure put(file :in out text_io.file_type;
 item :in integer;
 width :in natural := 0);

 default_fore :natural := 6;
 default_aft :natural := 2;
 default_exp :natural := 0;

 procedure put(item :in float;
 fore :in natural := default_fore;
 aft :in natural := default_aft;
 exp :in natural := default_exp);

 procedure put(file :in out text_io.file_type;
 item :in float;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_e

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_e (1 of 2) [10/14/2000 12:55:54 PM]

 fore :in natural := default_fore;
 aft :in natural := default_aft;
 exp :in natural := default_exp);

 procedure put(item :in string;
 width :in natural := 0);

 procedure put(item :in character);

 procedure new_line(line_count:in positive := 1);
 --
 -- The following subprograms are used for screen and
keyboard control
 --
 subtype row_range is integer range 0..23;
 subtype column_range is integer range 0..79;

 procedure move(row :in row_range;
 col :in column_range);
 procedure home;
 -- moves the cursor to row_range'first, column_range'first

 procedure clear_screen;
 -- clears the screen and sends the cursor home
 subtype color_range is integer range 30..37;
 black :constant color_range := 30;
 red :constant color_range := 31;
 green :constant color_range := 32;
 yellow :constant color_range := 33;
 blue :constant color_range := 34;
 magenta :constant color_range := 35;
 cyan :constant color_range := 36;
 white :constant color_range := 37;

 procedure text_color(color :color_range);

 function current_text_color return color_range;
 -- what is the current color used for displaying text?

 procedure get_cursor_pos(row : out row_range;
 col : out column_range);
 -- where is the cursor currently positioned?

 procedure wait_for_keypress;
 -- waits until the user hits a single key

 function read_key return character;
 -- returns the key the user types without needing
 -- the user to press the return key.

end simple_io;

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_e

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_e (2 of 2) [10/14/2000 12:55:54 PM]

Appendix F GNAT Ada

The Gnat (GNU Ada Translator) project has developed a fully fledged Ada compiler that
will
work with the GNU linker. This will allow the compiler to be ported to any target
that the GNU compiler/linker system is currently available for. The compiler is
implementing the 1995 revision to the language, and so provides support for object
oriented programming, enhanced concurrency support as well as numerous other
features such as child and private child packages.

The Gnat Ada compiler does away with the traditional library implementation of
most Ada systems and presents a more traditional environment. Source code is
compiled into a .o and a .ali file. The .o represents the translation of the
instructions, the .ali file contains information about the relationship of the source to
other components in the system.

Gnat Ada source code must be in a file that has the same name as the compilation
unit name, with either a .ads (for specifications) or a .adb (for bodies).

Packages with child units (such as unix.file) should have the dot replaced with a '-',
and the usual .ads or .adb suffix appended.

For example the following program must be placed into a file called demo.adb.

with simple_io; use simple_io;
procedure demo is
begin
 for i in 1..10 loop
 put("hello world");
 new_line;
 end loop;
end;

To compile this you type in the following...

 gcc -c fred.adb

Typical questions now asked at this stage...

Do you mean that the C compiler actually compiles this program?
Does this mean that the code is compiled to C?

The answer to both of these questions is NO!

gcc is not a compiler, it is a program that inspects the file suffix (e.g. .c, .adb,
.ads,
.c++) and then invokes the appropriate compiler. The gnat (GNu Ada Translator)
compiles the program into the standard GNU intermediate code representation,
which is then taken by the code generator specific for the computer you are
running, and produces a normal '.o' object file.
Now that that's out of the way...

To link you program...

gnatbl demo.ali

It doesn't matter how many other procedures/packages you with, you don't need to
specify them in the link option.
However if you want to link in some C routines, then you may have to do the
following (this example is taken from an example using the C curses library)....

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_f

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_f (1 of 2) [10/14/2000 12:55:55 PM]

gnatbl demo.ali -lcurses

Sharing software

The Gnat compiler looks for the environment variables ADA_INCLUDE_PATH
and ADA_OBJECT_PATH. Any directory in these path variables will be searched
for source code and object code, respectively.
In this way a group can share some commonly developed routines.

Compiler source code (and source to all Ada standard packages)

Currently on Arcadia/Yallara the source for the compiler and all the Ada standard
packages are in the directory

/opt/gnu/adainclude

Some of these names have been 'crunched' (i.e. reduces to 8.3 DOS filename
conventions) so it is not always immediately obvious where a package spec.
resides. For example the text_io package can be found in the file

a-textio.ads (ada.text_io package specification)

Other packages of interest are...

interfac.ads package Interface
i-c.ads package Interface.C
i-cpoint.ads package Interface.C.Pointers
i-cstrin.ads pacakge Interface.C.Strings

a-calend.ads package Calendar
a-finali.ads package Ada.Finalization (for destructors
etc)

a-string.ads package Ada.Strings
a-strbou.ads package Ada.Strings.Bounded

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_f

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_f (2 of 2) [10/14/2000 12:55:55 PM]

Appendix G RMIT Ada resources

RMIT currently has the Gnat Ada compiler installed on Arcadia and
Yallara Sun computers.

A public directory

 /public/ada

contains various Ada resources.
These include

 ada-lref.ps quick reference sheets on Ada syntax, attributes, library
 ada-syntax.ps packages etc.

 sources directory included in all search paths with some common
code
 sources/unix Unix "mini" binding, giving Ada access to selected Unix
services
 sources/unix-file
 sources/unix-process

The directory

 /opt/local/gnu/adainclude

contains the Gnat implementation of all the standard Ada services, such as package
Calendar, Direct_IO, Text_IO etc.

The Gnat Ada compiler for other computers can be found in the /public/ada directory
on Yallara. Ports to OS/2, Linux and DOS are present.

RMIT's PC network also has the GNAT Ada compiler in the directory

 g:\pub\cs100\gnat

In this directory are all the files you should need for running Gnat on a DOS
computer, and is better maintained than the DOS distribution on Yallara.

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_g

http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_g [10/14/2000 12:55:56 PM]

Go to the Tutorial Allocation System

Go to the Tutorial Allocation Admin
System (for Lecturers)

Dale Stanbrough

Email: dale@rmit.edu.au

Phone: 9925 6130 (Bundoora) Phone: 9925 3266 (City)

Room 251.2.29, Bundoora East Campus
Room 10.7.36, City Campus

Consultation times:

City Monday, 3.30 - 5.20pm
Bundoora Friday 9 - 10.30

Academic:

1st semester subjects

CS280 Software Engineering I●

CS582 Software Engineering 2●

2nd semester subjects

CS280 Software Engineering I●

CS504 Concurrent Computing●

CS825 Software Engineering for Grad. Dips.●

AV530 Ada programming●

How to write unmaintainable code. Definately everthing every poor programmer does :-)

Dale Stanbrough

http://goanna.cs.rmit.edu.au/~dale/index.html (1 of 2) [10/14/2000 12:59:49 PM]

http://goanna.cs.rmit.edu.au/~dale/tutorial_allocations/index.html
http://goanna.cs.rmit.edu.au/~dale/tutorial_allocations/admin.html
http://goanna.cs.rmit.edu.au/~dale/tutorial_allocations/admin.html
mailto:dale@rmit.edu.au
http://goanna.cs.rmit.edu.au/~dale/cs280/index.html
http://goanna.cs.rmit.edu.au/~dale/cs582/index.html
http://goanna.cs.rmit.edu.au/~dale/cs280/index.html
http://goanna.cs.rmit.edu.au/~dale/cs504/index.html
http://goanna.cs.rmit.edu.au/~dale/cs825/index.html
http://goanna.cs.rmit.edu.au/~dale/av530/index.html
http://mindprod.com/unmain.htm

Older Subjects

Ada resources

My family

Dale Stanbrough

http://goanna.cs.rmit.edu.au/~dale/index.html (2 of 2) [10/14/2000 12:59:49 PM]

http://goanna.cs.rmit.edu.au/~dale/oldstuff_index.html
http://goanna.cs.rmit.edu.au/~dale/ada.html
http://goanna.cs.rmit.edu.au/~dale/family.html

	goanna.cs.rmit.edu.au
	http://goanna.cs.rmit.edu.au/~dale/ada/aln.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/ps/index.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/1_history.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/2_sample_programs.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/3_lexical_conventions.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/3_lexical_conventions_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/4_basic_types_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/5_control_structures.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/5_control_structures_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/6_arrays.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/6_arrays_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/7_records.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/7_records_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/8_subprograms_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/9_packages_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/10_generics_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/11_exceptions_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/12_files.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/12_files_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/13_access_types.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/13_access_types_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/14_OO.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_concurrency.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/15_Concurrency_support.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/16_interfaces.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/16_interfaces_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/17_idioms_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/18_designs_ToC.html
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_a
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_b
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_c
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_d
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_e
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_f
	http://goanna.cs.rmit.edu.au/~dale/ada/aln/appendix_g
	Dale Stanbrough

