
Concurrency: 
Mutual Exclusion and 

Synchronization
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Synchronization



Needs of Processes 

• Allocation of processor time

• Allocation and sharing of resources (e.g. memory)

• Communication among processes

• Synchronization of multiple processes
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Have seen: scheduling, memory allocation

Now: synchronization

Next: more on resource allocation & deadlock



Process Synchronization: 
Roadmap

• in shared memory systems

• in message passing systems
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Shared memory communication

Recall:

• Ex1: memory mapped files

• Ex2 (interface) POSIX Shared Memory: 
– define shared space, attach/detach

Btw, a nice link to check 

www.cs.cf.ac.uk/Dave/C/node27.html#SECTION0027200000

00000000000



Money flies away …

Bank thread A

Read a := BALANCE

a := a + 5000

Write BALANCE := a 

Bank thread B

Read b:= BALANCE
b := b – 2000
Write BALANCE := b

BALANCE: 20000 kr
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Oooops!! BALANCE: 18000 kr!!!!
Problem: need to ensure that each process is executing its critical 

section (e.g updating BALANCE) exclusively (one at a time)

t



Process Synchronization: 
Roadmap

• In shared memory systems 
– The critical-section (mutual exclusion - mutex) problem

– Mutex for 2 and for n processes 

– Help from synchronization hardware primitives
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– Help from synchronization hardware primitives

– Semaphores, Other common synchronization structures

– Common synchronization problems

– n process mutex revisited

– Common OS cases (Linux, solaris, windows)

• Synchronization in message passing systems



The Critical-Section 
(Mutual Exclusion) Problem

• n processes all competing to use some shared data
• Each process has a code segment, called critical section, in 

which the shared data is accessed.
• Problem – ensure that when one process is executing in its 

critical section, no other process is allowed to execute in its 
critical section; ie. Access to the critical section must be an 
atomic action.

• Structure of process Pi
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• Structure of process Pi

repeat
entry section

critical section
exit section

remainder section
until false;



Requirements from a solution to the Critical-
Section Problem

1. Mutual Exclusion.  Only one process at a time is 
allowed to execute in its critical section.

2. Progress (no deadlock/no livelock).  If no process is 
executing in its critical section and there exist some 
processes that wish to enter theirs, the selection of 
the processes that will enter the critical section 
next cannot be postponed indefinitely.
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the processes that will enter the critical section 
next cannot be postponed indefinitely.

3. Fairness, Bounded Waiting (no starvation). E.g. a 
bound on the number of times that other processes 
are allowed to enter their critical sections after a 
process has made a request to enter its critical 
section and before that request is granted.
� No assumption concerning relative speed of the n

processes.
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Mutual exclusion/critical section (region)

Figure source A.Tanenbaum MOS book

B waits



Initial Attempts to Solve Problem

• Only 2  processes, P0 and P1

• Processes may share some common variables (can be read or 
written atomically) to synchronize their actions.

Shared variables: 
– var turn: (0..1) (initially 0)
– turn = i ⇒ Pi can enter its critical section

Process Pi
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Process Pi

repeat
while turn ≠ i do no-op;

critical section
turn := j;

remainder section
until false;

• (too polite) Satisfies mutual exclusion, but not progress



Another attempt

Shared variables
– var flag: array [0..1] of boolean; (initially false).

– flag [i] = true ⇒ Pi ready to enter its critical section

Process Pi

repeat

while flag[j] do no-op; 

flag[i] := true;

11

flag[i] := true;
critical section

flag [i] := false;

remainder section

until false;.

• (“unpolite”) Progress is ok, but does NOT satisfy mutual 
exclusion.



Peterson’s Algorithm 
(2 processes)

Shared variables:
var turn: (0..1); initially 0 (turn = i ⇒ Pi can enter its 

critical section)
var flag: array [0..1] of boolean; initially false (flag [i] = 

true ⇒ Pi wants to enter its critical section)
Process Pi

repeat
(F) flag [i] := true;
(T) turn := j;
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(F) flag [i] := true;
(T) turn := j;
(C) while (flag [j] and turn = j) do no-op;

critical section
(E) flag [i] := false;

remainder section
until false;

Argue  that it satisfies the 3 requirements



Process Synchronization: 
Roadmap

• In shared memory systems 
– The critical-section (mutual exclusion - mutex) problem

– Mutex for 2 (and for n) processes 

– Help from synchronization hardware primitives
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– Help from synchronization hardware primitives

– Semaphores, Other common synchronization structures

– Common synchronization problems

– n process mutex revisited

– Common OS cases (Linux, solaris, windows)

• Synchronization in message passing systems



Mutual Exclusion:
Hardware Support

• A process runs until it invokes an operating-system service or 
until it is interrupted

• Interrupt Disabling disallows interleaving (1-cpu 
system) and  can guarantee mutual exclusion

– BUT: 
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– BUT: 
• Processor is limited in its ability to interleave programs

• Multiprocessors: disabling interrupts on one processor will not 
guarantee mutual exclusion



Mutual Exclusion:
Other Hardware Support

• Special Machine Instructions
– Performed in a single instruction cycle: Reading and 

writing together as one atomic step

– Not subject to interference from other instructions 

• in uniprocessor system they are executed without 
interrupt; 
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interrupt; 

• in multiprocessor system they are executed with
e.g. locked system bus

Memory word(s)



Mutual Exclusion:
Hardware Support

Test and Set Instruction
boolean testset (int i) 

if (i == 0) 
i = 1; return true;

else return false;

Exchange Instruction (swap)
void exchange(int mem1, mem2)

temp = mem1;

mem1 = mem2;
mem2 = temp;
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Mutual Exclusion using Machine 
Instructions

Advantages
• Applicable to any number of 

processes on single or 
multiple processors sharing 
main memory

• It is simple and therefore 

Disadvantages (when used in the 
simple way shown just now)

– Busy-waiting consumes processor 
time
– Even Deadlock possible if used 

in strict priority-based 
scheduling systems: ex. 
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• It is simple and therefore 
easy to verify

in strict priority-based 
scheduling systems: ex. 
scenario:

• low priority process has the critical 
region 

• higher priority process needs it
• the higher priority process will 

obtain the processor to wait for 
the critical region

– Starvation is possible when  using 
just simple methods; cf next for 
maintaining turn



Bounded-waiting Mutual Exclusion with TestandSet()

do { 

waiting[i] = TRUE; 

key = TRUE; 

while (waiting[i] && key) 

key = TestAndSet(&lock); 

waiting[i] = FALSE; 

// critical section // critical section 

j = (i + 1) % n; 

while ((j != i) && !waiting[j])  // find next one waiting and “signal” //

j = (j + 1) % n; 

if (j == i) 

lock = FALSE; 

else 

waiting[j] = FALSE; 

// remainder section 

} while (TRUE);



Process Synchronization: 
Roadmap

• In shared memory systems 
– The critical-section (mutual exclusion - mutex) problem

– Mutex for 2 and for n processes 

– Help from synchronization hardware primitives
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– Help from synchronization hardware primitives

– Semaphores and Other common synchronization structures

– Common synchronization problems

– n process mutex revisited

– Common OS cases (Linux, solaris, windows)

• Synchronization in message passing systems



Semaphores

• Special variables/data-structures used for signaling
– If a process is waiting for a signal, it is blocked until that 

signal is sent

• Accessible via atomic Wait and signal operations

• Queue is (can be) used to hold processes waiting on 
the semaphore
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the semaphore

• Can be binary or general (counting)



Binary and  Counting semaphores: 
functionality
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Binary and  Counting semaphores: 
functionality
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Notice: the queue and blocking 

behaviour not 

necessary; actually many semaphore 

implementations involve busy-waiting

e.g. as in Peterson’s algo or the TAS method



Example:  Critical section of n processes using 
semaphores

• Shared variables

– var mutex : semaphore
– initially mutex = 1

• Process Pi

repeat

wait(mutex);
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wait(mutex);

critical section

signal(mutex);

remainder section

until false;



Semaphore as General 
Synchronization Tool

• E.g. execute B in Pj only after A executed in Pi: use semaphore flag
initialized to 0

Pi Pj

M M

A wait(flag)

signal(flag) B
Watch for Deadlocks!!!
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Watch for Deadlocks!!!

Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

M M

signal(S); signal(Q);

signal(Q) signal(S);



Other synchronization constructs:

• Condition Variables
– condition x;

Two operations possible on a condition variable:

– x.wait () – a process that invokes the operation is 

blocked.

– x.signal () – unblocks one of processes (if any) that– x.signal () – unblocks one of processes (if any) that

invoked x.wait () (if any; else, does nothing)

• Other high-level synchronization constructs

– (conditional) critical regions (wait-until-value, …)

– monitors
– Cf courses on parallelism



Process Synchronization: 
Roadmap

• In shared memory systems 
– The critical-section (mutual exclusion - mutex) problem

– Mutex for 2 and for n processes 

– Help from synchronization hardware primitives
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– Help from synchronization hardware primitives

– Semaphores and Other common synchronization structures

– Common synchronization problems

– n process mutex revisited

– Common OS cases (Linux, solaris, windows)

• Synchronization in message passing systems



Classical Problems of Synchronization

– Bounded-Buffer (producer-consumer)

– Dining-Philosophers (Resource allocation:  we use as running 
example problem later, with deadlock avoidance)

– Readers and Writers (we use as running example later, with 
lock-free synch)

train on these: it is very useful and fun!
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train on these: it is very useful and fun!



Bounded producer-consumer Buffer 

producer process

do  {

//   produce an item 

consumer process

do {

• Data: N locations, each can hold one item

• Synchronization variables:

• Binary semaphore mutex initialized to the value 1

• General semaphore avail-items initialized to the value 0

• General semaphore avail-space initialized to the value N.

//   produce an item 

wait (avail-space);

wait (mutex);

//  add the item to the  buffer

signal (mutex);

signal (avail-items);

} while (TRUE);

do {

wait (avail-items)

wait (mutex);

//  remove an item from buffer

signal (mutex);

signal (avail-space);

//  consume the item 

} while (TRUE);



Process Synchronization: 
Roadmap

• In shared memory systems 
– The critical-section (mutual exclusion - mutex) problem

– Mutex for 2 and for n processes 

– Help from synchronization hardware primitives
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– Help from synchronization hardware primitives

– Semaphores and Other common synchronization structures

– Common synchronization problems

– n process mutex revisited

– Common OS cases (Linux, solaris, windows)

• Synchronization in message passing systems



Understanding synchronization 
better 
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Mutex for n processes using read/write 
variables

One idea (out several possible) :  Before entering its critical 
section, each process receives a number. Holder of the 
smallest number enters the critical section.
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Lamport’s Bakery Algorithm 
(Mutex for n processes using R/W variables)

Idea:  Implement  “nummerlappar” using read/write variables only
– numbering scheme may generate numbers in non-decreasing order 

of enumeration; i.e., 1,2,3,3,3,3,4,5

– If processes Pi and Pj receive the same number: if i <j, then Pi is 
served first; else Pj is served first.
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Lamport’s Bakery Algorithm (cont) 

Shared var choosing: array [0..n – 1] of boolean (init false);
number: array [0..n – 1] of integer (init 0),

repeat
choosing[i] := true;
number[i] := max(number[0], number[1], …, number [n – 1])+1;
choosing[i] := false;
for j := 0 to n – 1 do begin

while choosing[j] do no-op;
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while choosing[j] do no-op;
while number[j] ≠ 0 and (number[j],j) < (number[i], i) do

no-op;
end;

critical section
number[i] := 0;

remainder section
until false;

This is a more  decentralized method: 

uses no variable “writ-able” by all 

processes



Elaborate, think

• Argue why Bakery algorithm satisfies the 3 
conditions for mutex

• Bakery algorithm idea not tied with R/W variables: 
how can it be implemented using e.g. semaphores?

• Having seen these,  train on synchronization 
constructs,e.g: 

– implementing counting semaphores from binary ones,  

– semaphores using mutex solutions e.g. Peterson’s, Lamport’s, the 
Test-and-set method

– ....
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Process Synchronization: 
Roadmap

• In shared memory systems 
– The critical-section (mutual exclusion - mutex) problem

– Mutex for 2 and for n processes 

– Help from synchronization hardware primitives
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– Help from synchronization hardware primitives

– Semaphores and Other common synchronization structures

– Common synchronization problems

– n process mutex revisited

– Common OS cases (Linux, solaris, windows)

• Synchronization in message passing systems



Solaris Synchronization

• Implements a variety of locks to support 
multitasking, multithreading (including real-time 
threads), and multiprocessing

• Uses adaptive mutexes for efficiency (small critical 
sections)
– adapt between busy waiting and blocking depending on – adapt between busy waiting and blocking depending on 

contention

– Blocked process queues are called turnstiles

• Uses condition variables and readers-writers locks 
when longer sections of code need access to data
– turnstiles hold threads waiting on reader-writer lock and 

conditional variables as well.



Windows XP Synchronization

• Uses interrupt masks to protect access to global 
resources on uniprocessor systems

• Uses spinlocks on multiprocessor systems  and short 
critical sections

• Also provides dispatcher objects which may act as 
mutexes and semaphoresmutexes and semaphores
– Dispatcher objects may provide events (similar to signal in a 

condition variable)



Linux Synchronization

• Linux provides:
– semaphores

– spin locks for multiprocessors and short critical sections

– On uniprocessors: lock at kernel –level and kernel disables 
preemptions – again for short critical sectionspreemptions – again for short critical sections



Pthreads Synchronization

• Pthreads API is OS-independent

• It provides:
– mutex locks with blocking queues

– condition variables

• Non-portable extensions include:• Non-portable extensions include:
– read-write locks

– spin locks



Process Synchronization: 
Roadmap

• In shared memory systems 
– The critical-section (mutual exclusion - mutex) problem

– Mutex for 2 and for n processes 

– Help from synchronization hardware primitives
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– Help from synchronization hardware primitives

– Semaphores and Other common synchronization structures

– Common synchronization problems

– n process mutex revisited

– Common OS cases (Linux, solaris, windows)

• Synchronization in message passing systems: mutex, 
coordination problems)



Synchronization using Message Passing communication

Recall: 
• Mechanism for processes to communicate and to 

synchronize (to some extend) their actions, via
• Mechanism for processes to communicate and to 

synchronize (to some extend) their actions, via
– send(message)
– receive(message)

• Can be direct or via mail box



Communication and synchronization with 
messages

Message passing may be

• Blocking: synchronous
– Blocking send: sender blocks until the message is received

– Blocking receive: receiver block until a message is available

– both blocking : rendez-vous

• Non-blocking: asynchronous
– Non-blocking send: the sender sends the message and 

continues

– Non-blocking receive: receiver receive a valid message or null

– can also have interrupt-driven receive



Mutual exclusion using messages:
Centralized Approach

Key idea: One processes in the system is chosen to 
coordinate the entry to the critical section (CS):

• A process that wants to enter its CS sends a request
message to the coordinator.

• The coordinator decides which process can enter its CS 
next, and sends to it a reply message

• After exiting its CS, that process sends a release
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• After exiting its CS, that process sends a release
message to the coordinator

Requires 3 messages per critical-section entry 
(request, reply, release)

Depends on the coordinator (bottleneck)



Mutual exclusion using message-box:
(pseudo) decentralized approach

Key idea: use a token that can be 
left-at/removed-from a 
common mailbox

Requires 2 messages per critical-
section entry (receive-, send-
token)
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token)

Depends on a central mailbox 
(bottleneck)



Distributed Algorithms for mutex using 
messages

• Each node has only a partial picture of the total system and 
must make decisions based on this information

• All nodes bear equal responsibility for the final decision

• There exits no system-wide common clock with which to 
regulate the time of events

45



Mutual exclusion using messages: 
distributed approach using token-passing

Key idea: use a token (message mutex) that circulates among 
processes in a logical ring

Process Pi

repeat

receive(Pi-1, mutex);

critical section

send(P , mutex);
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send(Pi+1, mutex);

remainder section

until false;

Requires 2 (++) messages; can optimize to pass the token around 
on-request

(if mutex-token is 
received when not-
needed, must be 
passed to Pi+1 at once)



Mutex using messages:
fully distributed approach based on event ordering

Key idea: similar to bakery algo (relatively order processes’ 
requests) [Rikard&Agrawala81]

Process i
when statei=requesting 

statei := wait; 
oks := 0; 
req_numi := ++Ci ;
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req_numi := ++Ci ;
forall k send(k, req, req_numi)

when receive(k,ack) 
if(++oks ==n-1) 
then statei := in_CS

when <done with CS>
forall k∈pendingi send(k,ack); 
pendingi := ∅; statei := dontcare;

when receive(k, req, req_numk ) 
Ci := max{Ci , req_numk }+ 1;
if(statei==dontcare or 

statei == wait and
(ticketi ,i) > (ticketk,k)) 

then send(k,ack) 
else <add k in pendingi >





Properties of last algo

• Mutex is guaranteed (prove by way of contradiction)
• Freedom from deadlock and starvation is ensured, 

since entry to the critical section is scheduled 
according to the ticket ordering, which ensures that 
– there always exists a process (the one with minimum ticket) 

which is able to enter its CS and
– processes are served in a first-come-first-served order. 
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– processes are served in a first-come-first-served order. 

• The number of messages per critical-section entry is 
2 x (n  – 1).

(This is the minimum number of required messages per 
critical-section entry when processes act independently and 
concurrently.) 



Method used: Event Ordering by 
Timestamping

• Happened-before relation (denoted by →) on a set of events:
– If A and B are events in the same process, and A was executed 

before B, then A → B.

– If A is the event of sending a message by one process and B is 
the event of receiving that message by another process, then A
→ B.

– If A → B and B → C then A → C.
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– If A → B and B → C then A → C.



describing →: logical timestamps 

• Associate a timestamp with each system event.  Require that 
for every pair of events A and B:

if A → B, then the timestamp(A) < timestamp(B).

• Within each process Pi a logical clock, LCi is associated: a 
simple counter that is:

– incremented between any two successive events executed within 
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– incremented between any two successive events executed within 
a process. 

– advanced when the process receives a message whose timestamp 
is greater than the current value of its logical clock.

• If the timestamps of two events A and B are the same, then 
the events are concurrent.  We may use the process identity 
numbers to break ties and to create a total ordering. 







Producer(s)-consumer(s) 
(bounded-buffer) using mailbox

Key idea: similar as in the mailbox-
mutex solution: 

• use producer-tokens to allow 
produce actions (to non-full 
buffer)

• use consume-tokens to allow 
consume-actions (from non-
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consume-actions (from non-
empty buffer)


