
UNIX File System

The UNIX file system has a hierarchical tree structure with
the top in root.

• Files are located with the aid of directories.

• Directories can contain both file and directory identifiers.

• The user identifies files with absolute or relative path
names.

• Example on absolute names:
/home/terry/notes/apr22.txt

• Each user has a login directory. The user can create
his own subdirectories within the login directory.

• The system has information about a users current
directory. At login, the home directory is set as current
directory but this can be changed with the command cd.

• The operating system uses inodes as the internal name
for files. An i-number is an index in a table of inodes.

• An entry in the inode table contains complete
information about a certain file. A directory only
contains a translation from path name to i-number.

1

UNIX File System

Every directory always has two standard entries.

The name “.” in each directory refers to the directory itself.

The name “..” in each directory refers to the parent
directory.

The same file may be present in several directories. This is
called a hard link.

A file that is removed do not disappear until the last link to it
is removed.

2



External Devices

• External devices may be reached via special files in
the file system.

• By convention the special files are located in the /dev
directory.

• Internally, the kernel identifies external devices by it’s
device number.

• A device number consists of a major device number
and a minor device number.

• The major device number identifies the device driver
that handles the device.

• The minor device number is used by the device driver to
distinguish between different logical units handled by
the same driver.

• Every special file have a unique device number and is
only an interface to the device driver.

• From the user point of view, special files are read and
written in the same way as normal files.

3

Mountable File Systems

A UNIX system may have several physical file systems, but
only one file system tree.

• The mount system call is used to connect the different
file systems to a single tree.

• The mount system call takes two parameters: The
name of a directory in the file system and a special file
structured as a file system.

• The effect of mount is that the file system in the special
file is added as a subtree under the specified directory.

• The system administrator can use the command mkfs
(make file system) to create an empty file system at a
special file.

• The only limitation with mounted file systems is that it is
not possible to create hard links across mount
boundaries.

4



UNIX File Permissions

• Every file has an owner, usually the user that created
the file.

• Every file also belongs to a group. The files owner may
change the group but a file may only belong to one
group at a time.

• The system administrator may give a user membership
in some groups.

• Every file has 10 protection bits. Nine of these bits
specifies independent read, write or execute access to
the owner, group and others.

• The tenth bit is the set-user-id bit. If a file with the
set-user-id bit set is executed, the effective user id
during the execution of the file is set to the owner of the
file.

5

File System Topology

• Tree - Simple and rather general method, but prevents
sharing of files.

• Acyclic graph - Allows sharing of files. Cycles can be
prevented by allowing links to files only (not to
directories).

→ To assure that a file is removed only than the last link
to it is removed, reference counters are used.

• Cyclic graph - Most general topology, but difficult to
implement.

→ May create indefinite looping in recursive algorithms.
→ When deleting a file, the reference count may not be

0, even then there is no way to refer to a file or
directory. (Requires garbage collection).

6



Block Allocation Methods

A method is needed to keep track of which blocks are
allocated to a certain file.

• Contiguous allocation - All blocks in a file are placed
in a sequence on the disk. Give high bandwidth but
difficult to locate free space.

• Linked allocation - Each block may be located
anywhere on the disk and every block contains the
address to the next block. Easy to locate free blocks,
but very inefficient for sequential access.

• File allocation table (FAT) - The disk keeps an area
reserved for the file allocation table (FAT). The table has
an entry for every block in the file system. Free blocks
are marked with 0. For blocks belonging to a file, every
entry in the FAT gives the entry for the next block in the
file. The last block in every file contains an end marker.

• Indexed allocation - The block pointers are kept in
special index blocks. A 512 byte block contains pointers
to 128 data blocks. Several variants exists.

7

Disk Free Space Management

The file system also need to keep track of the free blocks at
the disk.

• Linked list - All free blocks are linked together by a link
field in each block. Inefficient as every new block
needed requires a disk operation.

• Linked list of address blocks - Every address block
have pointers to n-1 free blocks and a pointer to the
next address block. Gives access to n-1 free blocks per
disk access. Furthermore no pointers need to be stored
in the data blocks.

• Bit vector - Every disk block corresponds to a bit in the
bit vector. Free blocks are represented by 1 and used
blocks by 0. Can be used to locate blocks at a wanted
position on the disk.

8



UNIX File System Implementation

Files and directories are described by a data structure
called an inode.

When the file system is created, a fixed number of inodes
are created at a known location on the disk. An inumber
have a 1-1 mapping to a disk address.

An inode is allocated for every new file or directory.

An inode contains:

• A type code that tells if the inode describes a file,
directory, special file or is free.

• Time for creation, last access and last change.

• Id and group id for the owner of the file.

• Protection bits.

• File size.

• Number of links to the file (reference counter).

• Addresses to data blocks.

9

Placement of Data Blocks

• The block size in the original UNIX file system was 512
bytes.

• A block address on a disk usually was 32 bits (today 48
bits). Thus, a 512 byte block fits 128 block pointers.

• The address to the first 10 blocks in a file is stored in
the inode.

• In addition to these blocks , the inode also has pointers
to an indirect block, a double indirect block and a triple
indirect block.

• This gives a maximum file size of
(10 + 128 + 1282 + 1283) · 512 = 1082 201 088 bytes

10



Open

• The purpose of open is to translate from a path name to
an inumber by searching the directories.

• If the specified file exists, a file descriptor and a file
struct is allocated.

• The file descriptor points to the file struct that points to
the cached inode.

• The file struct contains the position pointer that
indicates the current read/write position.

• Open files inherited at fork gets the same file struct as
it’s parent process and thus the read/write position is
shared between child and parent in this case.

• Open is a time expensive operation since it requires
reading of many disk blocks from different locations on
the disk.

When a file is open, read or write commands can locate the
inode and the disk blocks via the file descriptor.

11

File Creation and Removal

• The creation of a new file consists of allocating and
updating an inode and creation of a directory entry in
specified directory.

• To create a hard link means to to create a new directory
entry and incrementing the reference counter in the
inode.

• To remove a file with several hard links means that the
directory entry is removed and the reference counter in
the inode is decremented.

• If the reference counter was decremented to 0, it was
the last link to the file and it’s data blocks and inode is
freed.

12



Symbolic Links

• Contrary to hard links which are implemented at the
inode level, symbolic links are implemented at the file
system tree level.

• A symbolic link is a file of type LINK that contains the
path name to another file or directory.

• If the system finds a symbolic link during translation of a
path name, the path name in the link file is
concatenated with the remaining components in the
path name under translation. The translation process
continues with the new path name.

• Contrary to hard links, symbolic links may cross mount
points and may point to directories.

• Infinite recursion is prevented by limiting the number of
directories in a path name.

• Symbolic links do not create disk allocation problems,
because the symbolic links are not affected if a file is
removed. It is up to the user to remove invalid symbolic
links.

• Symbolic links was first implemented in BSD4.2

13

Caches

Caches are used to improve the performance of the file
system.

inode cache - Copies of the latest referenced inodes are
kept in a the inode cache in primary memory.

Block buffer cache - Read and write disk operations
transfer data between the disk and a block buffer cache
in primary memory. From the buffer cache the data is
copied to or from the process address space.

• The buffer cache saves disk accesses when repeated
operations are to the same block.

• When writing, the write system call completes when the
data is written to the buffer cache. This makes it
possible to use a disk scheduling algorithm to optimize
the data transfers to the disk.

• The drawback with the buffer cache is that if the system
crashes, all data in the cache is lost unless it has
already been written to the disk.

• To reduce the data loss in case of a system crash, the
sync system call is periodically executed (usually every
30 seconds) to write unsaved data in the buffer cache to
the disk.

14



Unified Buffer Cache

• Caching of file data is in many systems done both by
the file system and the virtual memory.

• Pages from executable files are always stored in the
page cache.

• When memory mapped files are used data from the
same file may be stored both in the page cache and in
the file system buffer cache. This leads to double
buffering (fig. 11.11) and may lead to inconsistent
caches.

• In most newer operating systems the page cache and
the block buffer cache have been unified to a single
cache.

15


