
Terminal Handling Principles

• Terminal access to mainframe and mini computers used
hardwired terminals typically connected through a
RS232 serial line.

• Today the normal command line interface to FreeBSD
use a pseudo terminal.

• A pseudo terminal is built from a device pair termed the
master and slave devices.

• The master side is named /dev/ptyXX and the slave
side is named /dev/ttyXX.

• The slave device provides to a process an interface
identical to that historically provided by a hardware
device.

• Anything written on a master device appears as input
on the slave device and anything written on a slave
appears as input on the master device.

• Pseudo terminals are used by the terminal emulator,
xterm, and by remote login programs such as ssh.

• Xterm opens the master side of the pseudo terminal
and directs the keystrokes to its output and input from
the pseudo terminal is directed to the window.

• Xterm forks a child process that opens the slave side of
the pseudo terminal and execs a user shell.

1

Terminal Modes

The terminal processing can be set to two different modes,
canonical mode (cocked mode) and noncanonical mode
(raw mode).

Canonical mode properties:

• Characters are echoed by the operating system as they
are typed but are buffered internally until a newline
character ,NL, is typed.

• Only after a NL character is received the entire line is
made available to the reading process.

• If the process tries to read before a NL character is
received it is put to sleep until an NL character arrives.

• Typing errors can be corrected by entering special
erase and kill characters.

• Simple output processing is performed - normally
converting a NL character to NL + CR (carriage return).

• When a process has filled the terminal output queue it
will be put to sleep.

Raw mode properties:

• The system makes each typed character available to
the reading process as soon as it is received.

• No line editing or other processing is performed.

In reality many combinations of these modes can be
specified.

2



Line Disciplines

• Most of the character processing done for terminal
interfaces is independent of whether it is associated
with a pseudo-terminal or a hardware device.

• This hardware independent processing is performed by
the line discipline.

• The entry points of the line discipline is called through
the linesw switch in the same way as the character
device drivers are called through the device switch.

• The entry points of the line discipline are listed in table
10.1.

• Several of the routines in the serial terminal drivers
(read, write, ioctl) directly transfer control to the line
discipline when called.

• The l rint (receiver interrupt) is called for each character
received on a line.

• The corresponding entry for transmit-complete
interrupts is l start.

• The system includes several other types of line
disciplines for example for the ppp protocol.

3

User interface

• The standard programming interface for control of the
terminal line discipline is the ioctl system call.

• The ioctl system call is used to change line discipline,
set and get values for special processing characters
and modes and to set and get values for hardware
serial line parameters.

• There have been several different specifications for the
serial line ioctl commands in UNIX.

• The current interface in FreeBSD (and Linux) is based
on a POSIX standard and uses the termios data
structure.

• Some of the ioctl system calls related to the standard
terminal line discipline is described at page 417 in the
course book.

• Other line disciplines usually use other ioctl commands.

4



The tty Structure

• For every pseudo-terminal or hardware terminal the
kernel allocates a tty struct to keep all data related to
the terminal.

• The tty struct is shared by the terminal driver and the
line discipline.

• The calls to the line discipline all requires a tty struct as
a parameter.

• The tty struct is initialized by the terminal driver’s open
routine and by the line discipline open routine.

• The content of tty struct is illustrated by Table 10.2.

5

Process Groups and Terminal Control

• When a process creates a new session, that session
has no associated terminal.

• To acquire a terminal, the session leader must make an
TIOCSCTTY ioctl call.

• When the call succeeds the session leader becomes a
controlling process.

• The tty struct will contain a pointer to the session struct
and a pointer to the process group of the session leader.

• This process group pointer identifies the process group
in control of the terminal - the foreground process
group.

• Other process groups may run in the background.

• The foreground process group may be changed by
making a TIOCSPGRP ioctl call.

• When a session leader exits the controlling terminal is
revoked with the revoke system call and that invalidates
any open descriptors in the system for that terminal.

6



C-lists

The terminal I/O system deals with blocks of widely varying
sizes.

FreeBSD still use the data structures originally designed for
terminal drivers - the C-block and C-list.

C-block A fixed size (128 bytes) buffer with space for
buffered characters and a linkage pointer.

C-list Describes a queue of input or output characters.
Contains pointers to the first and last characters in the
C-blocks that build up the queue and a character count
(fig. 10.1).

A set of utility routines are defined to manipulate C-lists:

getc() Removes the next character from a C-list.

putc() Adds a character to the end of a C-list.

b to q() Add several characters to a C-list.

q to b() Read several characters from a C-list.

unputc() Remove the last character from a C-list.

nextc() Examine the next character on a C-list.

catq() Concatenate two C-lists.

7

Terminal I/O Implementation

Open

• Each time the master side of a pseudo-terminal is
opened, the pseudo-terminal driver’s open routine is
called.

• The driver routine initiates the tty struct and calls the
line discipline routine l open.

• The setup of the terminal completes when the slave
side of the pseudo-terminal is opened.

8



Terminal I/O Implementation

Write

• After a terminal have been opened, writes to the
resulting file descriptor results in a call to the
corresponding character device driver routine d write.

• d write will call the line discipline write routine, l write,
with a tty struct and an uio struct as parameters.

• The l write routine for the default terminal line discipline
is actually named ttwrite().

• The ttwrite() routine performs most of the work involved
in outputting characters to a terminal.

• The helper subroutine ttyoutput() is called by ttwrite() to
do output processing of special characters.

9

ttwrite() Implementation

The ttwrite() routine loops until all data is processed
performing the following:

• Check that the terminal is allowed to do output. If the
terminal is controlling terminal for a process group,
output is normally allowed only if the process group is in
the foreground.

• When write is allowed, copy characters from the calling
process into the kernel. Check if output processing is
needed and move data to the output queue.

• As soon as data are placed on the output queue of the
tty, ttstart() is called to start output.

• ttstart() will call the start routine specified in the t oproc
field in tty struct.

→ For a pseudo tty, the start routine will wake the
process sleeping on the master side.

• The size of the output queue is limited by the high
watermark.

• If high watermark is exceeded the process is put to
sleep (Fig. 10.2).

→ When sleeping the TS SO OLOWAT flag is set in the
tty struct to request that the process is awakened
when the queue size falls below the low watermark
that is half of the high watermark.

10



ttwrite() Implementation cont.

The output processing done by ttwrite() is dependent on
the terminal mode:

Canonical mode:

• Groups of characters that do not need special
processing is located by scanning through the output
string and at the same time marking characters that
might need translation.

• Each group of characters that do not need translation is
moved to the output queue using b to q().

• The characters that may need translation is processed
by a call to ttyoutput().

• The ttyoutput() routine may perform the following
translations:

→ Newline characters may be replaced by newline plus
carriage return.

→ Tabs may be expanded to spaces.

Noncanonical mode:

• The entire buffer is copied to the output queue without
processing.

11

Terminal Input

• Terminal input arrives asynchronously when the
terminal line receives characters from the local
keyboard or from a communications line in the case of
remote login.

• Thus most of the input processing is done at interrupt
time.

• When a character arrives over a network, the locally
running remote-login daemon writes it into the master
side of the pseudo-terminal.

• The pseudo-tty driver will pass the characters to the line
discipline receiver interrupt routine (l rint) at the slave
side.

• The receiver interrupt routine for the normal terminal
line discipline is ttyinput().

12



ttyinput() implementation

• Check that the input queue is not too large.

→ For pseudo terminals, when input queue becomes
full the kernel stops reading characters from the
master side.

• Echo characters if desired.

In canonical mode do:

• If normal character, put it on the raw input queue.

• If character with special meaning, take requested
actions.

→ If erase character, modify raw input queue
accordingly.

→ If newline character, concatenate raw queue to
canonical queue and call ttwakeup() to wake up the
process waiting for data.

In noncanonical mode do:

• Put the character in the raw input queue without
processing and call ttwakeup().

13

Terminal input

• When a read system call is made on a file descriptor for
a terminal device, the device driver’s d read routine is
called.

• The d read routine will call the line disciplines l read
routine, which is called ttread() for the normal terminal
line discipline.

• ttread() checks that the process belongs to the session
and is in the foreground process group.

→ If the process is in the background it is sent a
SIGTTIN signal.

• Finally ttread() checks for data in the canonical queue if
in canonical mode and in the raw queue if in
noncanonical mode.

→ If no data is present ttread() returns the error
EAGAIN if the terminal uses nonblocking I/O
otherwise it sleeps on the address of the raw queue.

• When characters are present, they are removed from
the queue one at a time with the getc() command and
copied out to the user’s buffer with ureadc().

14


