
Implementing
Programming Languages

Aarne Ranta

February 6, 2012

2

Contents

1 What is a programming language implementation 11
1.1 From language to binary . 11
1.2 Levels of languages . 14
1.3 Compilation and interpretation 16
1.4 Compilation phases . 18
1.5 Compiler errors . 20
1.6 More compiler phases . 22
1.7 Theory and practice . 23
1.8 The scope of the techniques 24

2 What can a grammar do for you 25
2.1 Defining a language . 25
2.2 Using BNFC . 27
2.3 Rules, categories, and trees . 30
2.4 Precedence levels . 32
2.5 Abstract and concrete syntax 33
2.6 Abstract syntax in Haskell . 36
2.7 Abstract syntax in Java . 38
2.8 List categories . 41
2.9 Specifying the lexer . 42
2.10 Working out a grammar . 45

3 How do lexers and parsers work* 51
3.1 The theory of formal languages 51
3.2 Regular languages and finite automata 52
3.3 The compilation of regular expressions 54
3.4 Properties of regular languages 58
3.5 Context-free grammars and parsing 61

3

4 CONTENTS

3.6 LL(k) parsing . 62
3.7 LR(k) parsing . 65
3.8 Finding and resolving conflicts 68
3.9 The limits of context-free grammars 70

4 When does a program make sense 73
4.1 The purposes of type checking 73
4.2 Specifying a type checker . 75
4.3 Type checking and type inference 75
4.4 Context, environment, and side conditions 76
4.5 Proofs in a type system . 78
4.6 Overloading and type casts . 79
4.7 The validity of statements and function definitions 79
4.8 Declarations and block structures 81
4.9 Implementing a type checker 83
4.10 Type checker in Haskell . 85
4.11 Type checker in Java . 88

5 How to run programs in an interpreter 95
5.1 Specifying an interpreter . 95
5.2 Side effects . 96
5.3 Statements . 98
5.4 Programs, function definitions, and function calls 99
5.5 Laziness . 101
5.6 Debugging interpreters . 101
5.7 Implementing the interpreter 102
5.8 Interpreting Java bytecode . 104

6 Compiling to machine code 109
6.1 The semantic gap . 109
6.2 Specifying the code generator 110
6.3 The compilation environment 111
6.4 Simple expressions and statements 112
6.5 Expressions and statements with jumps 115
6.6 Compositionality . 118
6.7 Function calls and definitions 118
6.8 Putting together a class file 121
6.9 Compiling to native code . 122

CONTENTS 5

6.10 Memory management . 122

7 Functional programming languages 123

8 How simple can a language be* 125

9 Designing your own language 127

10 Compiling natural language* 129

6 CONTENTS

Introduction

This book aims to make programming language implementation as easy as
possible. It will guide you through all the phases of the design and imple-
mentation of a compiler or an interpreter. You can learn the material in one
or two weeks and then build your own language as a matter of hours or days.

The book is different from traditional compiler books in several ways:

• it is much thinner, yet covers all the material needed for the task

• it leaves low-level details to standard tools whenever available

• it has more pure theory (inference rules) but also more actual practice
(how to write the code)

Of course, it is not a substitute for the “real” books if you want to do re-
search in compilers, or if you are involved in cutting edge implementations
of large programming languages. Things that we have left out include low-
level buffering in lexer input, algorithms for building LR parser generators,
data flow analysis, register allocation, memory management, and parallelism.
Reading hints will be given for material on these topics. In particular, the
“Dragon Book”

Aho, Lam, Sethi & Ullman: Compilers Principles, Techniques &
Tools Second edition, Pearson/Addison Wesley 2007

covers most of these topics. But it does not cover all the things in this book.
Due to the approach chosen, you will get very quickly into the business

of actually implementing your language and running programs written in it.
The goal of this exercise is twofold:

1. to design and implement new programming languages, especially domain-
specific ones

7

8 CONTENTS

2. to get an idea of how compilers work

For the latter goal, we have a few theory chapters and sections, marked with
an asterisk (*). These chapters can safely be left out if you are only interested
in Goal 1. But of course, to talk with any authority about compilers, the
knowledge of the underlying theory is essential. The theory sections try to
make this interesting and relevant, answering to questions that are likely to
arise, such as:

• what exactly can be done in a parser

• why can’t a compiler detect all errors in programs

Practical work is an essential part of this book. You cannot claim really
to have read this book unless you have done the main assignment, which
consists of four parts:

1. a grammar and parser for a fragment of C++

2. a type checker of a smaller fragment of C++

3. an interpreter

4. a compiler to Java Virtual Machine

What is here meant by C++ is a small fragment of this immense language.
We could as well say C or Java, except for part 1, which contains many of the
tricky special features of C++ such as templates. The idea with part 1 is to
throw you into cold water and show that you can actually swim. Managing
to do this assigment will give you confidence that you can cope with any
feature of programming language syntax easily.

Assignments 2, 3, and 4 deal with a smaller part of C++, but contain
everything that is needed for writing useful programs: arithmetic expressions,
declarations and assignments, if-else clauses, while loops, blocks, functions.
They will give the basic understanding of how programming languages work,
and this understanding can be applied to numerous variations of the same
themes.

The main assignment is not only practical but also close to the “real
world”. Thus we don’t use toy languages and home-made virtual machines,
but fragments of a real language (C++), and a real virtual machine (JVM).

CONTENTS 9

This makes it for instance possible to produce your own Java class files and
link them together with files generated by standard Java compilers. When
running your code, you will most certainly experience the embarrassment
(and pleasure!) of seeing byte code verification errors, which rarely arise
with the standard compilers!

You accomplish all tasks by writing two kinds of code:

• a grammar formalism: BNFC (= BNF Converter; BNF = Backus Naur
Form)

• a general-purpose programming language: Java or Haskell

Thus you don’t need to write code for traditional compiler tools such as
Lex and YACC. Such code, as well as many other parts of the compiler, are
automatically derived from the BNFC grammar. For the general-purpose
language, you could actually choose any of Java, Haskell, C, C++, C#, or
OCaml, since BNFC supports all these languages. But in this book, we will
focus on the use of Java and Haskell as implementation language: you can
choose either of them in accordance with your taste and experience. If you
want to use C++ or C#, you can easily follow the Java code examples,
whereas OCaml programmers can follow Haskell. C is a little different, but
of course closer to Java than to Haskell.

In addition to the main assignment, the book provides optional minor
assignments:

1. an interpreter of a functional language (a fragment of Haskell)

2. the design and implementation of your own language

3. a translator for natural language

The last one of these themes is included to give perspective. The history
of programming languages shows a steady development towards higher-level
languages—in a sense, coming closer and closer to natural languages. The
point of this assignment (and the last chapter as a whole) is to try how far
one can get. You will find this to be either surprisingly easy, if you are pos-
itively minded, or hopelessly difficult, if you are more pessimistic. But this
is an area with a lot of future potential. Applications such as speech-based
human-computer interaction and automatic translation are getting common-
place. Their connection with traditional programming language technology

10 CONTENTS

will be illustrated by a natural-language-like specification language, which
can be both processed automatically, and understood by layman managers
and customers.

Chapter 1

What is a programming
language implementation

This chapter introduces the compilation phases, fixing the concepts and
terminology for most of the later discussion. It explains the difference be-
tween compilers and interpreters, the division into low and high level lan-
guages, and the datastructures and algorithms involved in each compilation
phase.

1.1 From language to binary

As everyone knows, computers manipulate 0’s and 1’s. This is done by the
help of electronic circuits, where 0 means no current goes through whereas
1 means that it does. The reason this is useful is that so many things—
in a sense, all information—can be expressed by using just 0’s and 1’s—by
binary sequences. One way to see this is to think about information in
terms of yes/no questions. A sequence of answers to enough many questions
can specify any object. For instance, a popular game in my childhood was
to guess a person by means of maximally 20 yes/no questions.

The first thing to encode in binary are the integers:

0 = 0

1 = 1

2 = 10

3 = 11

4 = 100

11

12CHAPTER 1. WHAT IS A PROGRAMMING LANGUAGE IMPLEMENTATION

and so on. This generalizes easily to letters and to other characters, for
instance by the use of the ASCII encoding:

A = 65 = 1000001

B = 66 = 1000010

and so on. In this way we can see that all data manipulated by computers
can be expressed by 0’s and 1’s. But what is crucial is that even the pro-
grams that manipulate the data can be so expressed. To take a real-world
example, programs in the JVM machine language (Java Virtual Machine)
are sequences of bytes, that is, groups of eight 0’s or 1’s (capable of express-
ing the numbers from 0 to 255). A byte can encode a numeric value, for
instance an integer or a character as above. But it can also encode an in-
struction, that is, a command to do something. For instance, addition and
multiplication (of integers) are expressed in JVM as bytes as follows:

+ = 96 = 0110 0000

* = 104 = 0110 1000

(We will put a space in the middle of each bytes to make it more readable,
and more spaces between bytes.)

From the encodings of numbers and operators, one could construct a
simple-minded encoding of arithmetic formulas, by just putting together the
codes for 5, +, and 6:

5 + 6 = 0000 0101 0110 0000 0000 0110

While this could be made to work, actual JVM works in a more roundabout
way. In the logic that it follows, the expression is first converted to a postfix
form, where the operands come before the operator:

5 + 6 ---> 5 6 +

One virtue of the postfix form is that we don’t need brackets. For instance,

(5 + 6) * 7 --> 5 6 + 7 *

5 + (6 * 7) --> 5 6 7 * +

1.1. FROM LANGUAGE TO BINARY 13

At least the former expression needs brackets when the usual infix order is
used, that is, when the operator is between the operands.

The way the JVM machine manipulates such expressions is based on a
so-called stack, which is the working memory of the machine. The stack is
like a pile of plates, where new plates are pushed on the stack, and only
one plate is available at a time, the one last pushed—known as the top of
the stack. An arithmetic operation such as + (usually called “add”) takes
the the two top-most elements from the stack and returns their sum on the
top. Thus the computation of, say, 5 + 6, proceeds as follows, where the
left column shows the instructions and the right column the stack after each
instruction:

push 5 ; 5

push 6 ; 5 6

add ; 11

The computation of 5 + (6 * 7) is

push 5 ; 5

push 6 ; 5 6

push 7 ; 5 6 7

mul ; 5 42

add ; 47

In this case, unlike the previous one, the stack at one point contains more
numbers than two; but the multiplication (“mul”) instruction correctly picks
the topmost ones 6 and 7 and returns the value 42 on the stack.

The binary JVM code must make it clear which bytes stand for numeric
values and which ones for instructions such as “add”. This is obvious if you
think that we need to read 0110 0000 sometimes as number 96, and sometimes
as addition. The way to make it clear that a byte stands for a numeric value
is to prefix it with a special instruction, which is (surprise surprise!) called
“push”. Thus we get the code for an addition expression:

5 + 6 ---> push 5 push 6 add

To convert this all into binary, we only need the code for the push instruction,

push = 16 = 0001 0000

14CHAPTER 1. WHAT IS A PROGRAMMING LANGUAGE IMPLEMENTATION

Now we can express the entire arithmetic expression as binary:

5 + 6 = 0001 0000 0000 0101 0001 0000 0000 0110 0110 0000

We hope to have made two important things clear now:

• Both data and programs can be expressed as binary code, i.e. by 0’s
and 1’s.

• There is a systematic translation from conventional (“user-friendly”)
expressions to binary code.

Of course we will need more instructions to represent variables, assignments,
loops, functions, and other constructs found in programming languages, but
the principles are the same as in the simple example above. The translation
from program code to binary is the very task of the program called a com-
piler. The compiler from arithmetic expressions to JVM byte code works as
follows:

1. analyze the expression into an operator F and its operands X and Y

2. compile the code for X, followed by the code for Y, followed by the
code for F

This procedure is our first example of a compiler. It shows the two main ideas
of compilers, which we will repeat again and again in new configurations:

1. Syntactic analysis: here, to find the main operator of an expression

2. Recursion: the compiler calls the compiler on parts of the expression,
until it reaches the simplest parts (here, the numeric constants).

1.2 Levels of languages

The task of a compiler may be more or less demanding. This depends on the
distance of the languages it translates between. The situation is related to
translation between human languages: it is easier to translate from English
to French than from English to Japanese, because French is closer to English
than Japanese is, both in the family tree of languages and because of cultural
influences.

1.2. LEVELS OF LANGUAGES 15

But the meaning of “closer” is clearer in the case of computer languages.
Often it is directly related to the level of the language. The binary machine
language is usually defined as the lowest level, whereas the highest level
might be human language such as English. Usual programming languages
are between these levels, as shown by the following very sketchy diagram:

-- human

human language

Haskell

Lisp Prolog

Java

C

assembler

machine language

-- machine

Because of the distance, high-level languages are more difficult to compile
than low-level languages. Notice that “high” and “low” don’t imply any
value judgements here; the idea is simply that higher levels are closer to
human thought, whereas lower levels are closer to the operation of machines.
Both humans and machines are needed to make computers work in the way
we are used to. Some people might claim that only the lowest level of binary
code is necessary, because humans can be trained to write it. But to this one
can object that programmers could never write very sophisticated programs
by using machine code only—they could just not keep the millions of bytes
needed in their heads. Therefore, it is usually much more productive to write
high-level code and let a compiler produce the binary.

The history of programming languages indeed shows a steady progress
from lower to higher levels. Programmers can usually be more productive
when writing in high-level languages, which means that high levels are de-
sirable; at the same time, raising the level implies a challenge to compiler
writers. Thus the evolution of programming languages goes hand in hand

16CHAPTER 1. WHAT IS A PROGRAMMING LANGUAGE IMPLEMENTATION

with developments in compiler technology. It has of course also helped that
the machines have become more powerful. Compilation can be a heavy com-
putation task, and the computers of the 1960’s could not have run the com-
pilers of the 2010’s. Moreover, it is harder to write compilers that produce
efficient code than ones that waste some resources.

Here is a very rough list of programming languages in the history, only
mentioning ones that have implied something new in terms of programming
language expressivity:

• 1940’s: connecting wires to represent 0’s and 1’s

• 1950’s: assemblers, macro assemblers, FORTRAN, COBOL, LISP

• 1960’s: ALGOL, BCPL (-> B -> C), SIMULA

• 1970’s: Prolog, ML

• 1980’s: C++, Perl, Python

• 1990’s: Haskell, Java

1.3 Compilation and interpretation

In a way, a compiler reverts the history of programming languages. What
we saw before goes from a “1960’s” source language:

5 + 6 * 7

to a “1950’s” assembly language

push 5 push 6 push 7 mul add

and further to a “1940’s” machine language

0001 0000 0000 0101 0001 0000 0000 0110

0001 0000 0000 0111 0110 1000 0110 0000

1.3. COMPILATION AND INTERPRETATION 17

The second step is very easy: you just look up the binary codes for each
symbol in the assembly language and put them together in the same order. It
is sometimes not regarded as a part of compilation proper, but as a separate
level of assembly. The main reason for this is purely practical: modern
compilers don’t need to go all the way to the binary, but just to the assembly
language, since there exist assembly programs that can do the rest.

A compiler is a program that translates code to some other code. It
does not actually run the program. An interpreter does this. Thus a
source language expression,

5 + 6 * 7

is by an interpreter turned to its value,

47

This computation can be performed without any translation of the source
code into machine code. However, a common practice is in fact a combination
of compilation and interpretation. For instance, Java programs are, as shown
above, compiled into JVM code. This code is then in turn interpreted by a
JVM interpreter.

The compilation of Java is different from for instance the way C is trans-
lated by GCC (GNU Compiler Collection). GCC compiles C into the native
code of each machine, which is just executed, not interpreted. JVM code
must be interpreted because it is not executable by any actual machine.

Sometimes a distinctin is made between “compiled languages” and “in-
terpreted languages”, C being compiled and Java being interpreted. This
is really a misnomer, in two ways. First, any language could have both an
interpreter and a compiler. Second, it’s not Java that is interpreted by a
“Java interpreter”, but JVM, a completely different language to which Java
is compiled.

Here are some examples of how some known languages are normally
treated:

• C is usually compiled to machine code by GCC

• Java is usually compiled to JVM bytecode by Javac, and this bytecode
is usually interpreted using JVM

• JavaScript is interpreted in web browsers

18CHAPTER 1. WHAT IS A PROGRAMMING LANGUAGE IMPLEMENTATION

• Unix shell scripts are interpreted by the shell

• Haskell programs are either compiled using GHC, or interpreted (via
bytecode) using Hugs or GHCI.

Compilation vs. interpretation is one of the important decisions to make
when designing and implementing a new language. Here are some trade-offs:

Advantages of interpretation:

• faster to get going

• easier to implement

• portable to different machines

Advantages of compilation:

• if to machine code: the resulting code is faster to execute

• if to machine-independent target code: the resulting code easier to
interpret than the source code

The advent of virtual machines with actual machine language instruction
sets, such as VMWare, is blurring the distinction. In general, the best trade-
offs are achieved by combinations of compiler and interpreter components,
reusing as much as possible (as we saw is done in the reuse of the assembly
phase). This leads us to the following topic: how compilers are divided into
separate components.

1.4 Compilation phases

A compiler even for a simple language easily becomes a complex program,
which is best attacked by dividing it to smaller components. These compo-
nents typically address different compilation phases. Each phase is a part
of a pipeline, which transforms the code from one format to another. These
formats are typically encoded in different data structures: each phase returns
a data structure that is easy for the next phase to manipulate.

The following diagram shows the main compiler phases and how a piece
of source code travels through them. The code is on the left, the down-going
arrows are annotated by the names of the phases, and the data structure is
on the right.

1.4. COMPILATION PHASES 19

57+6*result character string

| lexer

v

57 + 6 * result token string

| parser

v

(+ 57 (* 6 result)) syntax tree

| type checker

v

([i+] 57 ([i*] 6 [i result])) annotated syntax tree

| code generator

v

bipush 57 instruction list

bipush 6

iload 8

imul

iadd

With some more explaining words,

• The lexer reads a string of characters an chops it into tokens, i.e. to
“meaningful words”; the figure represents the token string by putting
spaces between tokens.

• The parser reads a string of tokens and groups it into a syntax tree,
i.e. to a structure indicating which parts belong together and how; the
figure represents the syntax tree by using parentheses.

• The type checker finds out the type of each part of the syntax tree
that might have alternative types, and returns an annotated syntax
tree; the figure represents the annotations by the letter i (“integer”)
in square brackets.

20CHAPTER 1. WHAT IS A PROGRAMMING LANGUAGE IMPLEMENTATION

• The code generator converts the annotated syntax tree into a list of
target code instructions. The figure uses normal JVM assembly code,
where imul means integer multiplication, bipush pushing integer bytes,
and iload pushing values of integer variables.

We want to point out the role of type checking in particular. In a Java-to-
JVM compiler it is an indispensable phase in order to perform instruction
selection in the code generator. The JVM target language has different
instructions for the addition of integers and floats, for instance (iadd vs.
dadd), whereas the Java source language uses the same symbol + for both.
The type checker analyses the code to find the types of the operands of + to
decide whether integer or double addition is needed.

The difference between compilers and interpreters is just in the last phase:
interpreters don’t generate new code, but execute the old code. However,
even then they will need to perform the earlier phases, which are independent
of what the last step will be. This is with the exception of the type checker:
compilers tend to require more type checking than interpreters, to enable
instruction selection. It is no coincidence that untyped languages such as
JavaScript and Python tend to be interpreted languages.

1.5 Compiler errors

Each compiler phases has both a positive and a negative side, so to say. The
positive side is that it converts the code to something that is more useful for
the next phase, e.g. the syntax tree into a type-annotated tree. The negative
side is that it may fail, in which case it might report an error to the user.

Each compiler phase has its characteristic errors. Here are some examples:

• Lexer errors, e.g. unclosed quote,

"hello

• Parse errors, e.g. mismatched parentheses,

(4 * (y + 5) - 12))

• Type errors, e.g. the application of a function to an argument of
wrong kind,

1.5. COMPILER ERRORS 21

sort(45)

Errors on later phases are usually not supported. One reason is the principle
(by Milner), that ”well-typed programs cannot go wrong”. This means that if
a program passes the type checker it will also work on later phases. Another,
more general reason is that the compiler phases can be divided into two
groups:

• The front end, which performs analysis, i.e. inspects the program:
lexer, parser, type checker.

• The back end, which performs synthesis: code generator.

It is natural that only the front end (analysis) phases look for errors.
A good compiler finds all errors at the earliest occasion. Thereby it saves

work: it doesn’t try to type check code that has parse errors. It is also more
useful for the user, because it can then give error messages that go to the
very root of the problem.

Of course, compilers cannot find all errors, for instance, bugs in the pro-
gram. Errors such as array index out of bounds are another example of
such errors. However, in general it is better to find errors at compile time
than at run time, and this is one aspect in which compilers are constantly
improving. One of the most important lessons of this book will be to under-
stand what is possible to do at compile time and what must be postponed
to run time.

A typical example is the binding analysis of variables: if a variable is
used in an expression in Java or C, it must have been declared and given a
value. For instance, the following function is incorrect in C:

int main () {

printf("%d",x) ;

}

The reason is that x has not been declared, which for instace GCC correctly
reports as an error. But the following is correct in C:

int main () {

int x ;

printf("%d",x) ;

}

22CHAPTER 1. WHAT IS A PROGRAMMING LANGUAGE IMPLEMENTATION

What is intuitively a problem, though, is that x has not been given a value.
The corresponding function when compiled in Java would give this as an
error.

As we will see in Chapter 3, binding analysis cannot be performed in a
parser, but must be done in the type checker. However, the situation is worse
than this. Consider the function

int main () {

int x ;

if (x!=0) x = 1 ;

printf("%d",x) ;

}

Here x gets a value under a condition. It may be that this condition is
impossible to decide at compile time. Hence it is not decidable at compile
time if x has a value—neither in the parser, nor in the type checker.

1.6 More compiler phases

The compiler phases discussed above are the main phases. There can be
many more—here are a couple of examples:

Desugaring/normalization: remove syntactic sugar, i.e. language
constructs that are there to make the language more convenient for pro-
grammers, without adding to the expressive power. Such constructs can be
removed early in compilation, so that the later phases don’t need to deal
with them. An example is multiple declarations, which can be reduced to
sequences of single declarations:

int i, j ; ---> int i ; int j ;

Desugaring is normally done at the syntax tree level, and it can be inserted as
a phase between parsing and type checking. A disadvantage can be, however,
that errors arising in type checking then refer to code that the programmer
has never written herself, but that has been created by desugaring.

Optimizations: improve the code in some respect. This can be done
on many different levels. For instance, source code optimization may
precompute values known at compile time:

1.7. THEORY AND PRACTICE 23

i = 2 + 2 ; ---> i = 4 ;

Target code optimization may replace instructions with cheaper ones:

bipush 31 ; bipush 31 ---> bipush 31 ; dup

Here the second bipush 31 is replaced by dup, which duplicates the top of
the stack. The gain is that the dup instruction is just one byte, whereas
bipush 31 is two bytes.

Modern compilers may have dozens of phases. For instance, GCC has
several optimization phases performed on the level of intermediate code.
This code is neither the source nor the target code, but something in between.
The advantage is that the optimization phases can be combined with different
source and target languages, to make these components reusable.

1.7 Theory and practice

The complex task of compiler writing is greatly helped by the division into
phases. Each phase is simple enough to be understood properly; and im-
plementations of different phases can be recombined to new compilers. But
there is yet another aspect: many of the phases have a clean mathematical
theory, which applies to that phase. The following table summarizes those
theories:

phase theory
lexer finite automata
parser context-free grammars
type checker type systems
interpreter operational semantics
code generator compilation schemes

The theories provide declarative notations for each of the phases, so
that they can be specified in clean ways, independently of implementatiotion
and usually much more concisely. They will also enable reasoning about the
compiler components. For instance, the way parsers are written by means
of context-free grammars can be used for guaranteeing that the language is
unambiguous, that is, that each program can be compiled in a unique way.

24CHAPTER 1. WHAT IS A PROGRAMMING LANGUAGE IMPLEMENTATION

Syntax-directed translation is a common name for the techniques
used in type checkers, interpreters, and code generators alike. We will see
that these techniques have so much in common that, once you learn how to
implement a type checker, the other components are easy variants of this.

1.8 The scope of the techniques

The techniques of compiler construction are by no means restricted to the
traditional task of translating programming language to machine language.
The target of the translation can also be another programming language—for
instance, the Google Web Toolkit is a compiler from Java into JavaScript,
enabling the construction of web applications in a higher-level and type-
checked language.

Actually, the modular way in which modern compilers are built implies
that it is seldom necessary to go all the way to the machine code (or as-
sembler), even if this is the target. A popular way of building native code
compilers is via a translation to C. As soon as C code is reached, the compiler
for the new language is complete.

The modularity of compilers also enables the use of compiler components
to other tasks, such as debuggers, documentation systems, and code analysis
of different kinds. But there is still a very good reason to learn the whole
chain from source language to machine language: it will help you to decide
which phases your task resembles the most, and thereby which techniques
are the most useful ones to apply.

Chapter 2

What can a grammar do for
you

This chapter is a hands-on introduction to BNFC. It explains step by step
how to write a grammar, how to convert it into a lexer and a parser, how to
test it, and how to solve the problems that are likely to arise.

This chapter also provides all the concepts and tools needed for solving
Assignment 1. BNFC has some features that are not covered here, including
the code generation for C and C++. The documentation on BNFC home
page gives more information on these matters: the BNFC tutorial

http://www.cse.chalmers.se/research/group/Language-technology/BNFC/doc/tutorial/bnfc-
tutorial.html

covers practical issues on using BNFC, whereas the LBNF Report,

http://www.cse.chalmers.se/research/group/Language-technology/BNFC/doc/LBNF-
report.pdf

explains more features of the BNF notation used.

2.1 Defining a language

In school teaching, grammars are systems of rules used for teaching lan-
guages. They specify how words are formed (e.g. that the plural of the noun
baby is babies) and how words are combined to sentences (e.g. that in En-
glish the subject usually appears before the verb). Grammars can be more

25

http://www.cse.chalmers.se/research/group/Language-technology/BNFC/doc/tutorial/bnfc-tutorial.html
http://www.cse.chalmers.se/research/group/Language-technology/BNFC/doc/tutorial/bnfc-tutorial.html
http://www.cse.chalmers.se/research/group/Language-technology/BNFC/doc/LBNF-report.pdf
http://www.cse.chalmers.se/research/group/Language-technology/BNFC/doc/LBNF-report.pdf

26 CHAPTER 2. WHAT CAN A GRAMMAR DO FOR YOU

or less complete, and people who actually speak a language may follow the
grammar more or less strictly. In linguistics, where grammars are studied
in a scientific way, a widely held belief is that all grammars leak—that it is
not possible to specify a language completely by grammar rules.

In compiler construction, grammars have a similar role: they give rules
for forming “words”, such as intereger constants, identifiers, and keywords.
And they also give rules for combining words into expressions, statements,
and programs. But the usefulness of grammars is much more uncontroversial
than in linguistics: grammars of programming languages don’t leak, because
the languages are defined by their grammars. This is of course possible just
because programming languages are artificial products, rather than results
of natural evolution.

Defining a programming language is so easy that we can directly jump
into doing it. Let us start with the following grammar. It defines a language
of expressions built by using the four arithmetic operations (addition, sub-
traction, multiplication, division) as well as integer constants.

EAdd. Exp ::= Exp "+" Exp1 ;

ESub. Exp ::= Exp "-" Exp1 ;

EMul. Exp1 ::= Exp1 "*" Exp2 ;

EDiv. Exp1 ::= Exp1 "/" Exp2 ;

EInt. Exp2 ::= Integer ;

coercions Exp 2 ;

You can copy this code into a file called Calc.cf. It will be the source of your
first compiler component, which is a parser of integer arithmetic expressions.

The code is written in the notation of BNFC, BNF Converter. It is a
brand of the BNF notation, Backus Naur Form, named after the two in-
ventors of this grammar format. BNF grammars are routinely used for the
specification of programming languages, appearing in language manuals.
The parser of a language must of course follow the grammar in order to be
correct. If the grammar is written in the BNFC notation, such a correct
parser can be automatically derived by the BNFC tool.

The code above should be easy to understand, at least with some experi-
ence. We will explain the details of the notation in a while. But we will first
show how the code is used in BNFC.

2.2. USING BNFC 27

2.2 Using BNFC

The first thing is you have to do is to check that the BNFC tool is available.
Assuming you are working in a Unix-style shell, type

bnfc

and you should get a message specifying the authors and license of BNFC
and its usage options. If the command bnfc does not work, you can install
the software from the BNFC homepage,

http://www.cse.chalmers.se/research/group/Language-technology/BNFC/

It is available for Linux, Mac OS, and Windows, and there are several instal-
lation methods (such as Debian packages), from which you can choose the
one most suitable for your platform and taste.

Now, assuming you have BNFC installed, you can run it on the file
Calc.cf created in the previous section:

bnfc -m Calc.cf

The system will respond by generating a bunch of files:

writing file AbsCalc.hs

writing file LexCalc.x

(Use Alex 2.0 to compile.)

writing file ParCalc.y

(Tested with Happy 1.15)

writing file DocCalc.tex

writing file DocCalc.txt

writing file SkelCalc.hs

writing file PrintCalc.hs

writing file TestCalc.hs

writing file ErrM.hs

writing file Makefile

These files are different components of a compiler, which can be automatically
generated from the BNF grammar. We will go to their details later, but you
can certainly guess that there is a file for a lexer (LexCalc.x) and another one
for a parser (ParCalc.y). The suffix .hs tells that some of the files are for
the Haskell programming language. We shall see later how other languages
can be used instead. For instance, you can write

28 CHAPTER 2. WHAT CAN A GRAMMAR DO FOR YOU

bnfc -m -java1.5 Calc.cf

to generate the components for Java.

Running BNFC for Haskell

One of the generated files is a Makefile, which specifies the commands for
compiling the compiler. So let us do this as the next thing:

make

Again, this can fail at some point if you don’t have the Haskell tools installed:
the GHC Haskell compiler, the Happy parser generator, and the Alex lexer
generator. You don’t need to install them, if you aim to work in Java and
not in Haskell, but let us first assume you do have GHC, Happy, and Alex.
Then your run of make will successfully terminate with the message

Linking TestCalc ...

TestCalc is an executable program for testing the parser defined by Calc.cf.
So let us try it out:

echo "5 + 6 * 7" | ./TestCalc

Notice that TestCalc reads Unix standard input; the easiest thing to provide
the parsable expression is thus by a pipe from the echo command. Now, the
response of TestCalc is the following:

Parse Successful!

[Abstract Syntax]

EAdd (EInt 5) (EMul (EInt 6) (EInt 7))

[Linearized tree]

5 + 6 * 7

It first says that it has succeeded to parse the input, then shows an abstract
syntax tree, which is the expected result of parsing and gives the tree
structure of the expression. Finally, it displays the linearizion, which is the
string obtained by using the grammar in the direction opposite to parsing.
We will later see that this string can sometimes be different from the input
string.

Input can also be read from a file. The standard input method for this is

2.2. USING BNFC 29

./TestCalc < FILE_with_an_expression

But the test program also allows a file name argument,

./TestCalc FILE_with_an_expression

Running BNFC for Java

If you don’t want to use Haskell but Java, you will have run BNFC with the
Java option,

bnfc -m -java1.5 Calc.cf

You see that some more files are generated then:

writing file Calc/Absyn/Exp.java

writing file Calc/Absyn/EAdd.java

...

writing file Calc/PrettyPrinter.java

writing file Calc/VisitSkel.java

writing file Calc/ComposVisitor.java

writing file Calc/AbstractVisitor.java

writing file Calc/FoldVisitor.java

writing file Calc/AllVisitor.java

writing file Calc/Test.java

writing file Calc/Yylex (saving old file as Calc/Yylex.bak)

(Tested with JLex 1.2.6.)

writing file Calc/Calc.cup

(Parser created for category Exp)

(Tested with CUP 0.10k)

writing file Calc.tex

writing file Makefile

There are no Haskell files any more, but files for Java, its parser tool Cup, and
its lexer tool JLex. The Makefile works exactly like in the case of Haskell:

make

Well... if you have done exactly as shown above, you will probably fail with
the message

30 CHAPTER 2. WHAT CAN A GRAMMAR DO FOR YOU

java JLex.Main Calc/Yylex

Exception in thread "main" java.lang.NoClassDefFoundError: JLex/Main

make: *** [Calc/Yylex.java] Error 1

This problem is typical in Java when using libraries put into unusual places,
which often happens with user-installed libraries like Cup and JLex. Fortu-
nately there is an easy solution: you just have to define the classpath that
Java uses for finding libraries. On my Ubuntu Linux laptop, the following
shell command does the job:

export CLASSPATH=.:/usr/local/java/Cup:/usr/local/java

Now I will get a better result with make. Then I can run the parser test in
almost the same way as with the version compiled with Haskell:

echo "5 + 6 * 7" | java Calc/Test

Parse Succesful!

[Abstract Syntax]

(EAdd (EInt 5) (EMul (EInt 6) (EInt 7)))

[Linearized Tree]

5 + 6 * 7

We can conclude this section by two important conclusions about BNFC:

1. We can use a BNF grammar to generate several compiler components.

2. The components can be generated in different languages from the same
BNF source.

2.3 Rules, categories, and trees

A BNFC source file is a sequence of rules, where most rules have the format

LABEL . VALUE_CATEGORY ::= PRODUCTION ;

The LABEL and VALUE CATEGORY are identifiers (without quotes).
The PRODUCTION is a sequence of two kinds of items:

2.3. RULES, CATEGORIES, AND TREES 31

• identifiers, called nonterminals

• string literals (strings in double quotes), called terminals

The rule has the following semantics:

• a tree of type VALUE CATEGORY can be built with LABEL as the topmost
node, from any sequence specified by the production, so that whose
nonterminals give the subtrees of this new tree

Types of trees are the categories of the grammar, i.e. the different kinds of
objects that can be built (expressions, statements, programs,...). Tree labels
are the constructors of those categories. The constructors appear as nodes
of abstract syntax trees. Thus we saw above that the string

5 + 6 * 7

was compiled into a tree displayed as follows:

EAdd (EInt 5) (EMul (EInt 6) (EInt 7))

This is just a handy (machine-readable!) notation for the “real” tree

You may also notice that it is exactly the notation Haskell programmers use
for specifying a certain kind of trees: expressions built by function applica-
tions.

32 CHAPTER 2. WHAT CAN A GRAMMAR DO FOR YOU

2.4 Precedence levels

How does BNFC know that multiplication is performed before addition, that
is, why the EMul node is below the EAdd node? Another way for analysing 5

+ 6 * 7 could be

EMul (EAdd (EInt 5) (EInt 6)) (EInt 7)

The reason we don’t give this analysis is that multiplication expressions have
a higher precedence. In BNFC, precedence levels are the digits attached
to category symbols. Thus Exp1 has precedence level 1, Exp2 has precedence
level 2, etc. The nonterminal Exp without a digit is defined to mean the same
as Exp0.

The rule

EAdd. Exp ::= Exp "+" Exp1 ;

can be read as saying:

EAdd forms an expression of level 0 from an expression of level 0
on the left of + and of level 1 on the right.

Likewise, the rule

EMul. Exp1 ::= Exp1 "*" Exp2 ;

says: EMul form an expression of level 1 from an expression of level 1 on the
left of * and of level 2 on the right.

The semantics of precedence levels consists of three principles:

1. All precedence variants of a nonterminal denote the same type in the
abstract syntax. Thus 2, 2 + 2, and 2 * 2 are all of type Exp.

2. An expression of higher level can always be used on lower levels as well.
This is what makes 2 + 3 correct: level 2 is here used on level 0 on the
left and on level 1 on the right.

3. An expression of any level can be lifted to the highest level by putting
it in parentheses. Thus (5 + 6) is an expression of level 2

2.5. ABSTRACT AND CONCRETE SYNTAX 33

What is the highest level? This is specified in the grammar by using a
coercions statement. For instance, coercions Exp 2 says that 2 is the
highest level for Exp. It is actually a shorthand for the following “ordinary”
BNF rules:

_. Exp0 ::= Exp1 ;

_. Exp1 ::= Exp2 ;

_. Exp2 ::= "(" Exp0 ")" ;

These rules are called coercions, since they just coerce expressions from one
category to another, without doing anything—without creating new nodes
in the abstract syntax tree. The underscore in front of these rules is a
dummy label, which indicates that no constructor is added.

2.5 Abstract and concrete syntax

Abstract syntax trees are the hub of a modern compiler: they are the target
of the parser and the place where most compilation phases happen, including
type checking and code generation.

Abstract syntax is purely about the structure of expressions: what are
their immediate parts and the parts of those parts? Abstract syntax thus
ignore questions like what the parts look like, or even what order they appear
in. From an abstract syntax point of view, all of the following expressions
are the same:

2 + 3 -- infix

(+ 2 3) -- prefix

(2 3 +) -- postfix

bipush 2 -- JVM

bipush 3

iadd

the sum of 2 and 3 -- English

2:n ja 3:n summa -- Finnish

34 CHAPTER 2. WHAT CAN A GRAMMAR DO FOR YOU

In fact, the simplest way to build a compiler is the following:

1. Parse the source language expression, e.g. 2 + 3

2. Obtain an abstract syntax tree, EAdd (EInt 2) (EInt 3)

3. Linearize the tree to another format, bipush 2 bipush 3 iadd

In practice, compilers don’t quite work in this simple way. The main reason
is that the tree obtained in parsing may have to be converted to another
format before code generation. For instance, type annotations may have to
be added to an arithmetic expression tree in order to select the proper JVM
instructions.

The BNF grammar specifies the abstract syntax of a language. But it
simultaneously specifies its concrete syntax as well. The concrete syntax
gives more detail than the abstract syntax: it says what the parts look like
and in what order they appear. One way to spell out the distinction is by
trying to separate these aspects in a BNF rule. Take, for instance, the rule
for addition expressions:

EAdd. Exp0 ::= Exp0 "+" Exp1

The purely abstract syntax part of this rule is

EAdd. Exp ::= Exp Exp

which hides the actual symbol used for addition (and thereby the place where
it appears). It also hides the precedence levels, since they don’t imply any
differences in the abstract syntax trees.

In brief, the abstract syntax is extracted from a BNF grammar as follows:

1. Remove all terminals.

2. Remore all precedence numbers.

3. Remove all coercions rules.

If this is performed with the Calc.cf file, the following rules remain:

2.5. ABSTRACT AND CONCRETE SYNTAX 35

EAdd. Exp ::= Exp Exp ;

ESub. Exp ::= Exp Exp ;

EMul. Exp ::= Exp Exp ;

EDiv. Exp ::= Exp Exp ;

EInt. Exp ::= Int ;

This is a kind of a “skeleton” of a grammar, which could be filled with
terminals, precedence numbers, and coercions in different ways to obtain
new languages with the same abstract syntax. For instance, JVM assembler
could be constructed as follows:

EAdd. Exp ::= Exp Exp "iadd" ;

ESub. Exp ::= Exp Exp "isub" ;

EMul. Exp ::= Exp Exp "imul" ;

EDiv. Exp ::= Exp Exp "idiv" ;

EInt. Exp ::= "bipush" Int ;

Now it is easy to see that arithmetic expressions could be compiled to JVM by
just combining parsing with Calc.cf and linearization with this alternative
grammar.

Another way to see the distinction between abstract and concrete syntax
is by means of the different kinds of trees they involve. What we have called
abstract syntax trees have a simple structure:

• their nodes and leaves are constructors (i.e. labels of BNF rules).

What is normally called parse trees, and we could call concrete syntax
trees, look different:

• their nodes are category symbols (i.e. nonterminals)

• their leaves are tokens (i.e. terminals)

Here are the parse tree and the abstract syntax tree for the expression 5 +

6 * 7 as analysed by Calc.cf:

36 CHAPTER 2. WHAT CAN A GRAMMAR DO FOR YOU

2.6 Abstract syntax in Haskell

The purpose of abstract syntax is to provide a suitable platform for further
processing in a compiler. Concrete syntax details such as precedences and
the shape of the terminals is then irrelevant: it would just complicate the
matters, and also weaken the portability of compiler back-end components
to other languages.

Haskell is the language with the most straightforward representations of
abstract syntax, so let us start with it. Java will be covered in the next
section. And we will return to the details of abstract syntax programming
later, when discussing later compiler phases. We hope the Haskell code we
show is readable by non-Haskellers as well—it is much simpler than the Java
code for the same purpose.

When generating Haskell code, BNFC represents the abstract syntax by
algebraic datatypes. For every category in the grammar, a data definition
is thus produced. The Exp category of Calc generates the following definition:

data Exp =

EAdd Exp Exp

| ESub Exp Exp

| EMul Exp Exp

| EDiv Exp Exp

| EInt Integer

2.6. ABSTRACT SYNTAX IN HASKELL 37

deriving (Eq,Ord,Show)

The deriving part says that the type Exp has equality and order predicates,
and its objects can be shown as strings, but Java programmers can ignore
these details.

The main programming method in most components of the compiler is
syntax-directed translation, i.e. structural recursion on abstract
syntax trees. In Haskell, this is performed conveniently by using pattern
matching. The following code is, in fact, the complete implementation of a
calculator, which interprets arithmetic expressions as integer values:

module Interpreter where

import AbsCalc

interpret :: Exp -> Integer

interpret x = case x of

EAdd exp0 exp -> interpret exp0 + interpret exp

ESub exp0 exp -> interpret exp0 - interpret exp

EMul exp0 exp -> interpret exp0 * interpret exp

EDiv exp0 exp -> interpret exp0 ‘div‘ interpret exp

EInt n -> n

Thus we can now turn our parser into an interpreter! We do this by modifying
the generated file TestCalc.hs: instead showing the syntax tree, we let it
show the value from interpretation:

module Main where

import LexCalc

import ParCalc

import AbsCalc

import Interpreter

import ErrM

main = do

interact calc

putStrLn ""

38 CHAPTER 2. WHAT CAN A GRAMMAR DO FOR YOU

calc s =

let Ok e = pExp (myLexer s)

in show (interpret e)

This, in a nutshell, is how you can build any compiler on top of BNFC:

1. Write a grammar and convert it into parser and other modules.

2. Write some code that manipulates syntax trees in a desired way.

3. Let the main file show the results of syntax tree manipulation.

If your Main module is in a file named Calculator, you can compile it with
GHC as follows:

ghc --make Calculator.hs

Then you can run it on command-line input:

echo "1 + 2 * 3" | ./Calculator

7

Now, let’s do the same thing in Java.

2.7 Abstract syntax in Java

Java has no notation for algebraic datatypes. But just types can be encoded
by using the class system of Java:

• For each category in the grammar, an abstract base class.

• For each constructor of the category, a class extending the base class.

This means quite a few files, which are for the sake of clarity put to a separate
category. In the case of Calc.cf, we have the files

2.7. ABSTRACT SYNTAX IN JAVA 39

Calc/Absyn/EAdd.java

Calc/Absyn/EDiv.java

Calc/Absyn/EInt.java

Calc/Absyn/EMul.java

Calc/Absyn/ESub.java

Calc/Absyn/Exp.java

This is what the classes look like:

public abstract class Exp implements java.io.Serializable {

// some code that we explain later

}

public class EAdd extends Exp {

public final Exp exp_1, exp_2;

public EAdd(Exp p1, Exp p2) { exp_1 = p1; exp_2 = p2; }

// some more code that we explain later

}

/* the same for ESub, EMul, EDiv */

public class EInt extends Exp {

public final Integer integer_;

public EInt(Integer p1) { integer_ = p1; }

}

Tree processing is much less staightforward than in Haskell, because Java
doesn’t have pattern matching. There are two ways of doing it:

1. Add an interpreter methods to each class.

2. Use a separate visitor interface to implement tree traversal in a gen-
eral way.

The visitor method is the proper choice in more advanced applications, and
we will return to it in the chapter on type checking. To get the calculator
up and running now, let us follow the simpler way. What we do is take the
classes generated in Calc/Absyn/ by BNFC, and add an interpret method
to each of them:

40 CHAPTER 2. WHAT CAN A GRAMMAR DO FOR YOU

public abstract class Exp {

public abstract Integer interpret() ;

}

public class EAdd extends Exp {

public final Exp exp_1, exp_2;

public Integer interpret() {return exp_1.interpret() + exp_2.interpret() ;}

}

public class EMul extends Exp {

public final Exp exp_1, exp_2;

public Integer interpret() {return exp_1.interpret() * exp_2.interpret() ;}

}

public class EInt extends Exp {

public final Integer integer_;

public Integer interpret() {return integer_ ;}

}

(We have hidden most of the other contents of the classes for simplicity.)
Now we can modify the file Calc/Test.java into a calculator:

public class Calculator {

public static void main(String args[]) throws Exception

{

Yylex l = new Yylex(System.in) ;

parser p = new parser(l) ;

Calc.Absyn.Exp parse_tree = p.pExp() ;

System.out.println(parse_tree.interpret());

}

}

(We have omitted error handling for simplicity.) If we compile this,

javac Calc/Calculator.java

we can run it on command-line input as expected:

echo "1 + 2 * 3" | java Calc/Calculator

7

2.8. LIST CATEGORIES 41

Run on file input:

java Calc/Interpret < ex1.calc

9102

2.8 List categories

Lists of various kinds are used everywhere in grammars. Standard BNF
defines list categories with pairs of rules. For instance, to define a list of
function declarations, one can write

NilFunction. ListFunction ::= ;

ConsFunction. ListFunction ::= Function ListFunction ;

The first rule states that a list of functions can be empty (“nil”). The sec-
ond rule states that a list can be formed by prepending a function to a list
(“cons”).

Lists often have terminators, i.e. tokens that appear after every item
of a list. For instance, function declarations might have semicolons (;) as
terminators. This is expressed as follows:

NilFunction. ListFunction ::= ;

ConsFunction. ListFunction ::= Function ";" ListFunction ;

The pattern of list rules is so common that BNFC has some special notations
for it. Thus lists of a category C can be denoted as [C]. Instead of pairs of
rules, one can use the shorthand terminator. Thus the latter pair of rules
for lists of functions can be written concisely

terminator Function ";" ;

The former pair, where no terminator is used, is written with an “empty
terminator”,

terminator Function "" ;

42 CHAPTER 2. WHAT CAN A GRAMMAR DO FOR YOU

It is important to know that the terminator rule expands to a pair of or-
dinary BNF rules when BNFC is run. Thus there is nothing special with it,
and it could be avoided. But it is easier for both the grammar writer and
reader to use the concise terminator format. This is analogous with the
coercions shorthand, which BNFC expands to a list of rules relating the
precedence levels.

In addition to terminators, programming languages can have separators:
tokens that appear between list items, just not after the last one. For in-
stance, the list of arguments of a function in C have a comma (,) as separator.
This is written by a rule for expression lists:

separator Exp "," ;

This shorthand expands to a set of rules for the category [Exp]. The rule
for function calls can then be written

ECall. Exp ::= Ident "(" [Exp] ")" ;

Sometimes lists are required to be nonempty, i.e. have at least one element.
This is expressed in BNFC by adding the keyword nonempty:

terminator nonempty Function "" ;

separator nonempty Ident "," ;

The bracket notation for lists is borrowed from Haskell. And the abstract
syntax build by the parser indeed represents lists as Haskell lists. In Java,
list categories are similarty represented as linked lists. To summarize,

• in Haskell, [C] is represented as [C]

• in Java, [C] is represented as java.util.LinkedList<C>

2.9 Specifying the lexer

We have defined lexing and parsing as the first two compiler phases. BNF
grammars are traditionally used for specifying parsers. So where do we get
the lexer from?

In BNFC, the lexer is often implicit. It is based on the use of predefined
token types, which can be used in BNF rules but only on the right-hand-
sides of the rules. Thus it is not legal to write rules that produce these types.
There are five such types in BNFC:

2.9. SPECIFYING THE LEXER 43

• Integer, integer literals: sequence of digits, e.g. 123445425425436;

• Double, floating point literals: two sequences of digits with a deci-
mal point in between, and an optional exponent, e.g. 7.098e-7;

• String, string literals: any characters between double quotes, e.g.
"hello world", with a backslash (\) escaping a quote and a backslash;

• Char, character literals: any character between single quotes, e.g.
’7’;

• Ident, identifiers: a letter (A..Za..z) followed by letters, digits, and
characters ’, e.g. r2 out’

The precise definitions of these types are given in the LBNF report.
The predefined token types are often sufficient for language implemen-

tations, especially for new languages, which can be designed to follow the
BNFC rules for convenience. But BNFC also allows the definition of new
token types. These definitions are written by using regular expressions.
For instance, one can define a special type of upper-case identifiers as follows:

token UIdent (upper (letter | digit | ’_’)*) ;

This defines UIdent as a token type, which contains strings starting with an
upper-case letter and continuing with a (possibly empty) sequence of letters,
digits, and underscores.

The following table gives the main regular expressions available in BNFC.

name notation explanation
symbol ’a’ the character a
sequence A B A followed by B
union A | B A or B
closure A* any number of A’s (possibly 0)
empty eps the empty string
character char any character (ASCII 0..255)
letter letter any letter (A..Za..z)
upper-case letter upper any upper-case letter (A..Z)
lower-case letter lower any lower-case letter (a..z)
digit digit any digit (0..9)
option A? optional A
difference A - B A which is not B

44 CHAPTER 2. WHAT CAN A GRAMMAR DO FOR YOU

We will return to the semantics and implementation of regular expressions
in next chapter.

BNFC can be forced to remember the position of a token. This is
useful when, for instance, error messages at later compilation phases make
reference to the source code. The notation for token types remembering the
position is

position token CIdent (letter | (letter | digit | ’_’)*) ;

When BNFC is run, bare token types are encoded as types of strings. For
instance, the standard Ident type is in Haskell represented as

newtype Ident = Ident String

Position token types add to this a pair of integers indicating the line and the
column in the input:

newtype CIdent = Ident (String, (Int,Int))

In addition to tokens, comments are language features treated in the lexer.
They are parts of source code that the compiler ignores. BNFC permits the
definition of two kinds of comments:

• one-line comments, which run from a start token till the end of the line

• multiple-line comments, which run from a start token till a closing
token

This is, for instance, how comments of C are defined:

comment "//" ;

comment "/*" "*/" ;

Thus one-line comments need one token, the start token, whereas multiple-
line comments need the start and the closing token.

Since comments are resolved by the lexer, they are processed by using
a finite automaton. Therefore nested comments are not possible. A more
thorough explanation of this will be given in next chapter.

2.10. WORKING OUT A GRAMMAR 45

2.10 Working out a grammar

We conclude this section by working out a grammar for a small C-like pro-
gramming language. This language is the same as targeted by the Assign-
ments 2 to 4 at the end of this book. Assignment 1 targets a larger language,
for which this smaller language is a good starting point. The discussion be-
low goes through the language constructs top-down, i.e. from the largest to
the smallest, and builds the appropriate rules at each stage.

• A program is a sequence of definitions.

This suggests the following BNFC rules:

PDefs. Program ::= [Def] ;

terminator Def "" ;

• A program may contain comments, which are ignored by the parser.

This means C-like comments, specified as follows:

comment "//" ;

comment "/*" "*/" ;

• A function definition has a type, a name, an argument list, and a body.
An argument list is a comma-separated list of argument declarations
enclosed in parentheses (and). A function body is a list of statements
enclosed in curly brackets { and } . For example:

int foo(double x, int y)

{

return y + 9 ;

}

We decide to specify all parts of a function definition in one rule, in addition
to which we specify the form of argument and statement lists:

DFun. Def ::= Type Id "(" [Arg] ")" "{" [Stm] "}" ;

separator Arg "," ;

terminator Stm "" ;

46 CHAPTER 2. WHAT CAN A GRAMMAR DO FOR YOU

• An argument declaration has a type and an identifier.

ADecl. Arg ::= Type Id ;

• Any expression followed by a semicolon ; can be used as a statement.

SExp. Stm ::= Exp ";" ;

• Any declaration followed by a semicolon ; can be used as a statement.
Declarations have one of the following formats:

– a type and one variable (as in function parameter lists),
int i ;

– a type and many variables,
int i, j ;

– a type and one initialized variable,
int i = 6 ;

Now, we could reuse the function argument declarations Arg as one kind
of statements. But we choose the simpler solution of restating the rule for
one-variable declarations.

SDecl. Stm ::= Type Id ";" ;

SDecls. Stm ::= Type Id "," [Id] ";" ;

SInit. Stm ::= Type Id "=" Exp ";" ;

• Statements also include

– Statements returning an expression,
return i + 9 ;

– While loops, with an expression in parentheses followed by a state-
ment,

while (i < 10) ++i ;

– Conditionals: if with an expression in parentheses followed by a
statement, else, and another statement,

if (x > 0) return x ; else return y ;

– Blocks: any list of statements (including the empty list) between
curly brackets. For instance,

2.10. WORKING OUT A GRAMMAR 47

{

int i = 2 ;

{

}

i++ ;

}

The statement specifications give rise to the following BNF rules:

SReturn. Stm ::= "return" Exp ";" ;

SWhile. Stm ::= "while" "(" Exp ")" Stm ;

SBlock. Stm ::= "{" [Stm] "}" ;

SIfElse. Stm ::= "if" "(" Exp ")" Stm "else" Stm ;

• Expressions are specified with the following table that gives their prece-
dence levels. Infix operators are assumed to be left-associative. The
arguments in a function call can be expressions of any level. Other-
wise, the subexpressions are assumed to be one precedence level above
the main expression.

level expression forms explanation
16 literal literal (integer, float, boolean)
16 identifier variable
15 f(e,...,e) function call
14 v++, v-- in/decrement
13 ++v, --v in/decrement
12 e*e, e/e multiplication, division
11 e+e, e-e addition, subtraction
9 e<e, e>e, e>=e, e<=e comparison
8 e==e, e!=e (in)equality
4 e&&e conjunction
3 e||e disjunction
2 v=e assignment

The table is straightforward to translate to a set of BNFC rules. On
the level of literals, integers and floats (“doubles”) are provided by BNFC,
whereas the boolean literals true and false are defined by special rules.

48 CHAPTER 2. WHAT CAN A GRAMMAR DO FOR YOU

EInt. Exp15 ::= Integer ;

EDouble. Exp15 ::= Double ;

ETrue. Exp15 ::= "true" ;

EFalse. Exp15 ::= "false" ;

EId. Exp15 ::= Id ;

EApp. Exp15 ::= Id "(" [Exp] ")" ;

EPIncr. Exp14 ::= Exp15 "++" ;

EPDecr. Exp14 ::= Exp15 "--" ;

EIncr. Exp13 ::= "++" Exp14 ;

EDecr. Exp13 ::= "--" Exp14 ;

ETimes. Exp12 ::= Exp12 "*" Exp13 ;

EDiv. Exp12 ::= Exp12 "/" Exp13 ;

EPlus. Exp11 ::= Exp11 "+" Exp12 ;

EMinus. Exp11 ::= Exp11 "-" Exp12 ;

ELt. Exp9 ::= Exp9 "<" Exp10 ;

EGt. Exp9 ::= Exp9 ">" Exp10 ;

ELtEq. Exp9 ::= Exp9 "<=" Exp10 ;

EGtWq. Exp9 ::= Exp9 ">=" Exp10 ;

EEq. Exp8 ::= Exp8 "==" Exp9 ;

ENEq. Exp8 ::= Exp8 "!=" Exp9 ;

EAnd. Exp4 ::= Exp4 "&&" Exp5 ;

EOr. Exp3 ::= Exp3 "||" Exp4 ;

EAss. Exp2 ::= Exp3 "=" Exp2 ;

Finally, we need a coercions rule to specify the highest precedence level,
and a rule to form function argument lists.

coercions Exp 15 ;

separator Exp "," ;

• The available types are bool, double, int, and void.

Tbool. Type ::= "bool" ;

Tdouble. Type ::= "double" ;

Tint. Type ::= "int" ;

Tvoid. Type ::= "void" ;

2.10. WORKING OUT A GRAMMAR 49

• An identifier is a letter followed by a list of letters, digits, and under-
scores.

Here we cannot use the built-in Ident type of BNFC, because apostrophes
(’) are not permitted! But we can define our identifiers easily by a regular
expression:

token Id (letter (letter | digit | ’_’)*) ;

The reader is advised to copy all the rules of this section into a file and try
this out in BNFC, with various programs as input.

50 CHAPTER 2. WHAT CAN A GRAMMAR DO FOR YOU

Chapter 3

How do lexers and parsers
work*

This is an optional theory chapter, which gives deeper understanding of the
things worked through in the previous chapter. It explains the concepts of
regular expressions and finite automata, context-free grammars and parsing
algorithms, and the limits of each of these methods. For instance, we will
show why automata may explode in size, why parentheses cannot be matched
by finite automata, and why context-free grammars cannot alone specify
the well-formedness of programs. It will also show how the usual parsing
algorithms work, to explain what conflicts are and how to avoid them.

3.1 The theory of formal languages

BNFC saves a lot of work in a compiler by generating the code needed for
the lexer and the parser. The exact saving is by an order of magnitude,
compared with hand-written code. The code generated by BNFC is taken
care of by other tools, which in turn generate code in some host language—
Haskell, Java, or C. Let’s call the lexer tool (Alex, JLex, Flex) just Lex and
the parser tool (Happy, Cup, Bison) just Yacc, by references to the first
such tools created for C in the 1970’s. These tools stand for another order
of magnitude of saving, compared to writing host language code by hand.

The generation of Lex and Yacc from a BNFC file is rather straightfor-
ward. The next step is much more involved. In a nutshell,

• Lex code is regular expressions, converted to finite automata.

51

52 CHAPTER 3. HOW DO LEXERS AND PARSERS WORK*

• Yacc code is context-free grammars, converted to LALR(1) parsers.

Regular expressions and context-free grammars, as well as their compilation
to automata and parsers, originate in the mathematical theory of formal
languages. A formal language is, mathematically, just any set of sequences
of symbols. Programming languages are examples of formal languages.
They are rather complex in comparison to the examples usually studied in
the theory; but the good news is that their complexity is mostly due to
repetitions of simple well-known patterns.

3.2 Regular languages and finite automata

A regular language is, like any formal language, a set of strings, i.e.
sequences of symbols, from a finite set of symbols called the alphabet.
Only some formal languages are regular; in fact, regular languages are exactly
those that can be defined by regular expressions, which we already saw in
Section 2.9. We don’t even need all the expressions, but just five of them; the
other ones are convenient shorthands. They are showed in the following table,
together with the corresponding regular language in set-theoretic notation:

expression language
’a’ {a}
AB {ab|a ∈ [[A]], b ∈ [[B]]}
A | B [[A]] ∪ [[B]]
A* {a1a2 . . . |i = 0, 1, . . . , ai ∈ [[A]]}
eps {ε} (empty string)

The table uses the notation [[A]] for the set denoted by the expression A.
This notation is common in computer science to specify the semantics of a
language formally.

When does a string belong to a regular language? A straightforward
answer would be to write a program that interprets the sets, e.g. in Haskell by
using list comprehensions instead of the set brackets. This implementation,
however, would be very inefficient. The usual way to go is to compile regular
expressions to finite automata. Finite automata are graphs that allow
traversing their input strings symbol by symbol. For example, the following
automaton recognizes a string that is either an integer literal or an identifier
or a string literal.

3.2. REGULAR LANGUAGES AND FINITE AUTOMATA 53

The corresponding regular expression is, using the shorthands of 2.9,

digit digit*

| letter (’_’ | letter | digit)*

| ’"’ (char-[\"] | ’\’[\"tn])* ’"’

where we have also used the expressions [abc] denoting sets of characters
and [a..b] denoting ranges of characters.

The automaton can be used for the recognition of strings. In this
case, a recognized string is either a decimal integer, an indentifier, or a string
literal. The recognition starts from the initial state, that is, the node
marked “init”. It goes to the next state depending on the first character. If
it is a digit 0...9, the state is the one marked “int”. With more digits, the
recognition loops back to this state. The state is marked with a double circle,
which means it is a final state, also known as an accepting state. The
other accepting states are “ident” and “string”. But on the way to “string”,
there are non-accepting states: the one before a second quote is read, and
the one after an escape is read.

The automaton above is deterministic, which means that at any state,
any input symbol has at most one transition, that is, at most one way to
go to a next state. If a symbol with no transition is encountered, the string
is not accepted. For instance, a&b would not be an accepted string in the
above automaton; nor is it covered by the regular expression.

54 CHAPTER 3. HOW DO LEXERS AND PARSERS WORK*

An automaton can also be nondeterministic, which means that some
symbols may have many transitions. An example is the following automa-
ton, with the corresponding regular expression that recognizes the language
{ab, ac}:

a b | a c

Now, this automaton and indeed the expression might look like a stupid thing
to write anyway: wouldn’t it be much smarter to factor out the a and write
simply as follows?

a (b | c)

The answer is no, both surprisingly and in a way typical to compiler con-
struction. The reason is that one should not try to optimize automata by
hand—one should let a compiler do that automatically and much more reli-
ably! Generating a non-deterministic automaton is the standard first step of
compiling regular expressions. After that, deterministic and, indeed, minimal
automata can be obtained as optimizations.

Just to give an idea of how tedious it can be to create deterministic
automata by hand, think about compiling an English dictionary into an
automaton. It may start as follows:

a able about account acid across act addition adjustment

It would be a real pain to write a bracketed expression in the style of a (c

| b), and much nicer to just put |’s between the words and let the compiler
do the rest!

3.3 The compilation of regular expressions

The standard compilation of regular expressions has the following steps:

1. NFA generation: convert the expression into a non-deterministic au-
tomaton, NFA.

3.3. THE COMPILATION OF REGULAR EXPRESSIONS 55

2. Determination: convert the NFA into a deterministic automaton,
DFA.

3. Minimization: minimize the size of the deterministic automaton.

As usual in compilers, each of these phases is simple in itself, but trying to
do them all at once would be too complicated.

Step 1. NFA generation

Assuming we have an expression written by just the five basic operators, we
can build an NFA which has exactly one initial state and exactly one final
state. The “exactly one” condition is crucial to make it easy to combine the
automata for sequences, unions, and closures. The easiest way to guarantee
this is to use epsilon transitions, that is, transitions that consume no input.
They are marked with the symbol ε in the graphs. They of course increase
nondeterminism, but can be eliminated later.

• Symbol. The expression a is compiled to

• Sequence. The expression A B is compiled by combining the au-
tomata for A and B (drawn with dashed figures) as follows:

• Union. The expression A | B is compiled as follows:

• Closure. The expression A* is compiled as follows:

56 CHAPTER 3. HOW DO LEXERS AND PARSERS WORK*

• Empty. The expression eps is compiled to

NFA generation is an example of syntax-directed translation, and could
be recommended as an extra assignment for everyone! What is needed is a
parser and abstract syntax for regular expressions (by BNFC), and a suitable
code representation for automata. From this representation, one could also
generate visualizations using e.g. the Graphviz software (as we did when
preparing this book). Here is an example of an automaton and its Graphviz
code:

digraph {

rankdir = LR ;

start [label = "", shape = "plaintext"]

init [label = "init", shape = "circle"] ;

a [label = "", shape = "circle"] ;

end [label = "", shape = "doublecircle"] ;

start -> init ;

init -> init [label = "a,b"] ;

init -> a [label = "a"] ;

a -> end [label = "a,b"] ;

}

The intermediate abstract representation should encode the mathematical
definition of automata:

Definition. A finite automaton is a 5-tuple < Σ, S, F, i, t >
where

• Σ is a finite set of symbols (the alphabet)

• S is a finite set of states

• F ⊂ S (the final states)

• i ∈ S (the initial state)

3.3. THE COMPILATION OF REGULAR EXPRESSIONS 57

• t : S × Σ → P(S) (the transition function)

An automaton is deterministic, if t(s, a) is a singleton for all s ∈
S, a ∈ Σ. Otherwise, it is nondeterministic, and then moreover
the transition function is generalized to t : S ×Σ∪ {ε}− > P(S)
(with epsilon transitions).

Step 2. Determination

One of the most powerful and amazing properties of finite automata is that
they can always be made deterministic by a fairly simple procedure. The
procedure is called the subset construction. In brief: for every state sand
symbol a in the automaton, form a new state σ(s, a) that “gathers” all those
states to which there is a transition from s by a. More precisely:

• σ(s, a) is the set of those states si to which one can arrive from s by
consuming just the symbol a. This includes of course the states to
which the path contains epsilon transitions.

• The transitions from σ(s, a) = {s1, . . . , sn} for a symbol b are all the
transitions with b from any si. (When this is specified, the subset
construction must of course be iterated to build σ(σ(s, a), b).)

• The state σ(s, a) = {s1, . . . , sn} is final if any of si is final.

Let us give a complete example. Starting with the “awful” expression

a b | a c

the NFA generation of Step 1 creates the monstruous automaton

From this, the subset construction gives

58 CHAPTER 3. HOW DO LEXERS AND PARSERS WORK*

How does this come out? First we look at the possible transitions with the
symbol a from state 0. Because of epsilon transitions, there are no less than
four possible states, which we collect to the state named {2,3,6,7}. From this
state, b can lead to 4 and 9, because there is a b-transition from 3 to 4 and
an epsilon transition from 4 to 9. Similarly, c can lead to 8 and 9.

The resulting automaton is deterministic but not yet minimal. Therefore
we perform one more optimization.

Step 3. Minimization

Determination may left the automaton with superfluous states. This means
that there are states without any distinguishing strings. A distinguishing
string for states s and u is a sequence x of symbols that ends up in an
accepting state when starting from s and in a non-accepting state when
starting from u.

For example, in the previous deterministic automaton, the states 0 and
{2,3,6,7} are distinguished by the string ab. When starting from 0, it leads to
the final state {4,9}. When starting from {2,3,6,7}, there are no transitions
marked for a, which means that any string starting with a ends up in a dead
state which is non-accepting.

But the states {4,9} and {8,9} are not distinguished by any string. The
only string that ends to a final state is the empty string, from both of them.
The minimization can thus merge these states, and we get the final, optimized
automaton

The algorithm for minimization is a bit more complicated than for determi-
nation. We omit it here.

3.4 Properties of regular languages

There is a whole branch of discrete mathematics dealing with regular lan-
guages and finite automata. A part of the research has to do with closure
properties. For instance, regular languages are closed under complement,
i.e. if L is a regular language, then also Σ∗ − L, is one; Σ∗ is the set of all
strings over the alphabet, also called the universal language.

3.4. PROPERTIES OF REGULAR LANGUAGES 59

We said that the five operators compiled in the previous section were
sufficient to define all regular languages. Other operators can be defined in
terms of them; for instance, the non-empty closure A+ is simply AA∗. The
negation operator −A is more complicated to define; in fact, the simplest
way to see that it exists is to recall that regular languages are closed under
negation.

But how do we know that regular languages are closed under negation?
The simplest way to do this is to construct an automaton: assume that we
have a DFA corresponding to A. Then the automaton for −A is obtained by
inverting the status of each accepting state to non-accepting and vice-versa!

The reasoning above relies on the correspondence theorem saying that
the following three are equivalent, convertible to each other: regular lan-
guages, regular expressions, finite automata. The determination algorithm
moreover proves that there is always a deterministic automaton. The closure
property for regular languages and expressions follows.

Another interesting property is inherent in the subset construction: the
size of a DFA can be exponential in the size of the NFA (and therefore of
the expression). The subset construction shows a potential for this, because
there could in principle be a different state in the DFA for every subset of
the NFA, and the number of subsets of an n-element set is 2n.

A concrete example of the size explosion of automata is a language of
strings of a’s and b’s, where the nth element from the end is an a. Consider
this in the case n=2. The regular expression is

(a|b)* a (a|b)

There is also a simple NFA:

But how on earth can we make this deterministic? How can we know, when
reading a string, that this a is the second-last element and we should stop
looping?

It is possible to solve this problem by the subset construction, which is
left to an exercise. But there is also an elegant direct construction, which
I learned from a student many years ago. The idea is that the state must
“remember” the last two symbols that have been read. Thus the states can

60 CHAPTER 3. HOW DO LEXERS AND PARSERS WORK*

be named aa, ab, ba, and bb. The states aa and ab are accepting, because
they have a as the second-last symbol; the other two are not accepting. Now,
for any more symbols encountered, one can “forget” the previous second-last
symbol and go to the next state accordingly. For instance, if you are in ab,
then a leads to ba and b leads to bb. The complete automaton is below:

Notice that the initial state is bb, because a string must have at least two
symbols in order to be accepted.

With a similar reasoning, it is easy to see that a DFA for a as third-last
symbol must have at least 8 states, for fourth-last 16, and so on. Unfortu-
nately, the exponential blow-up of automata is not only a theoretical con-
struct, but often happens in practice and can come as a surprise to those
who build lexers by using regular expressions.

The third property of finite-state automata we want to address is, well,
their finiteness. Remember from the definition that an automaton has a finite
set of states. This fact can be used for proving that an automaton cannot
match parentheses, i.e. guarantee that a string as as many left and right
parentheses.

The argument uses, as customary in formal language theory, a’s and b’s
to stand for left and right parentheses, respectively. The language we want
to define is

{anbn|n = 0, 1, 2 . . .}

Now assume that the automaton is in state sn after having read n a’s and
starting to read b’s. Assume sm = sn for some m 6= n. From this it fol-
lows that the automaton recognizes an expression anbm, which is not in the
language!

Now, matching parentheses is usually treated in parsers that use BNF
grammars; for the language in question, we can easily write the grammar

3.5. CONTEXT-FREE GRAMMARS AND PARSING 61

S ::= ;

S ::= "a" S "b" ;

and process it in parser tools. But there is a related construct that one might
want to try to treat in a lexer: nested comments. The case in point is
code of the form

a /* b /* c */ d */ e

One might expect the code after the removal of comments to be

a e

But actually it is, at least with standard compilers,

a d */ e

The reason is that the lexer is implemented by using a finite automaton,
which cannot count the number of matching parentheses—in this case com-
ment delimiters.

3.5 Context-free grammars and parsing

A context-free grammar is the same as a BNF grammar, consisting of
rules of the form

C ::= t1 . . . tn

where each ti is a terminal or a nonterminal. We used this format extensively
in Chapter 2 together with labels for building abstract syntax trees. But for
most discussion of parsing properties we can ignore the labels.

All regular languages can be also defined by context-free grammars. The
inverse does not hold, as proved by matching parentheses. The extra expres-
sive power comes with a price: context-free parsing can be more complex than
recognition with automata. It is easy to see that recognition with a finite
automaton is linear in the length of the string. But for context-free gram-
mars the worst-case complexity is cubic. However, programming languages
are usually designed in such a way that their parsing is linear. This means
that they use a restricted subset of context-free grammars, but still large

62 CHAPTER 3. HOW DO LEXERS AND PARSERS WORK*

enough to deal with matching parentheses and other common programming
language features.

We will return to the parsing problem of full context-free grammars later.
We first look at the parsing techniques used in compilers, which work for
some grammars only. In general, these techniques work for grammars that
don’t have ambiguity. That is, every string has at most one tree. This is
not true for context-free grammars in general, but it is guaranteed for most
programming languages by design. For parsing, the lack of ambiguity means
that the algorithm can stop looking for alternative analyses as soon as it has
found one, which is one ingredient of efficiency.

3.6 LL(k) parsing

The simplest practical way to parse programming languages is LL(k), i.e.
left-to-right parsing, leftmost derivations, lookahead k. It is also called re-
cursive descent parsing and has sometimes been used for implementing
parsers by hand, that is, without the need of parser generators. The parser
combinators of Haskell are related to this method.

The idea of recursive descent parsing is the following: for each category,
write a function that inspects the first token and tries to construct a tree.
Inspecting one token means that the lookahead is one; LL(2) parsers inspect
two tokens, and so on.

Here is an example grammar:

SIf. Stm ::= "if" "(" Exp ")" Stm ;

SWhile. Stm ::= "while" "(" Exp ")" Stm ;

SExp. Stm ::= Exp ;

EInt. Exp ::= Integer ;

We need to build two functions, which look as follows in pseudocode,

Stm pStm():

next == "if" -> ... build tree with SIf

next == "while" -> ... build tree with SWhile

next is integer -> ... build tree with SExp

Exp pExp():

next is integer k -> return EInt k

3.6. LL(K) PARSING 63

To fill the three dots in this pseudocode, we proceed item by item in each
production. If the item is a nonterminal C, we call the parser pC. If it is a
terminal, we just check that this terminal is the next input token, but don’t
save it (since we are constructing an abstract syntax tree!). For instance, the
first branch in the statement parser is the following:

Stm pStm():

next == "if" ->

ignore("if")

ignore("(")

Exp e := pExp()

ignore(")")

Stm s := pStm()

return SIf(e,s)

Thus we save the expression e and the statement s and build an SIf three
from them, and ignore the terminals in the production.

The pseudocode shown is easy to translate to both imperative and func-
tional code; we will return to the functional code in Section 3.9. But we don’t
recommend this way of implementing parsers, since BNFC is easier to write
and more powerful. We show it rather because it is a useful introduction to
the concept of conflicts, which arise even when BNFC is used.

As an example of a conflict, consider the rules for if statements with and
without else:

SIf. Stm ::= "if" "(" Exp ")" Stm

SIfElse. Stm ::= "if" "(" Exp ")" Stm "else" Stm

In an LL(1) parser, which rule should we choose when we see the token if?
As there are two alternatives, we have a conflict.

One way to solve conflicts is to write the grammar in a different way. In
this case, for instance, we can use left factoring, which means sharing the
common left part of the rules:

SIE. Stm ::= "if" "(" Exp ")" Stm Rest

RElse. Rest ::= "else" Stm

REmp. Rest ::=

To get the originally wanted abstract syntax, we have to define a function
that depends on Rest.

64 CHAPTER 3. HOW DO LEXERS AND PARSERS WORK*

f(SIE exp stm REmp) = SIf exp stm

f(SIE exp stm (RElse stm2)) = SIfElse exp stm stm2

It can be tricky ro rewrite a grammar so that it enables LL(1) parsing.
Perhaps the most well-known problem is left recursion. A rule is left-
recursive if it has the form C ::= C..., that is, the value category C is itself
the first on the right hand side. Left recursion is common in programming
languages, because operators such as + are left associative. For instance,
consider the simplest pair of rules for sums of integers:

Exp ::= Exp "+" Integer

Exp ::= Integer

These rules make an LL(1) parser loop, because, to build an Exp, the parser
first tries to build an Exp, and so on. No input is consumed when trying this,
and therefore the parser loops.

The grammar can be rewritten, again, by introducing a new category:

Exp ::= Integer Rest

Rest ::= "+" Integer Rest

Rest ::=

The new category Rest has right recursion, which is harmless. A tree
conversion is of course needed to return the originally wanted abstract syntax.

The clearest way to see conflicts and to understand the nature of LL(1)
parsing is to build a parser table from the grammar. This table has a row
for each category and a column for each token. Each shell shows what rule
applies when the category is being sought and it begins with the token. For
example, the grammar

SIf. Stm ::= "if" "(" Exp ")" Stm ;

SWhile. Stm ::= "while" "(" Exp ")" Stm ;

SExp. Stm ::= Exp ";" ;

EInt. Exp ::= Integer ;

produces the following table:

- if while integer () ; $ (END)
Stm SIf SWhile SExp - - - -
Exp - - EInt - - - -

3.7. LR(K) PARSING 65

A conflict means that a cell contains more than one rule. This grammar
has no conflicts, but if we added the SIfElse rule, the cell (Stm,if) would
contain both SIf and SIfElse.

3.7 LR(k) parsing

Instead of LL(1), the standard YACC-like parser tools use LR(k), i.e. left-
to-right parsing, rightmost derivations, lookahead k. Both algorithms thus
read their input left to right. But LL builds the trees from left to right, LR
from right to left. The mention of derivations refers to the way in which
a string can be built by expanding the grammar rules. Thus the leftmost
derivation of while(1) if (0) 6 ; always fills in the leftmost nonterminal
first.

Stm --> while (Exp) Stm

--> while (1) Stm

--> while (1) if (Exp) Stm

--> while (1) if (0) Stm

--> while (1) if (0) Exp ;

--> while (1) if (0) 6 ;

The rightmost derivation of the same string fills in the rightmost nonter-
minal first.

Stm --> while (Exp) Stm

--> while (Exp) if (Exp) Stm

--> while (Exp) if (Exp) Exp ;

--> while (Exp) if (Exp) 6 ;

--> while (Exp) if (0) 6 ;

--> while (1) if (0) 6 ;

The LR(1) parser reads its input, and builds a stack of results, which are
combined afterwards, as soon as some grammar rule can be applied to the
top of the stack. When seeing the next token (lookahead 1), it chooses among
five actions:

• shift: read one more token

• reduce: pop elements from the stack and replace by a value

66 CHAPTER 3. HOW DO LEXERS AND PARSERS WORK*

• goto: jump to another state and act accordingly

• accept: return the single value on the stack when no input is left

• reject: report that there is input left but no move to take, or that the
input is finished but the stack is not one with a single value.

Shift and reduce are the most common actions, and it is customary to illus-
trate the parsing process by showing the sequence of these actions. Take, for
instance, the following grammar. We use integers as rule labels, so that we
also cover the dummy coercion (label 2).

1. Exp ::= Exp "+" Exp1

2. Exp ::= Exp1

3. Exp1 ::= Exp1 "*" Integer

4. Exp1 ::= Integer

The string 1 + 2 * 3 is parsed as follows:

stack input action
1 + 2 * 3 shift

1 + 2 * 3 reduce 4
Exp1 + 2 * 3 reduce 2
Exp + 2 * 3 shift
Exp + 2 * 3 shift
Exp + 2 * 3 reduce 4
Exp + Exp1 * 3 shift
Exp + Exp1 * 3 shift
Exp + Exp1 * 3 3 reduce 3
Exp + Exp1 reduce 1
Exp accept

Initially, the stack is empty, so the parser must shift and put the token 1

to the stack. The grammar has a matching rule, rule 4, and so a reduce
is performed. Then another reduce is performed by rule 2. Why? This is
because the next token (the lookahead) is +, and there is a rule that matches
the sequence Exp +. If the next token were *, then the second reduce would
not be performed. This is shown later in the process, when the stack is Exp
+ Exp1.

3.7. LR(K) PARSING 67

How does the parser know when to shift and when to reduce? Like in the
case of LL(k) parsing, it uses a table. In an LR(1) table, the rows are parser
states, and there is a column for each terminal and also nonterminal. The
cells are parser actions.

So, what is a parser state? It is a grammar rule together with the posi-
tion that has been reached when trying to match the ruls. This position is
conventionally marked by a dot. Thus, for instance,

Stm ::= "if" "(" . Exp ")" Stm

is the state where an if statement is being read, and the parser has read the
tokens if and (and is about to look for an Exp.

Here is an example of an LR(1) table. It is the table produced by BNFC
and Happy from the previous grammar, so it is actually a variant called
LALR(1); see below. The compiler has added two rules to the grammar: rule
(0) that produces integer literals (L integ) from the nonterminal Integer,
and a start rule which adds the extra token $ to mark the end of the input.
Then also the other rules have to decide what to do if they reach the end of
input.

+ * $ int Integer Exp1 Exp
3 Integer -> L_integ . r0 r0 r0 -
4 Exp1 -> Integer . r4 r4 r4 -
5 Exp1 -> Exp1 . ’*’ Integer - s8 - -
6 %start_pExp -> Exp . $ s9 - a -
Exp -> Exp . ’+’ Exp1

7 Exp -> Exp1 . r2 s8 r2 -
Exp1 -> Exp1 . ’*’ Integer

8 Exp1 -> Exp1 ’*’ . Integer - - - s3 g11
9 Exp -> Exp ’+’ . Exp1 - - - s3 g4 g10
10 Exp -> Exp ’+’ Exp1 . r1 s8 r1

Exp1 -> Exp1 . ’*’ Integer
11 Exp1 -> Exp1 ’*’ Integer . r3 r3 r3

When the dot is before a nonterminal, a goto action is performed. Otherwise,
either shift or reduce is performed. For shift, the next state is given. For
reduce, the rule number is given.

The size of LR(1) tables can be large, because it is the number of rule
positions multiplied by the number of tokens and categories. For LR(2), it

68 CHAPTER 3. HOW DO LEXERS AND PARSERS WORK*

is the square of the number of tokens and categories, which is too large in
practice. Even LR(1) tables are usually not built in their full form. Instead,
standard tools like YACC, Bison, CUP, Happy use LALR(1), look-ahead
LR(1). In comparison to full LR(1), LALR(1) reduces the number of states
by merging some states that are similar to the left of the dot. States 6, 7,
and 10 in the above table are examples of this.

In terms of general expressivity, the following inequations hold:

• LR(0) < LALR(1) < LR(1) < LR(2) ...

• LL(k) < LR(k)

That a grammar is in LALR(1), or any other of the classes, means that its
parsing table has no conflicts. Therefore none of these classes can contain
ambiguous grammars.

3.8 Finding and resolving conflicts

In a tabular parsing (LL, LR, LALR), a conflict means that there are several
items in a cell. In LR and LALR, two kinds of conflicts may occur:

• shift-reduce conflict: between shift and reduce actions.

• reduce-reduce conflict between two (or more) reduce actions.

The latter are more harmful, but also more easy to eliminate. The clearest
case is plain ambiguities. Assume, for instance, that a grammar tries to
distinguish between variables and constants:

EVar. Exp ::= Ident ;

ECons. Exp ::= Ident ;

Any Ident parsed as an Exp can be reduced with both of the rules. The
solution to this conflict is to remove one of the rules and wait until the type
checher to distinguish constants from variables.

A more tricky case is implicit ambiguities. The following grammar tries
to cover a fragment of C++, where a declaration (in a function definition)
can be just a type (DTyp), and a type can be just an identifier (TId). At the
same time, a statement can be a declaration (SDecl), but also an expression
(SExp), and an expression can be an identifier (EId).

3.8. FINDING AND RESOLVING CONFLICTS 69

SExp. Stm ::= Exp ;

SDecl. Stm ::= Decl ;

DTyp. Decl ::= Typ ;

EId. Exp ::= Ident ;

TId. Typ ::= Ident ;

Now the reduce-reduce conflict can be detected by tracing down a chain of
rules:

Stm -> Exp -> Ident

Stm -> Decl -> Typ -> Ident

In other words, an identifier can be used as a statement in two different ways.
The solution to this conflict is to redesign the language: DTyp should only
be valid in function parameter lists, and not as statements!

As for shift-reduce conflicts, the classical example is the dangling else,
created by the two versions of if statements:

SIf. Stm ::= "if" "(" Exp ")" Stm

SIfElse. Stm ::= "if" "(" Exp ")" Stm "else" Stm

The problem arises when if statements are nested. Consider the following
input and position (.):

if (x > 0) if (y < 8) return y ; . else return x ;

There are two possible actions, which lead to two analyses of the statement.
The analyses are made explicit by braces.

shift: if (x > 0) { if (y < 8) return y ; else return x ;}

reduce: if (x > 0) { if (y < 8) return y ;} else return x ;

This conflict is so well established that it has become a “feature” of languages
like C and Java. It is solved by a principle followed by standard tools: when
a conflict arises, always choose shift rather than reduce. But this means,
strictly speaking, that the BNF grammar is no longer faithfully implemented
by the parser.

Hence, if your grammar produces shift-reduce conflicts, this will mean
that some programs that your grammar recognizes cannot actually be parsed.

70 CHAPTER 3. HOW DO LEXERS AND PARSERS WORK*

Usually these conflicts are not so “well-understood” ones as the dangling else,
and it can take a considerable effort to find and fix them. The most valuable
tool in this work are the info files generated by some parser tools. For
instance, Happy can be used to produce an info file by the flag -i:

happy -i ParCPP.y

The resulting file ParConf.info is a very readable text file. A quick way
to check which rules are overshadowed in conflicts is to grep for the ignored
reduce actions:

grep "(reduce" ParConf.info

Interestingly, conflicts tend cluster on a few rules. If you have very many, do

grep "(reduce" ParConf.info | sort | uniq

The conflicts are (usually) the same in all standard tools, since they use
the LALR(1) method. Since the info file contains no Haskell, you can use
Happy’s info file if even if you principally work with another tool.

Another diagnostic tool is the debugging parser. In Happy,

happy -da ParCPP.y

When you compile the BNFC test program with the resulting ParCPP.hs, it
shows the sequence of actions when the parser is executed. With Bison, you
can use gdb (GNU Debugger), which traces back the execution to lines in
the Bison source file.

3.9 The limits of context-free grammars

Parsing with unlimited context-free grammars is decidable, with cubic worst-
case time complexity. However, exponential algorithms are often used be-
cause of their simplicity. For instance, the Prolog programming language
has a built-in parser with this property. Haskell’s parser combinators are
a kind of embedded language for parsers, working in a similar way as Prolog.
The method uses recursive descent, just like LL(k) parsers. But this is com-
bined with backtracking, which means that the grammar need not make

3.9. THE LIMITS OF CONTEXT-FREE GRAMMARS 71

deterministic choices. Parser combinators can also cope with ambiguity. We
will return to them in Chapter 9.

One problem with Prolog and parser combinators—well known in practice—
is their unpredictability. Backtracking may lead to exponential behaviour
and very slow parsing. Left recursion may lead to non-termination, and can
be hard to detect if implicit. Using parser generators is therefore a more
reliable, even though more restricted, way to implement parsers.

But even the full class of context-free grammars is not the whole story of
languages. There are some very simple formal languages that are not context-
free. One example is the copy language. Each sentence of this language
is two copies of some words, and the words can grow arbitrarily long. The
simplest copy language has words with consisting of just two symbols, a and
b:

{ww|w ∈ (a|b)∗}
Observe that this is not the same as the language defined by the context-free
grammar

S ::= W W

W ::= "a" W

W ::= "b" W

W ::=

In this grammar, there is no guarantee that the two W’s are the same.
The copy language is not just a theoretical construct but has an important

application in compilers. A common thing one wants to do is to check that
every variable is declared before it is used. Language-theoretically, this can
be seen as an instance of the copy language:

Program ::= ... Var ... Var ...

Consequently, checking that variables are declared before use is a thing that
cannot be done in the parser but must be left to a later phase.

One way to obtain stronger grammars than BNF is by a separation of
abstract and concrete syntax rules. For instance, the rule

EMul. Exp ::= Exp "*" Exp

then becomes a pair of rules: a fun rule declaring a tree-building function,
and a lin rule defining the linearization of the tree into a string:

72 CHAPTER 3. HOW DO LEXERS AND PARSERS WORK*

fun EMul : Exp -> Exp -> Exp

lin EMul x y = x ++ "*" ++ y

This notation is used in the grammar formalism GF, the Grammatical
Framework (http://grammaticalframework.org). In GF, the copy language
can be defined by the following grammar:

-- abstract syntax

cat S ; W ;

fun s : W -> S ;

fun e : W ;

fun a : W -> W ;

fun b : W -> W ;

-- concrete syntax

lin s w = w ++ w ;

lin e = "" ;

lin a w = "a" ++ w ;

lin b w = "b" ++ w ;

For instance, abbababbab has the tree s (a (b (b (a (b e))))).
GF corresponds to a class of grammars known as parallel multiple

context-free grammars, which is useful in natural language description.
Its worst-case parsing complexity is polynomial, where the exponent depends
on the grammar; parsing the copy language is just linear. We will return to
GF in Chapter 10.

http://grammaticalframework.org

Chapter 4

When does a program make
sense

This chapter is about types and type checking. It defines the traditional
notion of well-formedness as exemplified by e.g. Java and C, extended by
overloading and some tricky questions of variable scopes. Many of these
things are trivial for a human to understand, but the Main Assignment 2
will soon show that it requires discipline and stamina to make the machine
check well-formedness automatically.

4.1 The purposes of type checking

Type checking annoys many programmers. You write a piece of code that
makes complete sense to you, but you get a stupid type error. For this
reason, untyped languages like LISP, Python, and JavaScript attract many
programmers. They trade type errors for run-time errors, which means they
spend relatively more time on debugging than on trying to compile, compared
to Java or Haskell programmers. Of course, the latter kind of programmers
learn to appreciate type checking, because it is a way in which the compiler
can find bugs automatically.

The development of programming languages shows a movement to more
and more type checking. This was one of the main additions of C++ over
C. On the limit, a type checker could find all errors, that is, all violations of
the specification. This is not the case with today’s languages, not even the
strictest ones like ML and Haskell. To take an example, a sorting function

73

74 CHAPTER 4. WHEN DOES A PROGRAM MAKE SENSE

sort might have the type

sort : List -> List

This means that the application sort([2,1,3]) to a list is type-correct, but
the application sort(0) to an integer isn’t. However, the sorting function
could still be defined in such a way that, for instance, sorting any list re-
turns an empty list. This would have a correct type but it wouldn’t be a
correct sorting function. Now, this problem is one that could be solved by
an even stronger type checker in a language such as Agda. Agda uses the
propositions as types principle and which in particular makes it possible
to express specifications as types. For instance, the sorting function could
be declared

sort : (x : List) -> (y : List) & Sorted(x,y)

where the condition that the value y is a sorted version of the argument x is
a part of the type. But at the time of writing this is still in the avant-garde
of programming language technology.

Coming back to more standard languages, type checking has another
function completely different from correctness control. It is used for type
annotations, which means that it enables the compiler to produce more
efficient machine code. For instance, JVM has separate instructions for inte-
ger and double-precision float addition (iadd and dadd, respectively). One
might always choose dadd to be on the safe side, but the code becomes more
efficient if iadd is used whenever possible.

Since Java source code uses + ambiguously for integer and float addition,
the compiler must decide which one is in question. This is easy if the operands
are integer or float constants: it could be made in the parser. But if the
operands are variables, and since Java uses the same kind of variables for
all types, the parser cannot decide this. Ultimately, recalling the previous
chapter, this is so because context-free grammars cannot deal with the copy
language! It is the type checker that is aware of the context, that is, what
variables have been declared and in what types. Luckily, the parser will
already have analysed the source code into a tree, so that the task of the
type checker is not hopelessly complicated.

4.2. SPECIFYING A TYPE CHECKER 75

4.2 Specifying a type checker

There is no standard tool for type checkers, which means they have to be
written in a general-purpose programming language. However, there are
standard notations that can be used for specifying the type systems of a
language and easily converted to code in any host language. The most com-
mon notation is inference rules. An inference rule has a set of premisses
J1, . . . , Jn and a conclusion J , conventionally separated by a line:

J1 . . . Jn

J

This inference rule is read:

From the premisses J1, . . . , Jn, we can conclude J .

The symbols J1, . . . , Jn, J stand for judgements. The most common judge-
ment in type systems is

e : T

read, expression e has type T. An example of an inference rule for C or Java
is

a : bool b : bool

a && b : bool

that is, if a has type bool and b has type bool. then a && b has type bool.

4.3 Type checking and type inference

The first step from an inference rule to implementation is pseudo-code for
syntax-directed translation. Typing rules for expression forms in an ab-
stract syntax can be seen as clauses in a recursive function definition that
traverses expression trees. There are two kinds of functions:

• Type checking: given an expression e and a type T, decide if e : T.

• Type inference: given an expression e, find a type T such that e :
T.

When we translate a typing rule to type checking code, its conclusion becomes
a case for pattern matching, and its premisses become recursive calls for type
checking. For instance, the above && rule becomes

76 CHAPTER 4. WHEN DOES A PROGRAM MAKE SENSE

check (a && b : bool) =

check (a : bool)

check (b : bool)

There are no patterns matching other types than bool, so type checking fails
for them.

In a type inference rule, the premisses become recursive calls as well, but
the type in the conclusion becomes the value returned by the function:

infer (a && b) =

check (a : bool)

check (b : bool)

return bool

Notice that the function should not just return bool outright: it must also
check that the operands are of type bool.

4.4 Context, environment, and side conditions

How do we type-check variables? Variables symbols like x can have any of the
types available in a programming language. The type it has in a particular
program depends on the context. In C and Java, the context is defined
by declarations of variables. It is a data structure where one can look up a
variable and get its type. So we can think of the context as as lookup table
of (variable,type) pairs.

In inference rules, the context is denoted by the Greek letter Gamma, Γ.
The judgement form for typing is generalized to

Γ =⇒ e : T

which is read, expression e has type T in context Γ. Most typing rules are
generalized by adding the same Γ to all judgements, because the context
doesn’t change.

Γ =⇒ a : bool Γ =⇒ b : bool

Γ =⇒ a && b : bool

This would be silly if it was always the case. However, as we shall see, the
context does change in the rules for type checking declarations.

4.4. CONTEXT, ENVIRONMENT, AND SIDE CONDITIONS 77

The places where contexts are needed for expressions are those that in-
volve variables. First of all, the typing rule for variable expressions is

Γ =⇒ x : T
if x : T in Γ

What does this mean? The condition “if x : T in Γ” is not a judgement
but a sentence in the metalanguage (English). Therefore it cannot appear
above the inference line as one of the premisses, but beside the line, as a side
condition. The situation becomes even cleared if we look at the pseudocode:

infer (Gamma,x) =

T := lookup(x,Gamma)

return T

Looking up the type of the variable is not a recursive call to infer or check,
but another function, lookup.

One way to make this fully precise is to look at concrete Haskell code.
Here we have the type inference and lookup functions

infer :: Context -> Exp -> Type

look :: Ident -> Context -> Type

We also have to make the abstract syntax constructors explicit: we cannot
write just x bur EVar x, when we infer the type of a variable expression.
Then the type inference rule comes out as a pattern matching case in the
definition of infer:

infer Gamma (EVar x) =

let typ = look x Gamma

in return typ

If the language has function definitions, we also need to look up the types of
functions when type checking function calls (f(a, b, c)). We will assume that
the context Γ also includes the type information for functions. Then Γ is
more properly called the environment for type checking, and not just the
context.

The only place where the function storage part of the environment ever
changes is when type checking function definitions. The only place where
it is needed is when type checking function calls. The typing rule involves

78 CHAPTER 4. WHEN DOES A PROGRAM MAKE SENSE

a lookup of the function in Γ as a side condition, and the typings of the
arguments as premisses:

Γ =⇒ a1 : T1 · · · Γ =⇒ an : Tn

Γ =⇒ f(a1, . . . , an) : T
if f : (T1, . . . , Tn) → T in Γ

For the purpose of expressing the value of function lookup, we use the nota-
tion (T1, . . . , Tn) → T for the type of functions, even though it is not used in
C and Java themselves.

4.5 Proofs in a type system

Inference rules are designed for the construction of proofs, which are struc-
tured as proof trees. A proof tree can be seen as a trace of the steps that
the type checker performs when checking or inferring a type. For instance,
if we want to prove that x + y > y is a boolean expressions when x and y

are integer variables, we have to prove the judgement

(x : int)(y : int) =⇒ x+y>y : bool

Notice the notation for contexts:

(x1 : T1) . . . (xn : Tn)

This is also handy when writing inference rules, because it also allows us to
write simply

Γ(x : T)

when we add a new variable to the context Γ.
Here is a proof tree for the judgement we wanted to prove:

(x : int)(y : int) =⇒ x : int (x : int)(y : int) =⇒ y : int

(x : int)(y : int) =⇒ x+y : int (x : int)(y : int) =⇒ y : int

(x : int)(y : int) =⇒ x+y>y : bool

The tree can be made more explicit by adding explanations for the side
conditions. Here they appear beside the top-most judgments, just making it
clear that the typing of a variable is justified by the context:

(x : int)(y : int) =⇒ x : int
(x : int)

(x : int)(y : int) =⇒ y : int
(x : int)

(x : int)(y : int) =⇒ x+y : int (x : int)(y : int) =⇒ y : int
(x : int)

(x : int)(y : int) =⇒ x+y>y : bool

4.6. OVERLOADING AND TYPE CASTS 79

4.6 Overloading and type casts

Variables are examples of expressions that can have different types in dif-
ferent contexts. Another example is overloaded operators. The binary
arithmetic operations (+ - * /) and comparisons (== != < > <= >=) are
in many languages usable for different types.

For simplicity, let us assume that the only possible types for arithmetic
and comparisons are int and double. The typing rules then look as follows:

Γ =⇒ a : t Γ =⇒ b : t

Γ =⇒ a + b : t
if t is int or double

Γ =⇒ a : t Γ =⇒ b : t

Γ =⇒ a == b : bool
if t is int or double

and similarly for the other operators. Notice that a + expression has the
same type as its operands, whereas a == is always a boolean. The type of +
can in both cases be inferred from the first operand and used for checking
the second one:

infer (a + b) =

t := infer (a)

check (b : t)

return t

Yet another case of expressions having different type is type casts. For
instance, an integer can be cast into a double. This may sound trivial from
the ordinary mathematical point of view, because integers are a subset of
reals. But for most machines this is not the case, because the integers and
doubles have totally different binary representations and different sets of
instructions. Therefore, the compiler usually has to generate a conversion
instruction for type casts, both explicit and implicit ones. We will leave out
type casts from the language implemented in this book.

4.7 The validity of statements and function

definitions

Expressions have types, which can be checked and inferred. But what hap-
pens when we type-check a statement? Then we are not interested in a type,

80 CHAPTER 4. WHEN DOES A PROGRAM MAKE SENSE

but just in whether the judgement is valid. For the validity of a statement,
we need a new judgement form,

Γ =⇒ s valid

which is read, statement s is valid in environment Γ.
Checking whether a statement is valid often requires type checking some

expressions. For instance, in a while statement the condition expression has
to be boolean:

Γ =⇒ e : bool Γ =⇒ s valid

Γ =⇒ while (e) s valid

What about expressions used as statements, for instance, assignments and
some function calls? We don’t need to care about what the type of the
expression is, just that it has one—which means that we are able to infer
one. Hence the expression statement rule is

Γ =⇒ e : t

Γ =⇒ e; valid

A similar rule could be given to return statements. However, when they
occur within function bodies, they can more properly be checked with respect
to the return types of the functions.

Similarly to statements, function definitions just checked for validity:

(x1 : T1) . . . (x1 : Tm) =⇒ s1 . . . sn valid

T f(T1 x1, . . . , Tm xm){s1 . . . , sn} valid

The variables declared as parameters of the function define the context in
which the body is checked. The body consists of a list of statements s1 . . . sn,
which are checked in this context. One can think of this as a shorthand for n
premisses, where each statement is in turn checked in the same context. But
this is not quite true, because the context may change from one statement
to the other. We return to this in next section.

To be really picky, the type checker of function definitions should also
check that all variables in the parameter list are distinct. We shall see in the
next section that variables introduced in declarations are checked to be new.
Then they must also be new with respect to the function parameters.

One could add to the conclusion of this rule that Γ is extended by the
new function and its type. However, this would not be enough for allowing
recursive functions, that is, functions whose body includes calls to the

4.8. DECLARATIONS AND BLOCK STRUCTURES 81

function itself. Therefore we rather assume that the functions in Γ are added
at a separate first pass of the type checker, which collects all functions and
their types (and also checks that all functions have different names). We
return to this in Section 4.9.

One could also add a condition that the function body contains a return

statement of expected type. A more sophisticated version of this could also
allow returns in if branches, for example,

if (fail()) return 1 ; else return 0 ;

4.8 Declarations and block structures

Variables get their types in declarations. Each declaration has a scope,
which is within a certain block. Blocks in C and Java correspond roughly to
parts of code between curly brackets, { and }. Two principles regulate the
use of variables:

1. A variable declared in a block has its scope till the end of that block.

2. A variable can be declared again in an inner block, but not otherwise.

To give an example of these principles at work, let us look at a code with
some blocks, declarations, and assignments:

{

int x ;

{

x = 3 ; // x : int

double x ; // x : double

x = 3.14 ;

int z ;

}

x = x + 1 ; // x : int, receives the value 3 + 1

z = 8 ; // ILLEGAL! z is no more in scope

double x ; // ILLEGAL! x may not be declared again

}

82 CHAPTER 4. WHEN DOES A PROGRAM MAKE SENSE

Our type checker has to control that the block structure is obeyed. This
requires a slight revision of the notion of context. Instead of a simple lookup
table, Γ must be made into a stack of lookup tables. We denote this with
a dot notation, for example,

Γ1.Γ2

where Γ1 is an old (i.e. outer) context and Γ2 an inner context. The innermost
context is the top of the stack.

The lookup function for variables must be modified accordingly. With just
one context, it looks for the variable everywhere. With a stack of contexts,
it starts by looking in the top-mosts and goes deeper in the stack only if it
doesn’t find the variable.

A declaration introduces a new variable in the current scope. This vari-
able is checked to be fresh with respect to the context. But how do we express
that the new variable is added to the context in which the later statements
are checked? This is done by a slight modification of the judgement that a
statement is valid: we can write rules checking that a sequence of state-
ments is valid,

Γ =⇒ s1 . . . sn valid

A declaration extends the context used for checking the statements that
follow:

Γ(x : T) =⇒ s2 . . . sn valid

Γ =⇒ Tx; s2 . . . sn valid

In other words: a declaration followed by some other statements s2 . . . sn

is valid, if these other statements are valid in a context where the declared
variable is added. This addition causes the type checker to recognize the
effect of the declaration.

For block statements, we push a new context on the stack. In the rule
notation, this is seen as the appearance of a dot after Γ. Otherwise the logic
is similar to the declaration rule—but now, it is the statements inside the
block that are affected by the context change, not the statements after:

Γ. =⇒ r1 . . . rm valid Γ =⇒ s2 . . . sn valid

Γ =⇒ {r1 . . . rm}s2 . . . sn valid

The reader should now try out her hand in building a proof tree for the
judgement

=⇒ int x ; x = x + 1 ; valid

4.9. IMPLEMENTING A TYPE CHECKER 83

This is a proof from the empty context, which means no variables are
given beforehand. You should first formulate the proper rules of assignment
expressions and integer literals, which we haven’t shown. But they are easy.

4.9 Implementing a type checker

Implementing a type checker is our first large-scale lesson in syntax-directed
translation. As shown in Section 4.3, this is done by means of inference and
checking functions, together with some auxiliary functions for dealing with
contexts shown in Section 4.4. The block structure (Section 4.8) creates the
need for some more. Here is a summary of the functions we need:

Type infer (Env env, Exp e)

Void check (Env env, Type t, Exp e)

Void check (Env env, Statements t)

Void check (Env env, Definition d)

Void check (Program p)

Type look (Ident x, Env env)

FunType look (Ident x, Env env)

Env extend (Env env, Ident x, Type t)

Env extend (Env env, Definition d)

Env push (Env env)

Env pop (Env env)

Env empty ()

We make the check functions return a Void. Their job is to go through the
code and silently return if the code is correct. If they encounter an error, they
emit an error message. So does infer if type inference fails, and look if the
variable or function is not found in the environment. The extend functions
can be made to fail if the inserted variable or function name already exists
in the environment.

Most of the types involved in the signature above come from the ab-
stract syntax of the implemented language, hence ultimately from its BNF
grammar. The exceptions are Void, FunType, and Env. FunType is a data
structure that contains a list of argument types and a value type. Env con-
tains a lookup table for functions and a stack of contexts. These are our first
examples of symbol tables, which are essential in all compiler components.

84 CHAPTER 4. WHEN DOES A PROGRAM MAKE SENSE

We don’t need the definitions of these types in the pseudocode, but just
the functions for lookup and environment construction. But we will show
possible Haskell and Java definitions below.

Here is the pseudocode for the top-level function checking that a program
is valid. We assume that a program is a sequence of function definitions. It
is checked in two passes: first, collect the type signatures of each function
by running extend on each definition in turn. Secondly, check each function
definition in the environment that now contains all the functions with their
types.

check (def_1...def_n) =

env := empty

for each i = 1,...,n: extend(env,def_i)

for each i = 1,...,n: check(env,def_i)

We assume that the extend function updates the environment env by a side
effect, so that it contains all function types on the last line where check is
called.

Checking a function definition is derived from the rule in Section 4.7:

check (env, typ fun (typ_1 x_1,...,typ_m x_m) {s_1...s_n}) =

for each i = 1,...,m: extend(env,x_i, typ_i)

check(env, s_1...s_n)

Checking a statement list needs pattern matching over different forms of
statements. The most critical parts are declarations and blocks:

check (env, typ x ; s_2...s_n) =

env’ := extend(env, x, typ)

check (env’, s_2...s_n)

check (env, {r_1...r_m} s_2...r_n) =

env1 := push(env)

check(env1, r_1...r_m)

env2 := pop(env1)

check(env2, s_2...s_m)

The type checker we have been defining just checks the validity of programs
without changing them. But usually the type checker is expected to return
a more informative syntax tree to the later phases, a tree with type anno-
tations. Then the type signatures become

4.10. TYPE CHECKER IN HASKELL 85

<Type,Exp> infer (Env env, Exp e)

Exp check (Env env, Type t, Exp e)

Statements check (Env env, Statements t)

and so on. The abstract syntax needs to be extended by a constructor for
type-annotated expressions. We will denote them with <exp : type> in
the pseudocode. Then, for instance, the type inference rule for addition
expression becomes

infer(env, a + b) =

<typ,a’> := infer(env, a)

b’ := check(env, b, typ)

return <typ, <a’ + b’ : typ>>

4.10 Type checker in Haskell

The compiler pipeline

To implement the type checker in Haskell, we need three things:

• define the appropriate auxiliary types and functions;

• implement type checker and inference functions;

• put the type checker into the compiler pipeline.

A suitable pipeline looks as follows. It calls the lexer within the parser, and
reports a syntax error if the parser fails. Then it proceeds to type checking,
showing an error message at failure and saying “OK” if the check succeeds.
When more compiler phases are added, the next one takes over from the OK
branck of type checking.

compile :: String -> IO ()

compile s = case pProgram (myLexer s) of

Bad err -> do

putStrLn "SYNTAX ERROR"

putStrLn err

exitFailure

Ok tree -> case typecheck tree of

86 CHAPTER 4. WHEN DOES A PROGRAM MAKE SENSE

Bad err -> do

putStrLn "TYPE ERROR"

putStrLn err

exitFailure

Ok _ -> putStrLn "OK" -- or go to next compiler phase

The compiler is implementer in the IO monad, which is the most common
example of Haskell’s monad system. Internally, it will also use an error
monad, which is here implemented by the error type defined in the BNFC
generated code:

data Err a = Ok a | Bad String

The value is either Ok of the expected type or Bad with an error message.
Whatever monad is used, its actions can be sequenced. For instance, if

checkExp :: Env -> Exp -> Type -> Err ()

then you can make several checks one after the other by using do

do checkExp env exp1 typ

checkExp env exp2 typ

You can bind variables returned from actions, and return values.

do typ1 <- inferExp env exp1

checkExp env exp2 typ1

return typ1

If you are only interested in side effects, you can use the dummy value type
() (corresponds to void in C and void or Object in Java).

Symbol tables

The environment has separate parts for function type table and the stack of
variable contexts. We use the Map type for symbol tables, and a list type for
the stack. Using lists for symbol tables is also possible, but less efficient and
moreover not supported by built-in update functions.

4.10. TYPE CHECKER IN HASKELL 87

type Env = (Sig,[Context]) -- functions and context stack

type Sig = Map Id ([Type],Type) -- function type signature

type Context = Map Id Type -- variables with their types

Auxiliary operations on the environment have the following types:

lookVar :: Env -> Id -> Err Type

lookFun :: Env -> Id -> Err ([Type],Type)

updateVar :: Env -> Id -> Type -> Err Env

updateFun :: Env -> Id -> ([Type],Type) -> Err Env

newBlock :: Env -> Err Env

emptyEnv :: Env

You should keep the datatypes abstract, i.e. use them only via these opera-
tions. Then you can switch to another implementation if needed, for instance
to make it more efficient or add more things in the environment. You can
also more easily modify your type checker code to work as an interpreter,
where the environment is different but the same operations are needed.

Pattern matching for type checking and inference

Here is the statement checker for expression statements, declaratins, and
while statements:

checkStm :: Env -> Type -> Stm -> Err Env

checkStm env val x = case x of

SExp exp -> do

inferExp env exp

return env

SDecl type’ x ->

updateVar env id type’

SWhile exp stm -> do

checkExp env Type_bool exp

checkStm env val stm

Checking expressions is defined in terms of type inference:

checkExp :: Env -> Type -> Exp -> Err ()

checkExp env typ exp = do

88 CHAPTER 4. WHEN DOES A PROGRAM MAKE SENSE

typ2 <- inferExp env exp

if (typ2 == typ) then

return ()

else

fail $ "type of " ++ printTree exp

Here is type inference for some expression forms:

inferExp :: Env -> Exp -> Err Type

inferExp env x = case x of

ETrue -> return Type_bool

EInt n -> return Type_int

EId id -> lookVar env id

EAdd exp0 exp -> inferArithmBin env exp0 exp

Checking the overloaded addition uses a generic auxiliary for binary arith-
metic operations:

inferArithmBin :: Env -> Exp -> Exp -> Err Type

inferArithmBin env a b = do

typ <- inferExp env a

if elem typ [Type_int, Type_double] then do

checkExp env b typ

else

fail $ "type of expression " ++ printTree exp -- ...

4.11 Type checker in Java

The visitor pattern

In Section 2.7, we showed a first example of syntax-directed translation in
Java: a calculator defined by adding the interpret() method to each ab-
stract syntax class. This is the most straightforward way to implement pat-
tern matching in Java. However, it is not very modular, because it requires
us to go through and change every class whenever we add a new method. In
a compiler, we need to add a type checker, an interpreter, a code generator,
perhaps some optimizations—and none of these methods will come out as a
cleanly separated piece of code.

4.11. TYPE CHECKER IN JAVA 89

To solve this problem, Java programmers are recommended to use the
visitor pattern. It is also supported by BNFC, which generates the visitor
interface and skeleton code to implement a visitor. With this method, you
can put each compiler component into a separate class, which implements
the visitor interface.

Before attacking the type checker itself, let us look at a simpler example—
the calculator. The abstract syntax class Exp now contains an interface called
Visitor, which depends on two class parameters, A and R. It is these param-
eters that make the visitor applicable to different tasks. In type inference,
for instance, A is a context and R is a type. Let us look at the code:

public abstract class Exp {
public abstract <R,A> R accept(Exp.Visitor<R,A> v, A arg);
public interface Visitor <R,A> {
public R visit(Arithm.Absyn.EAdd p, A arg);
public R visit(Arithm.Absyn.EMul p, A arg);
public R visit(Arithm.Absyn.EInt p, A arg);

}
}
public class EAdd extends Exp {
public final Exp exp_1, exp_2;
public <R,A> R accept(Arithm.Absyn.Exp.Visitor<R,A> v, A arg) {
return v.visit(this, arg);

}
}
public class EInt extends Exp {
public final Integer integer_;
public <R,A> R accept(Arithm.Absyn.Exp.Visitor<R,A> v, A arg) {
return v.visit(this, arg);

}
}

There are three ingredients in the visitor pattern:

• Visitor<R,A>, the interface to be implemented by each application

• R visit(Tree p, A arg), the interface methods in Visitor for each
constructor

• R accept(Visitor v, A arg), the abstract class method calling the
visitor

90 CHAPTER 4. WHEN DOES A PROGRAM MAKE SENSE

Let us see how the calculator is implemented with the visitor pattern:

public class Interpreter {
public Integer interpret(Exp e) {
return e.accept(new Value(), null) ;

}
private class Value implements Exp. Visitor<Integer, Object> {
public Integer visit (EAdd p, Object arg) {
return interpret(p.exp_1) + interpret(p.exp_2) ;

}
public Integer visit (EMul p, Object arg) {
return interpret(p.exp_1) * interpret(p.exp_2) ;

}
public Integer visit (EInt p, Object arg) {
return p.integer_ ;

}
}

}

This is the summary of the components involved:

• the return type R is Integer.

• the additional argument A is just Object; we don’t need it for anything.

• the main class is Interpreter and contains

– the public main method, Integer interpret(Exp e), calling the
visitor with accept

– the private class Value, which implements Visitor by making the
visit method evaluate the expression

At least to me, the most difficult thing to understand with visitors is the dif-
ference between accept and visit. It helps to look at what exactly happens
when the interpreter is run on an expression—let’s say 2 + 3:

interpret(EAdd(EInt(2),(EInt(3)))) --> [interpret calls accept]
EAdd(EInt(2),(EInt(3))).accept(v,null) --> [accept calls visit]
visit(EAdd(EInt(2),(EInt(3))),null) --> [visit calls interpret]
interpret(EInt(2)) + interpret(EInt(3)) --> [interpret calls accept, etc]

Of course, the logic is less direct than in Haskell’s pattern matching:

4.11. TYPE CHECKER IN JAVA 91

interpret (EAdd (EInt 2) (EInt 3)) --> [interpret calls interpret]
interpret (EInt 2) + interpret (EInt 3) --> [interpret calls interpret, etc]

But this is how Java can after all make it happen in a modular, type-correct
way.

Type checker components

To implement the type checker in Java, we need three things:

• define the appropriate R and A classes;

• implement type checker and inference visitors with R and A;

• put the type checker into the compiler pipeline.

For the return type R, we already have the class Type from the abstract
syntax. But we also need a representation of function types:

public static class FunType {

public LinkedList<Type> args ;

public Type val ;

}

Now we can define the environment with two components: a symbol ta-
ble (Map) of function type signatures, and a stack (LinkedList) of variable
contexts. We also need lookup and update methods:

public static class Env {

public Map<String,FunType> signature ;

public LinkedList<Map<String,Type>> contexts ;

public static Type lookVar(String id) { ...} ;

public static FunType lookFun(String id) { ...} ;

public static void updateVar (String id, Type ty) {...} ;

// ...

}

We also need something that Haskell gives for free: a way to compare types
for equality. This we can implement with a special enumeration type of type
codes:

92 CHAPTER 4. WHEN DOES A PROGRAM MAKE SENSE

public static enum TypeCode { CInt, CDouble, CBool, CVoid } ;

Now we can give the headers of the main classes and methods:

public void typecheck(Program p) {
}

public static class CheckStm implements Stm.Visitor<Env,Env> {
public Env visit(SDecl p, Env env) {
}
public Env visit(SExp p, Env env) {
}
// ... checking different statements

public static class InferExp implements Exp.Visitor<Type,Env> {
public Type visit(EInt p, Env env) {
}
public Type visit(EAdd p, Env env) {
}
// ... inferring types of different expressions

}

On the top level, the compiler ties together the lexer, the parser, and the
type checker. Exceptions are caught at each level:

try {
l = new Yylex(new FileReader(args[0]));
parser p = new parser(l);
CPP.Absyn.Program parse_tree = p.pProgram();
new TypeChecker().typecheck(parse_tree);

} catch (TypeException e) {
System.out.println("TYPE ERROR");
System.err.println(e.toString());
System.exit(1);

} catch (IOException e) {
System.err.println(e.toString());
System.exit(1);

} catch (Throwable e) {
System.out.println("SYNTAX ERROR");
System.out.println ("At line " + String.valueOf(l.line_num())

+ ", near \"" + l.buff() + "\" :");
System.out.println(" " + e.getMessage());
System.exit(1);

}

4.11. TYPE CHECKER IN JAVA 93

Visitors for type checking

Now, finally, let us look at the visitor code itself. Here is checking statements,
with declarations and expression statements as examples:

public static class CheckStm implements Stm.Visitor<Env,Env> {

public Env visit(SDecl p, Env env) {

env.updateVar(p.id_,p.type_) ;

return env ;

}

public Env visit(SExp s, Env env) {

inferExp(s.exp_, env) ;

return env ;

}

//...

}

Here is an example of type inference, for overloaded addition expressions:

public static class InferExpType implements Exp.Visitor<Type,Env> {
public Type visit(demo.Absyn.EPlus p, Env env) {
Type t1 = p.exp_1.accept(this, env);
Type t2 = p.exp_2.accept(this, env);
if (typeCode(t1) == TypeCode.CInt && typeCode(t2) == TypeCode.CInt)

return TInt;
else
if (typeCode(t1) == TypeCode.CDouble && typeCode(t2) == TypeCode.CDouble)

return TDouble;
else
throw new TypeException("Operands to + must be int or double.");

}
//...

}

The function typeCode converts source language types to their type codes:

public static TypeCode typeCode (Type ty) ...

It can be implemented by writing yet another visitor :-)

94 CHAPTER 4. WHEN DOES A PROGRAM MAKE SENSE

Chapter 5

How to run programs in an
interpreter

This chapter concludes what is needed in a minimal full-scale language im-
plementation: you can now run your program and see what it produces.
This part is the Main Assignment 3, but it turns out to be almost the same
as Main Assignment 2, thanks to the powerful method of syntax-directed
translation. Of course, it is not customary to interpret Java or C directly on
source code; but languages like JavaScript are actually implemented in this
way, and it is the quickest way to get your language running. The chapter
will conclude with another kind of an interpreter, one for the Java Virtual
Machine. It is included more for theoretical interest than as a central task
in this book.

5.1 Specifying an interpreter

Just like type checkers, interpreters can be abstractly specified by means of
inference rules. The rule system of an interpreter is called the operational
semantics of the language. The rules tell how to evaluate expressions and
how to execute statements and whole programs.

The basic judgement form for expressions is

γ =⇒ e ⇓ v

which is read, expression e evaluates to value v in environment γ. It involves
the new notion of value, which is what the evaluation returns, for instance,

95

96 CHAPTER 5. HOW TO RUN PROGRAMS IN AN INTERPRETER

an integer or a double. Values can be seen as a special case of expressions,
mostly consisting of literals; we can also eliminate booleans by defining true
as the integer 1 and false as 0.

The environment γ (which is a small Γ) now contains values instead of
types. We will denote value environments as follows:

(x1 := v1) . . . (xn := vn)

When interpreting (i.e. evaluating) a variable expression, we look up its value
from γ. Thus the rule for evaluating variable expressions is

γ =⇒ x ⇓ v
if x := v in γ

The rule for interpreting && expressions is

γ =⇒ a ⇓ u γ =⇒ b ⇓ v

γ =⇒ a && b ⇓ u× v

where we use integer multiplication to interpret the boolean conjunction.
Notice how similar this rule is to the typing rule,

Γ =⇒ a : bool Γ =⇒ b : bool

Γ =⇒ a && b : bool

One could actually see the typing rule as a special case of interpretation,
where the value of an expression is always its type.

5.2 Side effects

Evaluation can have side effects, that is, do things other than just return
a value. The most typical side effect is changing the environment. For
instance, the assignment expression x = 3 on one hand returns the value 3,
on the other changes the value of x to 3 in the environment.

Dealing with side effects needs a more general form of judgement: eval-
uating an expression returns, not only a value, but also a new environment
γ′. We write

γ =⇒ e ⇓< v, γ′ >

which is read, expression e evaluates to value v and the new environment
γ′ in environment γ. The original form without γ′ can still be used as a
shorthand for the case where γ′ = γ.

5.2. SIDE EFFECTS 97

Now we can write the rule for assignment expressions:

γ =⇒ e ⇓< v, γ′ >

γ =⇒ x = e ⇓< v, γ′(x := v) >

The notation γ(x := v) means that we update the value of x in γ to v,
which means that we overwrite any old value that x might have had.

Operational semantics is an easy way to explain the difference between
preincrements (++x) and postincrements (x++). In preincrement, the
value of the expression is x+1. In postincrement, the value of the expression
is x. In both cases, x is incremented in the environment. With rules,

γ =⇒ ++x ⇓< v + 1, γ(x := v + 1) >
if x := v in γ

γ =⇒ x++ ⇓< v, γ(x := v + 1) >
if x := v in γ

One might think that side effects only matter in expressions that have side
effect themselves, such as assignments. But also other forms of expressions
must be given all those side effects that occur in their parts. For instance,
++x - x++ is, even if perhaps bad style, a completely valid expression that
should be interpreted properly. The interpretation rule for subtraction thus
takes into account the changing environment:

γ =⇒ a ⇓< u, γ′ > γ′ =⇒ b ⇓< v, γ′′ >

γ =⇒ a - b ⇓< u−−− v, γ′′ >

What is the value of ++x - x++ in the environment (x := 1)? This is easy
to calculate by building a proof tree:

(x := 1) =⇒ ++x ⇓< 2, (x := 2) > (x := 2) =⇒ x++ ⇓< 2, (x := 3) >

(x := 1) =⇒ a - b ⇓< 0, (x := 3) >

But what other value could the expression have in C, where the evaluation
order of operands is specified to be undefined?

Another kind of side effects are IO actions, that is, input and output.
For instance, printing a value is an output action side effect. We will not treat
them with inference rules here, but show later how they can be implemented
in the interpreter code.

98 CHAPTER 5. HOW TO RUN PROGRAMS IN AN INTERPRETER

5.3 Statements

Statements are executed for their side effects, not to receive values. Lists
of statements are executed in order, where each statement may change the
environment for the next one. Therefore the judgement form is

γ =⇒ s1 . . . sn ⇓ γ′

This can, however, be reduced to the interpretation of single statements as
follows:

γ =⇒ s ⇓ γ′ γ′ =⇒ s2 . . . sn ⇓ γ′′

γ =⇒ s1 . . . sn ⇓ γ′′

Expression statements just ignore the value of the expression:

γ =⇒ e ⇓< v, γ′ >

γ =⇒ e; ⇓ γ′

For if and while statements, the interpreter differs crucially from the type
checker, because it has to consider the two possible values of the condition
expression. Therefore, if statements have two rules: one where the condition
is true (1), one where it is false (0). In both cases, just one of the statements
in the body is executed. But recall that the condition can have side effects!

γ =⇒ e ⇓< 1, γ′ > γ′ =⇒ s ⇓ γ′′

γ =⇒ if (e) s else t ⇓ γ′′
γ =⇒ e ⇓< 0, γ′ > γ′ =⇒ t ⇓ γ′′

γ =⇒ if (e) s else t ⇓ γ′′

For while staments, the truth of the condition results in a loop where the
body is executed and the condition tested again. Only if the condition be-
comes false (since the environment has changed) can the loop be terminated.

γ =⇒ e ⇓< 1, γ′ > γ′ =⇒ s ⇓ γ′′ γ′′ =⇒ while (e) s ⇓ γ′′′

γ =⇒ while (e) s ⇓ γ′′′

γ =⇒ e ⇓< 0, γ′ >

γ =⇒ while (e) s ⇓ γ′

Declarations extend the environment with a new variable, which is first
given a “null” value. Using this null value in the code results in a run-time
error, but this is of course impossible to prevent by the compilation.

γ =⇒ Tx;⇓ γ(x := null)

5.4. PROGRAMS, FUNCTION DEFINITIONS, AND FUNCTION CALLS99

We don’t check for the freshness of the new variable, because this has been
done in the type checker! Here we follow the principle of Milner, the inventor
of ML:

Well-typed programs can’t go wrong.

However, in this very case we would gain something with a run-time check,
if the language allows declarations in branches of if statements.

For block statements, we push a new environment on the stack, just as we
did in the type checker. The new variables declared in the block are added
to this new environment, which is popped away at exit from the block.

γ. =⇒ s1 . . . sn ⇓ γ′.δ

γ =⇒ {s1 . . . sn} ⇓ γ′

What is happening in this rule? The statements in the block are interpreted
in the environment γ., which is the same as γ with a new, empty, variable
storage on the top of the stack. The new variables declared in the block
are collected in this storage, which we denote by δ. After the block, δ is
discarded. But the old γ part may still have changed, because the block may
have given new values to some old variables! Here is an example of how this
works, with the environment after each statement shown in a comment.

{

int x ; // (x := null)

{ // (x := null).

int y ; // (x := null).(y := null)

y = 3 ; // (x := null).(y := 3)

x = y + y ; // (x := 6).(y := 3)

} // (x := 6)

x = x + 1 ; // (x := 7)

}

5.4 Programs, function definitions, and func-

tion calls

How do we interpret whole programs and function definitions? We well
assume the C convention that the entire program is executed by running its

100 CHAPTER 5. HOW TO RUN PROGRAMS IN AN INTERPRETER

main function. This means the evaluation of an expression that calls the
main function. Also following C conventions, main has no arguments:

γ =⇒ main() ⇓< v, γ′ >

The environment γ is the global environment of the program. It contains
no variables (as we assume there are no global variables). But it does contain
all functions. It allows us to look up a function name f and get the parameter
list and the function body.

In any function call, we execute body of the function in an environment
where the parameters are given the values of the arguments:

γ =⇒ a1 ⇓<v1, γ1 > · · · γm−1 =⇒ am ⇓<vm, γm >
γ.(x1 := v1) . . . (xm := vm) =⇒ s1 . . . sn ⇓<v, γ′>

γ =⇒ f(a1, . . . , an) ⇓<v, γm >

if T f(T1 x1, . . . , Tm xm){s1 . . . , sn} in γ

This is quite a mouthful. Let us explain it in detail:

• The first m premisses evaluate the arguments of the function call. As
the environment can change, we show m versions of γ.

• The last premiss evaluates the body of the function. This is done
in a new environment, which binds the parameters of f to its actual
arguments.

• No other variables can be accessed when evaluating the body. This is
indicated by the use of the dot (.). Hence the local variables in the
body won’t be confused with the old variables in γ. Actually, the old
variables cannot be updated either, but this is already guaranteed by
type checking. For the same reason, using γm instead of γ here wouldn’t
make any difference.

• The value that is returned by evaluating the body comes from the
return statement in the body.

We have not yet defined how function bodies, which are lists of statements,
can return values. We do this by a simple rule saying that the value returned
comes from the expression of the last statement, which must be a return

statement:
γ =⇒ s1 . . . sn−1 ⇓ γ′ γ′ =⇒ e ⇓< v, γ′′ >

γ =⇒ s1 . . . sn−1 return e ⇓< v, γ′′ >

5.5. LAZINESS 101

5.5 Laziness

The rule for interpreting function calls is an example of the call by value
evaluation strategy. This means that the arguments are evaluated before the
function body is evaluated. Its alternative is call by name, which means
that the arguments are inserted into the function body as expressions, before
evaluation. One advantage of call by name is that it doesn’t need to evaluate
expressions that don’t actually occur in the function body. Therefore it is
also known as lazy evaluation. A disadvantage is that, if the variable is
used more than once, it has to be evaluated again and again. This, in turn,
is avoided by a more refined technique of call by need, which is the one
used in Haskell.

We will return to evaluation strategies in Chapter 7. Most languages, in
particular C and Java, use call by value, which is why we have used it here,
too. But they do have some exceptions to it. Thus the boolean expressions
a && b and a || b are evaluated lazily. Thus in a && b, a is evaluated first.
If the value is false (0), the whole expression comes out false, and b is not
evaluated at all. This is actually important, because it allows the programmer
to write

x != 0 && 2/x > 1

which would otherwise result in a division-by-zero error when x == 0.
The operational semantics resemples if and while statements in Section

5.3. Thus it is handled with two rules—one for the 0 case and one for the 1
case:

γ =⇒ a ⇓< 0, γ′ >

γ =⇒ a&&b ⇓< 0, γ′ >

γ =⇒ a ⇓< 1, γ′ > γ′ =⇒ b ⇓< v, γ′′ >

γ =⇒ a&&b ⇓< v, γ′′ >

For a || b, the evaluation stops if x == 1.

5.6 Debugging interpreters

One advantage of interpreters is that one can easily extend them to debug-
gers. A debugger traverses the code just like an interpreter, but also prints
intermediate results such as the current environment, accurately linked to
each statement in the source code.

102 CHAPTER 5. HOW TO RUN PROGRAMS IN AN INTERPRETER

5.7 Implementing the interpreter

The code for the interpreter is mostly a straightforward variant of the type
checker. The biggest difference is in the return types, and in the contents of
the environment:

<Value,Env> eval (Env env, Exp e)

Env exec (Env env, Statement s)

Void exec (Program p)

Value look (Ident x, Env env)

Fun look (Ident x, Env env)

Env extend (Env env, Ident x, Value v)

Env extend (Env env, Definition d)

Env push (Env env)

Env pop (Env env)

Env empty ()

The top-level interpreter first gathers the function definition to the environ-
ment, then executes the main function.

exec (def_1 ... def_n) =

env := empty

for each i = 1,...,n: extend(env, def_i)

eval(env, main())

Executing statements and evaluating expressions follows from the semantic
rules in the same way as type checking follows from typing rules. In fact, it
is easier now, because we don’t have to decide between type checking and
type inference. For example:

exec(env, e;) =

<_,env’> := eval(env,e)

return env’

exec(env, while e s) =

<v,env’> := eval(env,e)

if v == 0

return env’

5.7. IMPLEMENTING THE INTERPRETER 103

else

env’’ := exec(env’,s)

exec(env’’,while e s)

eval(env, a-b) =

<env’, u> := eval(env, a)

<env’’,v> := eval(env’,b)

return <env’’, u-v>

eval(env, f(a_1,...,a_m) =

for each i = 1,...,m: <v_i,env_i> := eval(env_i-1, a_i)

t f(t_1 x_1,...,t_m x_m){s_1...s_m}

envf := extend(push(env),(x_1 := v_1)...(x_m := v_m)

<_,v> := eval(envf, s_1...s_m)

return <env_m,v>

The implementation language takes care of the operations on values, for
instance, comparisons like v == 0 and calculations like u - v.

The implementation language may also need to define some predefined
functions, in particular ones needed for input and output. Four such func-
tions are needed in the assignment of this book: reading and printing integers
and doubles. The simplest way to implement them is as special cases of the
eval function:

eval(env, printInt(e)) =

<env’,v> := eval(env,e)

print integer v to standard output

return <void, env’>

eval(env, readInt()) =

read integer v from standard input

return <v,env>

The type Value can be thought of as a special case of Exp, only containing
literals, but it would be better implemented as an algebraic datatype. One
way to do this is to derive the implementation from a BNFC grammar! This
time, we don’t use this grammar for parsing, but only for generating the
datatype implementation and perhaps the function for printing integer and
double values.

104 CHAPTER 5. HOW TO RUN PROGRAMS IN AN INTERPRETER

VInteger. Value ::= Integer ;

VDouble. Value ::= Double ;

VVoid. Value ::= ;

VUndefined. Value ::= ;

But some work remains to be done with the arithmetic operations. You
cannot simply write

VInteger(2) + VInteger(3)

because + in Haskell and Java is not defined for the type Value. Instead, you
have to define a special function addValue to the effect that

addValue(VInteger(u),VInteger(v)) = VInteger(u+v)

addValue(VDouble(u), VDouble(v)) = VDouble(u+v)

You won’t need any other cases because, once again, well-typed programs
can’t go wrong!

5.8 Interpreting Java bytecode

It is a common saying that “Java is an interpreted language”. We saw already
Chapter 1 that this is not quite true. The truth is that Java is compiled to
another language, JVM, Java Virtual Machine or Java bytecode, and
JVM is then interpreted.

JVM is very different from Java, and its implementation is quite a bit
simpler. In Chapter 1, we saw an example, the execution of the bytecode
compiled from the expression 5 + (6 * 7):

bipush 5 ; 5

bipush 6 ; 5 6

bipush 7 ; 5 6 7

imul ; 5 42

iadd ; 47

After ; (the comment delimiter in JVM assembler), we see the stack as
it evolves during execution. At the end, there value of the expression, 47,
is found on the top of the stack. In our representation, the “top” is the
right-most element.

5.8. INTERPRETING JAVA BYTECODE 105

Like most machine languages, JVM has neither expressions nor state-
ments but just instructions. Here is a selections of instructions that we will
use in the next chapter to compile into:

instruction explanation
bipush n push byte constant n
iadd pop topmost two values and push their sum
imul pop topmost two values and push their product
iload i push value stored in address i
istore i pop topmost value and store it in address i
goto L go to code position L
ifeq L pop top value; if it is 0 go to position L

The instructions working on integers have variants for other types in the
full JVM; see next chapter.

The load and store instructions are used to compile variables. The code
generator assigns a memory address to every variable. This address is
an integer. Declarations are compiled so that the next available address is
reserved to the variable in question; no instruction is generated. Using a
variable as an expression means loading it, whereas assigning to it means
storing it. The following code example with both C and JVM illustrates the
workings:

int i ; ; reserve address 0 for i

i = 9 ; bipush 9

istore 0

int j = i + 3 ; ; reserve address 1 for j

iload 0

bipush 3

iadd

istore 1

Control structures such as while loops are compiled to jump instructions:
goto, which is an unconditional jump, and ifeq, which is a conditional
jump. The jumps go to labels, which are positions in the code. Here is how
while statements can be compiled:

TEST:

106 CHAPTER 5. HOW TO RUN PROGRAMS IN AN INTERPRETER

while (exp) ===> ; code to evaluate exp

stm if (exp==0) goto END

; code to execute stm

goto TEST

END:

We have been explaining the JVM in informal English. To build an inter-
preter, it is useful to have formal semantics. This time, the semantics is built
by the use of transitions: simple rules that specify what each instruction
does. This kind of semantics is also known as small-step semantics, as
each rule specifies just one step of computation. In fact the big-step relation
⇓ can be seen as the transitive closure of the small-step relation -->:

e ⇓ v means that e --> . . . --> v in some number of steps.

To make this completely precise, we of course have to specify how the big
and small step environments correspond to each other. But in the JVM case
e ⇓ v can be taken to mean that executing the instructions in e returns the
value v on top of the stack after some number of steps and then terminates.

The operational semantics for C/Java source code that we gave earlier in
this chapter is correspondingly called big-step semantics. For instance, a
+ b is there specified by saying that a is evaluated first; but this can take
any number of intermediate steps.

The format of our small-step rules for JVM is

< Instruction , Env > --> < Env’ >

The environment Env has the following parts:

• a code pointer P,

• a stack S,

• a variable storage V,

The rules work on instructions, executed one at a time. The next instruction
is determined by the code pointer. Each instruction can do some of the
following:

• increment the code pointer: P+1

5.8. INTERPRETING JAVA BYTECODE 107

• change the code pointer according to a label: P(L)

• copy a value from a storage address: V(i)

• write a value in a storage address: V(i := v)

• push values on the stack: S.v

• pop values from the stack

Here are the small-step semantic rules for the instructions we have intro-
duced:

<bipush v, P; V; S> --> <P+1; V; S.v>

<iadd, P; V; S.v.w> --> <P+1; V: S.v+w>

<imul, P; V; S.v.w> --> <P+1; V: S.v*w>

<iload i, P; V; S> --> <P+1; V; S.V(i)>

<istore i, P: V; S.v> --> <P+1; V(i:=v); S>

<goto L, P; V; S> --> <P(L); V; S>

<ifeq L, P; V; S.0> --> <P(L); V; S>

<ifeq L, P; V; S.v> --> <P+1; V; S> (v not 0)

The semantic rules are a precise, declarative specification of an interpreter.
They can guide its implementation. But they also make it possible, at least
in principle, to perform reasoning about compilers. If both the source
language and the target language have a formal semantics, it is possible to
define the correctness of a compiler precisely. For instance:

An expression compiler c is correct if, for all expressions e, e ⇓ w
if and only if c(e) ⇓ v.

108 CHAPTER 5. HOW TO RUN PROGRAMS IN AN INTERPRETER

Chapter 6

Compiling to machine code

There is semantic gap, a gap between the basic language constructs, which
make machine languages look frighteningly different from source languages.
However, the syntax-directed translation method can be put into use once
again, and Main Assignment 4 will be an easy piece for anyone who has
completed the previous assignments.

6.1 The semantic gap

Java and JVM are based on different kinds of constructions. These differences
create the semantic gap, which a compiler has to bridge. Here is a summary,
which works for many other source and target languags as well:

high-level code machine code
statement instruction
expression instruction
variable memory address
value bit vector
type memory layout
control structure jump
function subroutine
tree structure linear structure

The general picture is that machine code is simpler. This is what makes
the correspondence of concepts into many-one: for instance, both statements

109

110 CHAPTER 6. COMPILING TO MACHINE CODE

and expressions are compiled to instructions. The same property makes com-
pilation of constructs into one-many : typically, one statement or expression
translates to many instructions. For example,

x + 3 ==> iload 0

bipush 3

iadd

But the good news resulting from this is that compilation is easy, because it
can proceed by just ignoring some information in the source language! This
comes with the qualification that some information not present in the source
language must first be extracted from the code. This means, in particular,
that the type checker has to annotate the syntax tree with type information.

6.2 Specifying the code generator

Just like type checkers and interpreters, we could specify a code generator
by means of inference rules. One judgement form could be

γ =⇒ e ↓ c

which is read, expression e generates code c in environment γ. The rules for
compiling + expressions could be

γ =⇒ a ↓ c γ =⇒ b ↓ d

γ =⇒ <a + b:int> ↓ c d iadd

γ =⇒ a ↓ c γ =⇒ b ↓ d

γ =⇒ <a + b:double> ↓ c d dadd

thus one rule for each type, and with type annotations assumed to be in
place.

However, we will use the linear, non-tree notation of pseudocode from the
beginning. One reason is that inference rules are not traditionally used for
this task, so the notation would be a bit self-made. Another, more important
reason is that the generated code is sometimes quite long, and the rules could
become too wide to fit on the page. But in any case, rules and pseudocode
are just two concrete syntaxes for the same abstract ideas.

Thus the pseudocode for compiling + expressions becomes

compile(env, <a + b : t>) =

c := compile(env,a)

6.3. THE COMPILATION ENVIRONMENT 111

d := compile(env,b)

if t == int

return c d iadd

else

return c d dadd

The type of this function is

Code compile (Env env, Exp e)

Even this is not the most common and handy way to specify the compiler.
We will rather use the following format:

Void compile (Exp e)

compile(<a + b : t>) =

compile(a)

compile(b)

if t == int

emit(iadd)

else

emit(dadd)

This format involves two simplifications:

• the environment is kept implicit—as a global variable, which may be
consulted and changed by the compiler;

• code is generated as a side effect—by the function Void emit(Code

c), which writes the code into a file.

6.3 The compilation environment

As in type checkers and interpreters, the environment stores information on
functions and variables. More specifically,

• for each function, its type in the JVM notation;

• for each variable, its address as an integer.

112 CHAPTER 6. COMPILING TO MACHINE CODE

The exact definition of the environment need not bother us in the pseudocode.
We just need to know the utility functions that form its interface:

Address look (Ident x)

FunType look (Ident f)

Void extend (Ident x, Size s)

Void extend (Definition d)

Void push () // new context when entering block

Void pop () // exit from block, discard new context

Void empty () // discard all variables

Label label () // get fresh code label

The label function gives a fresh label to be used in jump instructions. All
labels in the code for a function must be distinct, because the they must
uniquely identify a code position.

When extending the environment with a new variable, the size of its value
must be known. For integers, the size is 1, for doubles, 2. The addresses start
from 0, which is given to the first variable declared. The first variables are the
function parameters, after which the locals follow. Blocks can overshadow old
variables as usual. Here is an example of how the variable storage develops
in the course of a function:

int foo (double x, int y)

{ // x -> 0, y -> 2

int i ; // x -> 0, y -> 2, i -> 3

bool b ; // x -> 0, y -> 2, i -> 3, b -> 4

{ // x -> 0, y -> 2, i -> 3, b -> 4 .

double i ; // x -> 0, y -> 2, i -> 3, b -> 4 . i -> 4

} // x -> 0, y -> 2, i -> 3, b -> 4

int z ; // x -> 0, y -> 2, i -> 3, b -> 4, z -> 5

}

6.4 Simple expressions and statements

The simplest expressions are the integer and double literals. The simplest
instructions to compile them to are

• ldc i, for pushing an integer i

6.4. SIMPLE EXPRESSIONS AND STATEMENTS 113

• ldc2 w d, for pushing a double d

These instructions are implemented in a special way by using a separate
storage called the runtime constant pool. Therefore they are not the
most efficient instructions to use for small numbers: for them, the JVM also
has

• bipush b, for integers whose size is one byte

• iconst m1 for -1, iconst 0 for 0, . . . , iconst 5 for 5

• dconst 0 for 0.0, dconst 1 for 1.1

The dconst and iconst sets are better than bipush because they need no
second bit for the argument. It is of course easy to optimize the code gen-
eration to one of these. But let us assume, for simplicity, the use of the
worst-case instructions:

compile(i) = emit(ldc i)

compile(d) = emit(ldc2_w d)

Arithmetic operations were already covered. The following scheme works for
all eight cases:

compile(<a + b : t>) = // - * /

compile(a)

compile(b)

if t == int

emit(iadd) // isub imul idiv

else

emit(dadd) // dsub dmul ddiv

Variables are loaded from the storage:

compile(<x : int>) = emit(iload look(x))

compile(<x : double>) = emit(dload look(x))

Like for constants, there are special instructions available for small addresses.
Assignments need some care, since we are treating them as expressions

which both have side effects and return values. A simple-minded compilation
would give

114 CHAPTER 6. COMPILING TO MACHINE CODE

i = 3 ; ===> iconst_3 ; istore_1

It follows from the semantics in Section 5.8 that after istore, the value 3 is
no more on the stack. This is fine as long as the expression is used only as a
statement. But if its value is needed, then we need both to store it and have
it on the stack. One way to guarantee this is

iconst_3 ; istore_1 ; iload_1

Anther way is to duplicate the top of the stack with the instruction dup:

<dup, P; V; S.v> --> <P+1; V; S.v.v>

This works for integers; the variant for doubles is dup2. Thus we can use the
following compilation scheme for assignments:

compile(<x = e : t>) =

compile(e)

if t == int

emit (dup)

emit (istore look(x))

else

emit (dup2)

emit (dstore look(x))

What about if the value is not needed? Then we can use the pop instruction,

<pop, P; V; S.v> --> <P+1; V; S>

and its big sister pop2. The rule is common for all uses of expressions as
statements:

compile(<e : t> ;) =

compile(e)

if t == int emit (pop)

else

if t == double emit (pop2)

else return

6.5. EXPRESSIONS AND STATEMENTS WITH JUMPS 115

Notice that the int case in compilation schemes covers booleans as well. The
last “else” case for expression statements takes care of expressions of type
void: these leave nothing on the stack to pop. The only such expressions in
our language are function calls with void as return type.

Declarations have a compilation scheme that emits no code, but just
reserves a place in the variable storage:

compile(t x ;) =

extend(x,size(t))

The size of a type is 1 for integers and booleans, 2 for doubles. The extend

helper function looks up the smalles available address for a variable, say
i, and updates the compilation environment with the entry (x → i). The
“smallest available address” is incremented by the size of the type.

Blocks are likewise compiled without emitting any code:

compile({s_1 ... s_n}) =

push

for each i = 1,...,n: compile(s_i)

pop

6.5 Expressions and statements with jumps

The expressions and statements of the previous section are “simple” in the
sense that they are compiled into straight code, that is, code without
jumps, executed in the order of instructions. Code that is not straight
is needed for if and while statements but also, as we will see now, many
expressions involving booleans.

The basic way to compile while statements is as follows:

compile (while (exp) stm) =

TEST := label

END := label

emit (TEST)

compile (exp)

emit (ifeq END)

compile (stm)

emit (goto TEST)

emit (END)

116 CHAPTER 6. COMPILING TO MACHINE CODE

The generated code looks as follows:

TEST:

while (exp) ===> exp

stm ifeq END

stm

goto TEST

END:

As specificed in Section 5.8, the ifeq instruction checks if the top of the stack
is 0. If yes, the execution jumps to the label; if not, it continues to the next
instruction. The checked value is the value of exp in the while condition.
Value 0 means that the condition is false, hence the body is not executed.
Otherwise, the value is 1 and the body stm is executed. After this, we take
a jump back to the test of the condition.

if statements are compiled in a similar way:

if (exp) ===> evaluate exp

stm1 if (exp==0) goto FALSE

else execute stm1

stm2 goto TRUE

FALSE:

execute stm2

TRUE:

The idea is to have a label for false case, similar to the label END in while

statements. But we also need a label for true, to prevent the execution of the
else branch. The compilation scheme is straightforward to extreact from
this example.

JVM has no booleans, no comparison operations, no conjunction or dis-
junction. Therefore, if we want to get the value of exp1 < exp2, we execute
code corresponding to

if (exp1 < exp2) 1 ; else 0 ;

We use the conditional jump if icmplt LABEL, which compares the two
elements at the top of the stack and jumps if the second-last is less than the
last:

6.5. EXPRESSIONS AND STATEMENTS WITH JUMPS 117

<if_icmplt L, P; V; S.a.b> --> <P(L); V; S> if a < b

<if_icmplt L, P; V; S.a.b> --> <P+1; V; S> otherwise

We can use code that first pushes 1 on the stack. This is overwritten by 0 if
the comparison does not succeed.

bipush 1

exp1

exp3

if_icmplt TRUE

pop

bipush 0

TRUE:

There are instructions similar to if icmplt for all comparisons of integers:
eq, ne, lt, gt, ge, and le. For doubles, the mechanism is different. There is
one instruction, dcmpg, which works as follows:

<dcmpg, P; V; S.a.b> --> <P+1; V; S.v>

where v = 1 if a > b, v = 0 if a == b, andv = −1 if a < b. We leave it as an
exercise to produce the full compilation schemes for both integer and double
comparisons.

Putting together the compilation of comparisons and while loops gives
terrible spaghetti code, shown in the middle column.

TEST: TEST:

while (x < 9) stm ===> bipush 1

iload 0 iload 0

bipush 9 bipush 9

if_icmplt TRUE if_icmpge END

pop

bipush 0

TRUE:

ifeq goto END

stm stm

goto TEST goto TEST

END: END:

118 CHAPTER 6. COMPILING TO MACHINE CODE

The right column shows a better code doing the sam job. It makes the com-
parison directly in the while jump, by using its negationif icmpge; recall
that !(a < b) == (a >= b). The problem is: how can we get this code by
using the compilation schemes?

6.6 Compositionality

A syntax-directed translation function T is compositional, if the value
returned for a tree is a function of the values for its immediate subtrees:

T (Ct1 . . . t1) = f(T (t1), . . . , T (t1))

In the implementation, this means that,

• in Haskell, pattern matching does not need patterns deeper than one;

• in Java, one visitor definition per class and function is enough.

In Haskell, it would be easy to use noncompositional compilation schemes,
by deeper patterns:

compile (SWhile (ELt exp1 exp2) stm) = ...

In Java, another visitor must be written to define what can happen depending
on the condition part of while.

Another approach is to use compositional code generation followed by
a separate phase of back-end optimization of the generated code: run
through the code and look for code fragments that can be improved. This
technique is more modular and therefore usually preferable to noncomposi-
tional hacks in code generation.

6.7 Function calls and definitions

Function calls in JVM are best understood as a generalization of arithmetic
operations:

1. Push the function arguments on the stack.

2. Evaluate the function (with the arguments as parameters).

6.7. FUNCTION CALLS AND DEFINITIONS 119

3. Return the value on the stack, popping the arguments.

For instance, in function call f(a,b,c), the stack evolves as follows:

S // before the call

S.a.b.c // entering f

S. // executing f, with a,b,c in variable storage

S.v // returning from f

The procedure is actually quite similar to what the interpreter did in Section
5.4. Entering a function f means that the the JVM jumps to the code for f,
with the arguments as the first available variables. The evaluation doesn’t
have access to old variables or to the stack of the calling code, but these
become available again when the function returns.

The compilation scheme looks as follows:

compile(f(a_1,...,a_n)) =

for each i = 1,...,n: compile a_i

typ := look f

emit(invokestatic C/f typ)

The JVM instruction for function calls is invokestatic. As the name sug-
gests, we are only considering static methods here. The instruction needs
to know the type of the function. It also needs to know its class. But we
assume for simplicity that there is a global class Cwhere all the called func-
tions reside. The precise syntax for invokestatic is shown by the following
example:

invokestatic C/mean(II)I

This calls a function int mean (int x, int y) in class C. So the type is
written with a special syntax where the argument types are in parentheses
before the value type. The types have one-letter symbols corresponding to
Java types as follows:

I = int, D = double, V = void, Z = boolean

120 CHAPTER 6. COMPILING TO MACHINE CODE

There is no difference between integers and booleans in execution, but the
JVM interpreter may use the distinction for bytecode verification, that
is, type checking at run time. Notice that the class, function, and type are
written without spaces between in the assembly code.

The top level structure in JVM (as in Java) is a class. Function def-
initions are included in classed as methods. Here is a function and the
compiled method in JVM assembler:

int mean (int x, int y) .method public static mean(II)I

{ .limit locals 2

.limit stack 2

===> iload_0

iload_1

iadd

iconst_2

idiv

return ((n+m) / 2) ; ireturn

} .end method

The first line obviously shows the function name and type. The function
body is in the indented part. Before the body, two limits are specified: the
storage needed for local variables (V in the semantic rules) and the storage
needed for the evaluation stack (S in the semantics).

The local variables include the two arguments but nothing else, and since
they are integers, the limit is 2. The stack can be calculated by simulating
the JVM: it reaches 2 when pushing the two variables, but never beyond
that. The code generator can easily calculate these limits by maintaining
them in the environment; otherwise, one can use rough limits such as 1000.

Now we can give the compilation scheme for function definitions:

compile (t f (t_1 x_1,...,t_m f_m) {s_1 ... s_n} =

empty

emit (.method public static f type(t_1 ... t_m t)

emit (.limit locals locals(f))

emit (.limit stack stack(f))

for each i = 1,...,m: extend(x_i, size(t_i))

for each i = 1,...,n: compile(s_i)

emit (.end method)

6.8. PUTTING TOGETHER A CLASS FILE 121

We didn’t show yet how to compile return statements. JVM has separate
instructions for different types. Thus:

compile(return <e : t>;) =

compile(e)

if t==double emit(dreturn) else emit(ireturn)

compile(return;) =

emit(return)

6.8 Putting together a class file

Class files can be built with the following template:

.class public Foo

.super java/lang/Object

.method public <init>()V

aload_0

invokenonvirtual java/lang/Object/<init>()V

return

.end method

; user’s methods one by one

The methods are compiled as described in the previous section. Each method
has its own stack, locals, and labels; in particular, a jump from one method
can never reach a label in another method.

If we follow the C convention as in Chapter 5, the class must have a main

method. In JVM, its type signature of is different from C:

.method public static main([Ljava/lang/String;)V

The code generator must therefore treat main as a special case.
The class name, Foo in the above template, can be generated by the

compiler from the file name (without suffix). The IO functions (reading and
printing integers and doubles; cf. Section 5.7) can be put into a separate
class, say IO, and then called as usual:

122 CHAPTER 6. COMPILING TO MACHINE CODE

invokestatic IO/printInt(I)V

invokestatic IO/readInt()I

The easiest way to produce the IO class is by writing a Java program IO.java

and compile it to IO.class. Then you will be able run “standard” Java code
together with code generated by your compiler.

The class file and all JVM code show so far is not binary code but as-
semply code. It follows the format of Jasmin, which is a JVM assembler.
In order to create the class file Foo.class, you have to compile your source
code into a Jasmin file Foo.j. This is assembled by the call

jasmin Foo.j

To run your own program, write

java Foo

This executes the main function.
The Jasmin program can be obtained from http://jasmin.sourceforge.net/

6.9 Compiling to native code

6.10 Memory management

http://jasmin.sourceforge.net/

Chapter 7

Functional programming
languages

The Main Assignment material is over, and this chapter takes a look at a
new, fascinating world, where the languages are much simpler but much more
powerful. If the grammar for the C++ fragment treated before was 100 lines,
this language can be defined on less than 20 lines. But the simplicity is more
on the user’s side than the compiler writer’s: you are likely to bang your
head against the wall a few times, until you get it right with recursion, call
by name, closures, and polymorphism. This work is helped by a rigorous
and simple rule system; more than ever before, you need your discipline and
stamina to render it correctly in your implementation code.

123

124 CHAPTER 7. FUNCTIONAL PROGRAMMING LANGUAGES

Chapter 8

How simple can a language be*

The functional language shown in the previous chapter was very simple al-
ready, but it can be made even simpler: the minimal language of Lambda
Calculus has just three grammar rules. It needs no integers, no booleans—
almost nothing, since everything can be defined by those three rules. This
leads us to the notion of Turing Completeness, and we will show another
Turing complete language, which is an imperative language similar to C, but
definable on less than ten lines. Looking at these languages gives us ideas
to assess the popular thesis that “it doesn’t matter what language you use,
since it’s the same old Turing machine anyway”.

125

126 CHAPTER 8. HOW SIMPLE CAN A LANGUAGE BE*

Chapter 9

Designing your own language

You are not likely to implement C++ or Haskell in your professional career.
You are much more likely to implement a DSL, domain specific language.
However, the things you have learned by going through the Main Assignments
and the optional functional assignment give you all the tools you need to
create your own language. You will feel confident to do this, and you also
know the limits of what is realistic and what is not.

127

128 CHAPTER 9. DESIGNING YOUR OWN LANGUAGE

Chapter 10

Compiling natural language*

This last chapter introduces GF, Grammatical Framework, which is similar to
BNFC but much more powerful. GF can be used for definining programming
languages, which will be used as an introductory example. Not only can it
parse them, but also type check them, and actually the translation from Java
to JVM could be defined by a GF grammar. However, the main purpose
of the additional power of GF is to cope with the complexities of natural
languages. The assignment is to build a little system that documents a
program by automatically generating text that describes it; this text can
be rendered into your favourite language, be it English, French, German,
Persian, Urdu, or any of the more than 20 languages available in GF libraries.

129

Index

abstract syntax tree, 28, 35
accept, 66
accepting state, 53
action, 65
agda, 74
algebraic datatype, 36
alphabet, 52, 56
ambiguity, 62
analysis, 21
annotated syntax tree, 19
assembly, 17
at compile time, 21
at run time, 21

back end, 21
back-end optimization, 118
backtracking, 70
big-step semantic, 106
binary code, 14
binary sequence, 11
bind, 86
binding analysis, 21
block, 81
bNF grammar, 61
byte, 12
bytecode verification, 120

call by name, 101
call by need, 101
call by value, 101
category, 31

character, 19
character literal, 43
clas, 120
classpath, 30
closure, 55
closure propertie, 58
code generator, 20
code pointer, 106
coercion, 33
comment, 44
compilation phase, 11, 18
compiler, 14
complement, 58
complexity of context-free parsing, 61
complexity of regular language pars-

ing, 61
compositional, 118
conclusion, 75
concrete syntax, 34
concrete syntax tree, 35
conditional jump, 105
conflict, 51, 63, 68
constructor, 31
context, 74, 76
context-free grammar, 52, 61
copy language, 71
correctness of a compiler, 107
correspondence theorem, 59

dangling else, 69
data, 12

130

INDEX 131

dead state, 58
debugger, 101
debugging parser, 70
declaration, 81
declarative notation, 23
denoted, 52
derivation, 65
desugaring/normalization, 22
determination, 55
deterministic, 53, 57
dFA, 55
distinguishing string, 58
dummy label, 33
duplicate, 114

empty, 56
empty context, 83
environment, 77
epsilon transition, 55, 57
error monad, 86
error type, 86
evaluate, 95
execute, 95
expression, 26

final state, 53, 56
finite automata, 51, 52
finite automaton, 56
floating point literal, 43
formal language, 52
front end, 21

gF, 72
global environment, 100
goto, 66
grammar, 25
grammatical Framework, 72

high-level language, 15

higher precedence, 32

identifier, 30, 43
inference rule, 75
infix, 13
info file, 70
initial state, 53, 56
input and output, 97
instruction, 12, 105
instruction selection, 20
integer literal, 43
intermediate code, 23
interpreter, 17
iO action, 97
iO monad, 86

jasmin, 122
java bytecode, 104
Java Virtual Machine, 12
java Virtual Machine, 104
judgement, 75
jump, 115
jump instruction, 105
jVM, 104
jVM assembler, 122

label, 105
lALR(1), 68
LALR(1) parsers, 52
lazy evaluation, 101
left factoring, 63
left recursion, 64
leftmost derivation, 65
level, 15
Lex, 51
lexer, 19
lexer error, 20
linearization, 71
linearizion, 28

132 INDEX

linguistics, 26
list, 41
lL(k), 62
lookahead, 62
lookup table, 76
low-level language, 15
lowest, 15
lR(k), 65

main assignment, 8
memory addres, 105
metalanguage, 77
method, 120
minimization, 55

nested comment, 61
nFA, 54
nFA generation, 54
noncompositional, 118
nondeterministic, 54, 57
nonempty, 42
nonterminal, 31

operational semantic, 95
optimization, 22
overloaded operator, 79
overwrite, 97

parallel multiple context-free grammar,
72

parse error, 20
parse tree, 35
parser, 19
parser combinator, 62, 70
parser state, 67
parser table, 64
pattern matching, 37
position of a token, 44
postfix, 12

postincrement, 97
precedence level, 32
predefined function, 103
predefined token type, 42
preincrement, 97
premisse, 75
program, 12
proof, 78
proof tree, 78
propositions as types principle, 74
pushed, 13

reasoning, 23
reasoning about compiler, 107
recognition of string, 53
recursion, 14
recursive descent parsing, 62
recursive function, 80
reduce, 65
reduce-reduce conflict, 68
regular expression, 43, 51, 52
regular language, 52
reject, 66
return, 86
right recursion, 64
rightmost derivation, 65
rule, 30
runtime constant pool, 113

scope, 81
semantic, 52
semantic gap, 109
separator, 42
sequence, 55, 86
sequence of statement, 82
sequence of symbols, 52
shift, 65
shift-reduce conflict, 68

INDEX 133

side condition, 77
side effect, 96
size, 112
size explosion of automata, 59
small-step semantic, 106
source code optimization, 22
specification, 26, 74
stack, 13, 65, 104, 106
stack of lookup table, 82
state, 53, 56
straight code, 115
string, 52
string literal, 31, 43
structural recursion on abstract syn-

tax tree, 37
subset construction, 57
symbol, 52, 55
symbol table, 83
syntactic analysis, 14
syntactic sugar, 22
syntax tree, 19
syntax-directed translation, 23, 37, 56,

75, 83, 95
synthesis, 21

target code optimization, 23
terminal, 31
terminator, 41
theory, 23
token, 19
token type, 43
top, 13, 104
transition, 53, 106
transition function, 57
transitive closure, 106
translate, 17
tree, 31
type, 19

type annotation, 74, 84
type cast, 79
type checker, 19
type checking, 75
type code, 91
type error, 20
type inference, 75
type system, 75

unconditional jump, 105
union, 55
universal language, 58
update, 97

valid, 80
value, 95
variable storage, 106
visitor interface, 39, 89
visitor pattern, 89

Yacc, 51, 52

	What is a programming language implementation
	From language to binary
	Levels of languages
	Compilation and interpretation
	Compilation phases
	Compiler errors
	More compiler phases
	Theory and practice
	The scope of the techniques

	What can a grammar do for you
	Defining a language
	Using BNFC
	Rules, categories, and trees
	Precedence levels
	Abstract and concrete syntax
	Abstract syntax in Haskell
	Abstract syntax in Java
	List categories
	Specifying the lexer
	Working out a grammar

	How do lexers and parsers work*
	The theory of formal languages
	Regular languages and finite automata
	The compilation of regular expressions
	Properties of regular languages
	Context-free grammars and parsing
	LL(k) parsing
	LR(k) parsing
	Finding and resolving conflicts
	The limits of context-free grammars

	When does a program make sense
	The purposes of type checking
	Specifying a type checker
	Type checking and type inference
	Context, environment, and side conditions
	Proofs in a type system
	Overloading and type casts
	The validity of statements and function definitions
	Declarations and block structures
	Implementing a type checker
	Type checker in Haskell
	Type checker in Java

	How to run programs in an interpreter
	Specifying an interpreter
	Side effects
	Statements
	Programs, function definitions, and function calls
	Laziness
	Debugging interpreters
	Implementing the interpreter
	Interpreting Java bytecode

	Compiling to machine code
	The semantic gap
	Specifying the code generator
	The compilation environment
	Simple expressions and statements
	Expressions and statements with jumps
	Compositionality
	Function calls and definitions
	Putting together a class file
	Compiling to native code
	Memory management

	Functional programming languages
	How simple can a language be*
	Designing your own language
	Compiling natural language*

