
Parallelism and
Concurrency

Koen Lindström Claessen
Chalmers University
Gothenburg, Sweden

Patrik JanssonPatrik Jansson

Expressing Parallelism

 In a pure, lazy language
Evaluation is done when needed
Evaluation order does not affect meaning
Many sub-expr. could be eval. in parallel
But how can we express that?

Two primitives

pseq :: a -> b -> b
-- denotational semantics:
pseq _|_ y = _|_
pseq _ y = y

par :: a -> b -> b
-- denotational semantics:
par thread main = main

pseq x y:
Evaluate first x,

and then y

par thread main:
Evaluate thread in

parallel, and
immediately return

main

Example

normal, paraNormal :: X -> Y -> N
paraNormal x y = x `par` y `par` normal x y

Idea: Write ”normal”
program first, then
add parallelism to

speed it up

Example: QuickSort

qsort :: (Ord a) => [a] -> [a]
qsort [] = []
qsort [x] = [x]
qsort (x:xs) =
 losort `par` hisort `par` losort ++ (x:hisort)
 where
 losort = qsort [y | y <- xs, y < x]
 hisort = qsort [y | y <- xs, y >= x]

QuickSort (II)
qsort :: (Ord a) => [a] -> [a]
qsort [] = []
qsort [x] = [x]
qsort (x:xs) =
 force losort `par` force hisort `par`
 losort ++ (x:hisort)
 where
 losort = qsort [y | y <- xs, y < x]
 hisort = qsort [y | y <- xs, y >= x]

force :: [a] -> ()
force [] = ()
force (x:xs) = x `pseq` force xs

Example: Parallel Map

pmap :: (a -> b) -> [a] -> [b]
pmap f [] = []
pmap f (x:xs) = fx `par` fxs `par` fx:fxs
 where
 fx = f x
 fxs = pmap f xs

Evaluation Strategies

-- From module Control.Parallel.Strategies (v1)
type Done = ()
type Strategy a = a -> Done

using :: a -> Strategy a -> a
a `using` strat = strat a `pseq` a

Evaluation Strategies (II)

rwhnf :: Strategy a -- Called rseq in later versions
class NFData a where
 rnf :: Strategy a -- Evaluate to normal form

parList :: Strategy a -> Strategy [a]
parList strat [] = ()
parList strat (x:xs) = strat x `par` parList strat xs

Parallel Evaluation Strategies

pmap :: Strategy b -> (a -> b) -> [a] -> [b]
pmap strat f xs = map f xs `using` parList strat

More ...

 Implemented in GHC -- hackage parallel
Control.Parallel (par, pseq)
Control.Parallel.Strategies

 Also look at:
Control.Concurrent (ghc -threaded)
Control.Monad.STM

 RWH: Ch. 24 and Ch. 28

Concurrent Programming

 Processes
Concurrency
Parallelism

 Shared resources
Communication
Locks
Blocking

Concurrent Haskell
Control.Concurrent

fork :: IO a -> IO Pid
kill :: Pid -> IO ()

type MVar a

newEmptyMVar :: IO (MVar a)
takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()

starting/killing
processes

a shared
resource

blocking
actions

Concurrent Haskell
Control.Concurrent.Chan

type Chan a

newChan :: IO (Chan a)
readChan :: Chan a -> IO a
writeChan :: Chan a -> a -> IO ()

an
unbounded

channel

write returns
immediately

Typical Concurrent Programming Today

 Use MVars (or similar concepts) to
implement ”locks”
Grab the lock

 Block if someone else has it

Do your thing
Release the lock

Problems With Locking

 Races
Forgotten lock

 Deadlock
Grabbing/releasing locks in wrong order

 Error recovery
 Invariants
Locks

The Biggest Problem

 Locks are not compositional!
 Compositional = build a working system from

working pieces

action1 = withdraw a 100 action2 = deposit b 100

action3 =
 do withdraw a 100
 deposit b 100

Inconsistent
state

Solution (?)

 Expose the locks

action3 =
 do lock a
 lock b
 withdraw a 100
 deposit b 100
 release a
 release b

Danger of
deadlock!

– better but error-prone
if a < b then do lock a; lock b
 else do lock b; lock a

More Problems

action4 =
 do ...

action5 =
 do ...

action6 =
 action4 AND action5

Impossible!

Need to keep track of
all locks of an action,
and compose these

Conclusion

 Programming with explicit locks is
Not compositional
Not scalable (to many cores / threads)
Gives you a headache
Leads to code with errors
 ...

 A new concurrent programming paradigm
is sorely needed

Idea behind STM

 Borrow ideas from database people
Transactions

 Add ideas from functional programming
Computations are first-class values
What side-effects can happen where is

controlled

 Et voila!

Software Transactional Memory (STM)

 First ideas in 1993
 New developments in 2005

Simon Peyton Jones
Simon Marlow
Tim Harris
Maurice Herlihy

Atomic Transactions

action3 =
 atomically $ do
 withdraw a 100
 deposit b 100

”write sequential
code, and wrap

atomically around it”

How Does It Work?

 Execute body without locks
 Each memory access is logged
 No actual update is performed
 At the end, we try to commit the log to

memory
 Commit may fail, then we retry the whole

atomic block

action3 =
 atomically $ do
 withdraw a 100
 deposit b 100

Transactional Memory

 No locks, so no race conditions
 No locks, so no deadlocks
 Error recovery is easy; an exception

aborts the whole block and retries
 Simple code, and scalable

Caveats

 Absolutely forbidden:
To read a transaction variable outside an

atomic block
To write to a transaction variable outside an

atomic block
Side-effects inside an atomic block...

Simon’s Missile Program
action3 =
 atomically $ do
 withdraw a 100
 launchNuclearMissiles
 deposit b 100

launchNuclearMissiles :: IO ()
No side effects

allowed!
(type error)

STM Haskell
Control.Concurrent.STM

 First fully-fledged implementation of STM
 Impl.s for C++, Java, C# available

But it is difficult to solve the problems

 In Haskell, it is easy!
Controlled side-effects

STM Haskell
Control.Concurrent.STM

type STM a
instance Monad STM

type TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

atomically :: STM a -> IO a -- run function

Example

type Account = TVar Int

deposit :: Account -> Int -> STM ()
deposit r i = do v <- readTVar r
 writeTVar r (v+i)

main = do ... atomically (deposit r 13) ...

Example

retry :: STM a

withdraw :: Account -> Int -> STM ()
withdraw r i = do v <- readTVar r
 if v < i then retry
 else writeTVar r (v-i)

main = do ... atomically (do withdraw r1 4
 deposit r2 4) ...

Retrying

 An atomic block is retried when
 the programmer says so, or
 the commit at the end fails.

 Before retrying, the STM implementation
waits until one of the variables used in the
atomic block is changed
Why? Referential

transparency!

Compositional Choice

orElse :: STM a -> STM a -> STM a

main = do ... atomically (withdraw r1 4
 `orElse`

withdraw r2 4) ...

instance MonadPlus STM where
 mzero = retry
 mplus = orElse
-- Laws
m1 `orElse` (m2 `orElse` m3) = (m1 `orElse` m2) `orElse` m3

retry `orElse` m = m
m `orElse` retry = m

Blocking or not?

nonBlockWithdraw :: Account -> Int -> STM Bool
nonBlockWithdraw r i =
 do withdraw r i
 return True
 `orElse`
 return False

Choice of blocking / non-blocking
is up to the caller, not the method

(here ”withdraw”) itself

Example: MVars

 MVars can be implemented using TVars
 type MVar a = TVar (Maybe a)

(Demo if time permits.)

STM in Haskell summary

 Safe transactions through type safety
Degenerate ”IO-like” monad STM

 We can only access TVars
 TVars can only be accessed in STM monad

Referential transparency

 Explicit retry -- expressiveness
 Compositional choice -- expressiveness

Problems in C++ / Java / C#

 Retry semantics
 IO in atomic blocks
 Access of transaction variables outside of

atomic blocks
 Access to regular variables inside of

atomic blocks

STM Haskell
Control.Concurrent.STM

type STM a
instance Monad STM

type TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

atomically :: STM a -> IO a
retry :: STM a
orElse :: STM a -> STM a -> STM a

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32
	Sida 33
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38

