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Expressing Parallelism

 In a pure, lazy language
Evaluation is done when needed
Evaluation order does not affect meaning
Many sub-expr. could be eval. in parallel
But how can we express that?



Two primitives

pseq :: a -> b -> b
-- denotational semantics: 
pseq _|_ y = _|_
pseq _    y = y

par :: a -> b -> b
-- denotational semantics:
par thread main = main

pseq x y: 
Evaluate first x, 

and then y

par thread main: 
Evaluate thread in 

parallel, and 
immediately return 

main



Example

normal, paraNormal :: X -> Y -> N
paraNormal x y = x `par` y `par` normal x y

Idea: Write ”normal” 
program first, then 
add parallelism to 

speed it up



Example: QuickSort

qsort :: (Ord a) => [a] -> [a]
qsort []        = []
qsort [x]      = [x]
qsort (x:xs) =
    losort `par` hisort `par` losort ++ (x:hisort)
  where
    losort = qsort [y | y <- xs, y < x ]
    hisort = qsort [y | y <- xs, y >= x ] 



QuickSort (II)
qsort :: (Ord a) => [a] -> [a]
qsort []        = []
qsort [x]      = [x]
qsort (x:xs) =
    force losort  `par`  force hisort  `par`
       losort ++ (x:hisort)
  where
    losort = qsort [y | y <- xs, y < x ]
    hisort = qsort [y | y <- xs, y >= x ]

force :: [a] -> ()
force []        = ()
force (x:xs) = x `pseq` force xs



Example: Parallel Map

pmap :: (a -> b) -> [a] -> [b]
pmap f [] = []
pmap f (x:xs) = fx  `par`  fxs  `par`  fx:fxs
   where
      fx  = f x
      fxs = pmap f xs 



Evaluation Strategies

-- From module Control.Parallel.Strategies (v1)
type Done =  ()
type Strategy a =  a -> Done

using :: a -> Strategy a -> a
a `using` strat = strat a  `pseq`  a



Evaluation Strategies (II)

rwhnf :: Strategy a -- Called rseq in later versions
class NFData a where
  rnf :: Strategy a   -- Evaluate to normal form

parList :: Strategy a -> Strategy [a]
parList strat  [] = ()
parList strat  (x:xs) = strat x  `par`  parList strat xs



Parallel Evaluation Strategies

pmap :: Strategy b -> (a -> b) -> [a] -> [b]
pmap strat f xs = map f xs `using` parList strat



More ...

 Implemented in GHC -- hackage parallel
Control.Parallel (par, pseq)
Control.Parallel.Strategies

 Also look at:
Control.Concurrent (ghc -threaded)
Control.Monad.STM

 RWH: Ch. 24 and Ch. 28



Concurrent Programming

 Processes
Concurrency
Parallelism

 Shared resources
Communication
Locks
Blocking



Concurrent Haskell
Control.Concurrent

fork :: IO a -> IO Pid
kill :: Pid -> IO ()

type MVar a

newEmptyMVar :: IO (MVar a)
takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()

starting/killing 
processes

a shared 
resource

blocking 
actions



Concurrent Haskell
Control.Concurrent.Chan

type Chan a

newChan :: IO (Chan a)
readChan :: Chan a -> IO a
writeChan :: Chan a -> a -> IO ()

an 
unbounded 

channel

write returns 
immediately



Typical Concurrent Programming Today

 Use MVars (or similar concepts) to 
implement ”locks”
Grab the lock

 Block if someone else has it

Do your thing
Release the lock



Problems With Locking

 Races
Forgotten lock

 Deadlock
Grabbing/releasing locks in wrong order

 Error recovery
 Invariants
Locks



The Biggest Problem

 Locks are not compositional!
 Compositional = build a working system from 

working pieces

action1 = withdraw a 100 action2 = deposit b 100

action3 =
  do withdraw a 100
       deposit b 100

Inconsistent 
state



Solution (?)

 Expose the locks

action3 =
  do lock a
       lock b
       withdraw a 100
       deposit b 100
       release a
       release b

Danger of 
deadlock!

– better but error-prone
if a < b then do lock a; lock b
            else do lock b; lock a



More Problems

action4 =
  do ...

action5 =
  do ...

action6 =
  action4 AND action5

Impossible!

Need to keep track of 
all locks of an action, 
and compose these



Conclusion

 Programming with explicit locks is
Not compositional
Not scalable (to many cores / threads)
Gives you a headache
Leads to code with errors
 ...

 A new concurrent programming paradigm 
is sorely needed



Idea behind STM

 Borrow ideas from database people
Transactions

 Add ideas from functional programming
Computations are first-class values
What side-effects can happen where is 

controlled

 Et voila!



Software Transactional Memory (STM)

 First ideas in 1993
 New developments in 2005

Simon Peyton Jones
Simon Marlow
Tim Harris
Maurice Herlihy



Atomic Transactions

action3 =
  atomically $ do
     withdraw a 100
     deposit b 100

”write sequential 
code, and wrap 

atomically around it”



How Does It Work?

 Execute body without locks
 Each memory access is logged
 No actual update is performed
 At the end, we try to commit the log to 

memory
 Commit may fail, then we retry the whole 

atomic block

action3 =
  atomically $ do
     withdraw a 100
     deposit b 100



Transactional Memory

 No locks, so no race conditions
 No locks, so no deadlocks
 Error recovery is easy; an exception 

aborts the whole block and retries
 Simple code, and scalable



Caveats

 Absolutely forbidden:
To read a transaction variable outside an 

atomic block
To write to a transaction variable outside an 

atomic block
Side-effects inside an atomic block...



Simon’s Missile Program
action3 =
  atomically $ do
     withdraw a 100
     launchNuclearMissiles
     deposit b 100

launchNuclearMissiles :: IO ()
No side effects 

allowed!
(type error)



STM Haskell
Control.Concurrent.STM

 First fully-fledged implementation of STM
 Impl.s for C++, Java, C# available

But it is difficult to solve the problems

 In Haskell, it is easy!
Controlled side-effects



STM Haskell
Control.Concurrent.STM

type STM a
instance Monad STM

type TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

atomically :: STM a -> IO a  -- run function



Example

type Account = TVar Int

deposit :: Account -> Int -> STM ()
deposit r i = do v <- readTVar r
                     writeTVar r (v+i)

main = do ... atomically (deposit r 13) ...



Example

retry :: STM a

withdraw :: Account -> Int -> STM ()
withdraw r i = do v <- readTVar r
                     if v < i then retry
                               else writeTVar r (v-i)

main = do   ...   atomically (do withdraw r1 4
                                       deposit    r2 4  )   ...



Retrying

 An atomic block is retried when
 the programmer says so, or
 the commit at the end fails.

 Before retrying, the STM implementation 
waits until one of the variables used in the 
atomic block is changed
Why? Referential 

transparency!



Compositional Choice

orElse :: STM a -> STM a -> STM a

main = do ... atomically ( withdraw r1 4
                                      `orElse` 

withdraw r2 4) ...

instance MonadPlus STM where 
  mzero = retry
  mplus = orElse
-- Laws
m1 `orElse` (m2 `orElse` m3) = (m1 `orElse` m2) `orElse` m3

retry `orElse` m = m
m `orElse` retry = m



Blocking or not?

nonBlockWithdraw :: Account -> Int -> STM Bool
nonBlockWithdraw r i =
     do withdraw r i
          return True
   `orElse` 
     return False

Choice of blocking / non-blocking 
is up to the caller, not the method 

(here ”withdraw”) itself



Example: MVars

 MVars can be implemented using TVars
 type MVar a = TVar (Maybe a)

(Demo if time permits.)



STM in Haskell summary

 Safe transactions through type safety
Degenerate ”IO-like” monad STM

 We can only access TVars
 TVars can only be accessed in STM monad

Referential transparency

 Explicit retry -- expressiveness
 Compositional choice -- expressiveness



Problems in C++ / Java / C#

 Retry semantics
 IO in atomic blocks
 Access of transaction variables outside of 

atomic blocks
 Access to regular variables inside of 

atomic blocks



STM Haskell
Control.Concurrent.STM

type STM a
instance Monad STM

type TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

atomically :: STM a -> IO a
retry :: STM a
orElse :: STM a -> STM a -> STM a
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