
Assignment 1

Specification and black box testing

Model-Based Testing
DIT848/GU and TDA260/Chalmers

March, 2012

1 Introduction

The purpose of this assignment is to become familiar with JUnit, one of the most com-
mon unit testing frameworks for generating test cases for Java programs, and with Fi-
nite State Machines (FSM). JUnit is an open source project, which means you can freely
download and use it. You can have more information about it in the following links:
http://www.junit.orghttp://junit.sourceforge.net. You are given a specification
and also implementation of a simple calculator, using JUnit you will be testing code which
implements this calculator.

2 Submitting your work

If you want to have feedback on your assignment, check with Hamid Ebadi (hamide #@#

student.chalmers.se) on how (and when) to submit. If you want to submit, please attach
a .zip or .tar.gz archive, containing your source code and .txt, .pdf or .doc file describing
your answers. Please name your file with the number of assignment and your (last) name
as in the following example: ebadi assignment01.zip.

3 Structure

The file calculator.zip (available on the course page) contains the following files:

• src/Calculator.java : interface and implementation for a module implementing the
functionality of a simple calculator. main function simply takes a string of symbols
from the command line and feeds them one by one into the calculator, presenting the
calculator output for each symbol.

• src/CalculatorTest.java: example showing three JUnit test cases for the calculator
class.

4 Specification

The informal specification for this simple calculator is explained in what follows. The
calculator has the following buttons:

• digits: 0-9

• operations: +-*/

1



• execute: =

• reset: C

Conceptually, the calculator has the following state holding elements:

• A buffer of digits;

• Possibly an operand (which is an integer);

• Possibly a memorized operation (which is one of add, subtract, multiply, and divide).

The functionality of the calculator is as follows:

• The buffer is continuously displayed on the screen.

• Initially, the buffer is empty, and there is neither an operand nor an operation mem-
orized. Whenever reset is pressed, the calculator goes back to this state.

• When any digit button is pressed, the digit is added to the end of the buffer.

• If an operation button is pressed while there is no operation in memory, then the
number currently in the buffer is stored in the operand, and the operand of the
button is memorized. The buffer remains unchanged, but at next digit button press,
the buffer is emptied before the digit is added to the buffer.

• If ’=’ is pressed while there is an operand and a memorized operation, the operand
and the buffer values are replaced by the sum, difference, product, or quote of the
operand and the buffer (depending on which operation is memorized). The memorized
operation and operand is hereby deleted.

• If an operation button is pressed while there is an operand and operation memorized,
the calculator acts as if ’=’ was pressed before the operation button.

• If an operation button is pressed exactly after another operation button, the last one
will be used for calculation and the first operation button will be ignored.

5 What to do

The program and test cases are intentionally somewhat inexact. So you may find that
the implementation does not fulfill the above specification, or that a test case is testing
something not specified. These are your tasks:

1. Make sure that the Calculator class passes all of the existing tests. Otherwise inves-
tigate the reasons for failures. Report all failures that you find.

2. In the report you don’t need to fix any problem in the Calculator class, instead read
the specification carefully and provide further test cases to ensure that the correct
implementation of this module conforms to the specification. (As your test cases may
also be used to test and evaluate an alternative implementation of this specification,
write a comprehensive set of test cases.)

3. Write an FSM for the calculator according to the specification.

4. Write 2 test cases you can extract from the FSM, and two others that you cannot
extract from it.

2


