
Parallelism and
Concurrency

Koen Lindström Claessen
Chalmers University
Gothenburg, Sweden

Patrik JanssonPatrik Jansson

Expressing Parallelism

 In a pure, lazy language
Evaluation is done when needed
Evaluation order does not affect meaning
Many sub-expr. could be eval. in parallel
But how can we express that?

Two primitives

pseq :: a -> b -> b
-- denotational semantics:
pseq _|_ y = _|_
pseq _ y = y

par :: a -> b -> b
-- denotational semantics:
par thread main = main

pseq x y:
Evaluate first x,

and then y

par thread main:
Evaluate thread in

parallel, and
immediately return

main

Example

normal, paraNormal :: X -> Y -> N
paraNormal x y = x `par` y `par` normal x y

Idea: Write ”normal”
program first, then
add parallelism to

speed it up

Example: QuickSort

qsort :: (Ord a) => [a] -> [a]
qsort [] = []
qsort [x] = [x]
qsort (x:xs) =
 losort `par` hisort `par` losort ++ (x:hisort)
 where
 losort = qsort [y | y <- xs, y < x]
 hisort = qsort [y | y <- xs, y >= x]

QuickSort (II)
qsort :: (Ord a) => [a] -> [a]
qsort [] = []
qsort [x] = [x]
qsort (x:xs) =
 force losort `par` force hisort `par`
 losort ++ (x:hisort)
 where
 losort = qsort [y | y <- xs, y < x]
 hisort = qsort [y | y <- xs, y >= x]

force :: [a] -> ()
force [] = ()
force (x:xs) = x `pseq` force xs

Example: Parallel Map

pmap :: (a -> b) -> [a] -> [b]
pmap f [] = []
pmap f (x:xs) = fx `par` fxs `par` fx:fxs
 where
 fx = f x
 fxs = pmap f xs

Evaluation Strategies

-- From module Control.Parallel.Strategies (v1)
type Done = ()
type Strategy a = a -> Done

using :: a -> Strategy a -> a
a `using` strat = strat a `pseq` a

Evaluation Strategies (II)

rwhnf :: Strategy a -- Called rseq in later versions
class NFData a where
 rnf :: Strategy a -- Evaluate to normal form

parList :: Strategy a -> Strategy [a]
parList strat [] = ()
parList strat (x:xs) = strat x `par` parList strat xs

Parallel Evaluation Strategies

pmap :: Strategy b -> (a -> b) -> [a] -> [b]
pmap strat f xs = map f xs `using` parList strat

More ...

 Implemented in GHC -- hackage parallel
Control.Parallel (par, pseq)
Control.Parallel.Strategies

 Also look at:
Control.Concurrent (ghc -threaded)
Control.Monad.STM

 RWH: Ch. 24 and Ch. 28

Concurrent Programming

 Processes
Concurrency
Parallelism

 Shared resources
Communication
Locks
Blocking

Concurrent Haskell
Control.Concurrent

fork :: IO a -> IO Pid
kill :: Pid -> IO ()

type MVar a

newEmptyMVar :: IO (MVar a)
takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()

starting/killing
processes

a shared
resource

blocking
actions

Concurrent Haskell
Control.Concurrent.Chan

type Chan a

newChan :: IO (Chan a)
readChan :: Chan a -> IO a
writeChan :: Chan a -> a -> IO ()

an
unbounded

channel

write returns
immediately

Typical Concurrent Programming Today

 Use MVars (or similar concepts) to
implement ”locks”
Grab the lock

 Block if someone else has it

Do your thing
Release the lock

Problems With Locking

 Races
Forgotten lock

 Deadlock
Grabbing/releasing locks in wrong order

 Error recovery
 Invariants
Locks

The Biggest Problem

 Locks are not compositional!
 Compositional = build a working system from

working pieces

action1 = withdraw a 100 action2 = deposit b 100

action3 =
 do withdraw a 100
 deposit b 100

Inconsistent
state

Solution (?)

 Expose the locks

action3 =
 do lock a
 lock b
 withdraw a 100
 deposit b 100
 release a
 release b

Danger of
deadlock!

– better but error-prone
if a < b then do lock a; lock b
 else do lock b; lock a

More Problems

action4 =
 do ...

action5 =
 do ...

action6 =
 action4 AND action5

Impossible!

Need to keep track of
all locks of an action,
and compose these

Conclusion

 Programming with explicit locks is
Not compositional
Not scalable (to many cores / threads)
Gives you a headache
Leads to code with errors
 ...

 A new concurrent programming paradigm
is sorely needed

Idea behind STM

 Borrow ideas from database people
Transactions

 Add ideas from functional programming
Computations are first-class values
What side-effects can happen where is

controlled

 Et voila!

Software Transactional Memory (STM)

 First ideas in 1993
 New developments in 2005

Simon Peyton Jones
Simon Marlow
Tim Harris
Maurice Herlihy

Atomic Transactions

action3 =
 atomically $ do
 withdraw a 100
 deposit b 100

”write sequential
code, and wrap

atomically around it”

How Does It Work?

 Execute body without locks
 Each memory access is logged
 No actual update is performed
 At the end, we try to commit the log to

memory
 Commit may fail, then we retry the whole

atomic block

action3 =
 atomically $ do
 withdraw a 100
 deposit b 100

Transactional Memory

 No locks, so no race conditions
 No locks, so no deadlocks
 Error recovery is easy; an exception

aborts the whole block and retries
 Simple code, and scalable

Caveats

 Absolutely forbidden:
To read a transaction variable outside an

atomic block
To write to a transaction variable outside an

atomic block
Side-effects inside an atomic block...

Simon’s Missile Program
action3 =
 atomically $ do
 withdraw a 100
 launchNuclearMissiles
 deposit b 100

launchNuclearMissiles :: IO ()
No side effects

allowed!
(type error)

STM Haskell
Control.Concurrent.STM

 First fully-fledged implementation of STM
 Impl.s for C++, Java, C# available

But it is difficult to solve the problems

 In Haskell, it is easy!
Controlled side-effects

STM Haskell
Control.Concurrent.STM

type STM a
instance Monad STM

type TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

atomically :: STM a -> IO a -- run function

Example

type Account = TVar Int

deposit :: Account -> Int -> STM ()
deposit r i = do v <- readTVar r
 writeTVar r (v+i)

main = do ... atomically (deposit r 13) ...

Example

retry :: STM a

withdraw :: Account -> Int -> STM ()
withdraw r i = do v <- readTVar r
 if v < i then retry
 else writeTVar r (v-i)

main = do ... atomically (do withdraw r1 4
 deposit r2 4) ...

Retrying

 An atomic block is retried when
 the programmer says so, or
 the commit at the end fails.

 Before retrying, the STM implementation
waits until one of the variables used in the
atomic block is changed
Why? Referential

transparency!

Compositional Choice

orElse :: STM a -> STM a -> STM a

main = do ... atomically (withdraw r1 4
 `orElse`

withdraw r2 4) ...

instance MonadPlus STM where
 mzero = retry
 mplus = orElse
-- Laws
m1 `orElse` (m2 `orElse` m3) = (m1 `orElse` m2) `orElse` m3

retry `orElse` m = m
m `orElse` retry = m

Blocking or not?

nonBlockWithdraw :: Account -> Int -> STM Bool
nonBlockWithdraw r i =
 do withdraw r i
 return True
 `orElse`
 return False

Choice of blocking / non-blocking
is up to the caller, not the method

(here ”withdraw”) itself

Example: MVars

 MVars can be implemented using TVars
 type MVar a = TVar (Maybe a)

(Demo if time permits.)

STM in Haskell summary

 Safe transactions through type safety
Degenerate ”IO-like” monad STM

 We can only access TVars
 TVars can only be accessed in STM monad

Referential transparency

 Explicit retry -- expressiveness
 Compositional choice -- expressiveness

Problems in C++ / Java / C#

 Retry semantics
 IO in atomic blocks
 Access of transaction variables outside of

atomic blocks
 Access to regular variables inside of

atomic blocks

STM Haskell
Control.Concurrent.STM

type STM a
instance Monad STM

type TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

atomically :: STM a -> IO a
retry :: STM a
orElse :: STM a -> STM a -> STM a

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32
	Sida 33
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38

